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Abstract. The topological invariants of monopoles are described for an
arbitrary compact gauge group G and Higgs field Φin any representation. The
results generalize those obtained recently for compact and simply connected G
and Φ in the adjoint representation. The cases when the residual symmetry
group is H = U(l) or H = U(3) are worked out explicitly. This latter is needed to
accommodate fractional electric charge with monopoles having one Dirac
unit magnetic charge.

The general theory is illustrated on the SU(5) monopole.

1. Introduction

Let us consider a gauge theory with a compact gauge group G and the Higgs field
transforming according to an arbitrary representation of G. The coupled Yang-
Mills-Higgs equations admit monopole solutions (see [14] for a review). Let us
consider such a monopole given by the pair (ApΦ), and denote by H the residual
symmetry group left by the vacuum expectation value of Φ.

In the theory of monopoles a fundamental role is played by the topological
invariants [2-4, 8-10, 15, 21]. The most important of these invariants is

(i) The Higgs charge [Φ]eπ2(G///) defined by the asymptotic values of the
Higgs field.

(ii) If Φ belongs to the adjoint representation, we have another topological
invariant-the so-called topological charge

), (1.1)

where F is the gauge field strength. Equation (1.1) appears for example in the
expression given by Bogomolny to the lower bound of the energy. Equation (1.1)
has been generalized by Taubes [2]. In [1] we made one further step and proved
that, for any (n + l)-linear function / on ^ the integral

..,φ) (1.2)
n times
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is a topological invariant whenever Dμ Φ = 0.

(iii) If the Higgs field generates a U(l) subgroup, the projection of the
Yang-Mills field on the Φ-direction can be viewed as an electromagnetic field. The
electric charge is then quantized [4]. The monopole's magnetic charge is expressed
in an invariant integral of the type (1.2), and the electric- and magnetic charges
satisfy a generalized Dirac condition.

The symmetry breaking mechanism by a Higgs field in the adjoint represent-
ation suffers however of a serious drawback: the residual symmetry group is in
general not the one we would like to have in physics. For G = SU(iV) for instance,
the only possibility is [1]

H = SίUfo) x U(i2 - h) x x Ό(N - g } , 0 < ix < < ίp < N. (1.3)

Most present-day physicists believe however that the exact symmetry group

should be rather that of strong- and electromagnetic interactions:

SU(3) c xU(l) e m . (1.4)

It is clearly impossible to realize (1.4) by a Higgs field in the adjoint representation
(except for G = SU(4)).

On the other hand, in grand unified theories [11] the symmetry is broken in
several stages by Higgs fields which do not belong to the adjoint representation
in general.

The aim of this paper is to extend the results of [1] to any compact gauge
group and Higgs field in any representation.

First we describe πγ(H) in some detail. We show that, for any compact and
connected H,

π1(H) = π1(Hss)xZp, (1.5)

where Hss is the semisimple subgroup of H whose Lie algebra is [ § , § ] and p is
the dimension of the centre of H. π^HJ is a finite Abelian group.

As it will be seen below, it is the free part of n2(H) which plays a role in
calculating the further topological invariants. We describe it in some more detail.
To do this consider, for any loop y in if,

) ( 1 6 )

where z is the projection from §, the Lie algebra of H, to its centre Z($>), θ is the
Maurer-Cartan form of H. Equation (1.6) depends only on the homotopy class of
y. We prove that p defines an isomorphism of the free part of πx(H) onto z(Γ\ the
projection onto the centre of the unit lattice Γ of H.

Our recipe for calculating ρ(y) is as follow:
(i) choose a maximal torus Γ, find the unit lattice Γ (cf. [1]). Project Γ to the

centre of §;
(ii) choose a Z-basis ζl9.. ,ζp oϊz(Γ) and select ηί9.. ,ηp in Γ such that z (ηk) = ζk.

(iii) def ine/G^* by

(1.7)
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The /*'s are differentials of characters χk of H and

(iv) setting

ΓTT^ ( L 8 )

l J 1 Xwe get an isomorphism between the free part and Z p , where p is the dimension

of Z(§). ρ(y) is then found as

P(y)= Σ "vC* (i 9)
J t = l

Alternatively, denote by Z^(§) the centralizer of § in ^ with projection

π*Ω=z'(dθ) (1.10)

gives a Z^(§)-valued closed 2-form f2 on G/H. Let us then define

This is a homotopy invariant and it is not difficult to show that

(1.12)

where δ is the injective homomorphism from π2(G/H) to n^H). The prime will

be dropped from p in the sequel.

Equation (1.11) implies

mk(Φ) = mfc(<5[Φ]) = — f Φ * ω k , where ωk =fk(Ω). (1.13)

Let now / denote an arbitrary invariant function on ^ x G/H which is linear in

the first variable. We prove that

>) (1.14)

is a topological invariant (actually independent of the Yang-Mills field) and can

be calculated as:

(1.15)

where x0 is a reference point in the orbit G/H with stabilizer H.

There is an ambiguity in defining the electromagnetic properties: any ζeZ(ξ>)

is admissible if it defines a U( l ) subgroup (this latter condition is needed to have

quantized electric charge [1,4]). If ζ is chosen to satisfy these conditions, all electric

charges will be, just as in the adjoint case, multiples of a minimal charge

Let us choose an invariant inner product ( , •) on 9, and define the electromagnetic

field to be the C-component of F. The magnetic charge of the monopole turns out
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to be

The electric- and magnetic charges satisfy hence a generalized Dirac condition:

The situation is particularly simple if Z(§) is 1-dimensional. Then ρ(Φ) =
where ζ is the minimal generator of Z(£>) and M is an integer, which divides the
order of the finite group Z(H)0 nHss (the intersection of the connected component
of the centre with the semisimple part).

In this case both the electric- and magnetic charges are quantized; the Dirac
condition reads [4,10,21]

2<?min 0min = l/M. (1.19)

As examples, we consider the following particular cases:
(i) The Higgs field is in the adjoint representation. The previous results [1]

are easily recovered.
(ii) The case /J = U(1) is even simpler. The electric, respectively magnetic,

charges satisfy the original Dirac condition.
(iii) If there exist, as conjectured, fractional electric charges and simultaneously

monopoles having 1 Dirac unit magnetic charge, the residual symmetry group
must be H = U(3), rather than SU(3) x U(l). (This conclusion can be obtained also
from the study of to which multiplets the fermions of the theory belong [16]). The
Dirac condition is modified now to

2«minff = w/3, where meZ. (1.20)

The SU(5) monopole [12,13] provides us with a nice application of our theory:
at a mass scale of order 101 4GeV SU(5) is broken by the vacuum expectation
value of a Higgs field in the adjoint representation, so (i) of Sect. 4 applies. At
energies of order 102GeV the symmetry is broken a second time, leaving U(3) as
the residual symmetry group, so we can use (iii) of Sect. 4.

2. The Higgs Charge

Let us assume that the gauge group G is a compact Lie group and let V be a
finite dimensional vectorspace carrying a representation of G. The action of a
^eG on a vector veV will be denoted by g.v. If the Higgs field Φ transforms
according to this representation, the usual conditions on the asymptotic behaviour
of Φ imply that Φ maps S2, the 2-sphere at infinity, into an orbit 0 = Gx0 in V.
This orbit can be identified with G/H, where H is the stability subgroup of the
base point x.

The standard homotopy exact sequence implies that there is an injective
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homomorphism

δ.π^G/^^π^Hl (2.1)

which becomes an isomorphism if G is simply connected, δ is described as follows
[1]: denote U1 = {x = (θ,p)eS2\0Sθ <(π/2) + ε} and U2 = {x = (θ,p)e
S2\(π/2)-ε<θ^π}'U1uU2 covers S2 and U1nU2 retracts to the equatorial
circle S1 Φ:S2-+G/H lifts on Ut according to

Φ(x) = gίx) x09 xeU, (2.2)

Let γ denote gϊ1(x)g2(x)\S1 Then γ maps S1 into H and

I.) We study first [y]. To do this we need to know π^H) in some more detail.
Without loss of generality we assume that H is connected.

Let H denote a connected, compact Lie group, let § be its Lie algebra, and
denote by Z(§) its centre. § is decomposed as

Let z: § - • Z(§) be the projection map defined by the decomposition (2.3). Let
Hss denote the subgroup of H whose Lie algebra is [§ ,§] . Hss is closed (hence
compact) and semisimple. It is also a normal subgroup since [ § , § ] is an ideal.
Then H/Hss is a compact, connected group whose Lie algebra is Z(§). But Z(§)
is Abelian, hence H/Hss is a torus. So π^H/H^) ~ Zp, where p is the dimension
of Z(§). On the other hand, Hss is compact and semisimple, so n^H^) is a finite
Abelian group.

The exact sequence HSS^>H-+H/HSS gives the short exact sequence
of homotopy groups

0 -> π^HJ^π^H) ^π^H/HJ -> 0. (2.4)

Since π^H) is known to be Abelian and π^H/H^) is free, this sequence splits and
πx(if) is the direct product

Let ^(//X^ denote the normal subgroup of elements of finite order. Equation
(2.4) shows that the inclusion map i:Hss-+H induces an isomorphism i^\
πι(Hss)-+π1(H\or, and that π^H^π^H)^ = Zp. What we have obtained is
summarized in the following:

Proposition 2.1. The first homotopy group of a compact, connected Lie group is
decomposed as

π1(H) = π1(Hss)xZ*>. (2.5)

where p is the dimension of the centre of ξ>.
The invariants we shall introduce in the sequel will be shown to depend only
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on the free part of π^H). In what follows we focus our attention on this free part.
The relation (2.5) states an abstract isomorphism. Let us analyze it in some

more detail.
Let us define first

Γ = {ξeξ>\exp2πξ = e}. (2.6)

Let us fix a maximal torus T c H with Lie algebra X. Then

Γ = ΓnX (2.7)

is a lattice in % called the unit lattice of H. We have

Observe that z(Adgξ) = z(ξ\ so that

z(Γ) = z(Γ). (2.8)

Let θ = h'1 dh denote the Maurer-Cartan 1-form of H. Then zθ is a closed
1-form on H. Indeed, dθ = - (1/2)[0 Λ 0] by the structure equations [7]. But the
right-hand side here is in [£),§] so it projects to 0 under z. Consequently

Consider now a loop y in H and set

^ (2.9)

Since zθ is closed, it is easy to show that ρ(y) depends only on the homotopy
class [y^\eπ1(H). Equation (2.9) provides us hence with a homomorphism
p\πγ(H)^Z($l)). p plays a crucial role in the sequel.

It is a known fact from Lie group theory that, for a compact Lie group, any
loop is homotopic to one of the form

y(ί) = exp2πίξ, O ^ ί ^ l (2.10)

for a suitable ξ from the Lie algebra. To be a loop ξ must obviously belong to
Γ. For such a loop θγ(t) (y'{t)) = 2πξ, and hence the integration in (2.9) is
straightforward:

*(£)• (2.11)

Proposition 2.2.

Kerp = π1(H)tor. (2.12)

Proof. That Imp is free is obvious since it is a subgroup of a vectorspace. So
π^/JXorcKerp. If p([y]) = O, take a representative £->exp2π£<ί; of [y].

so ξ is in [ § , § ] and hence exp2πtξeHss so [y]eπ1(H s s) =

Thus piπ^H)) is isomorphic to π^i f/ f/J , the free part of π ^
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Proposition 2.3.

p(πi(H)) = z(Γ). (2.13)

Proof. If ξeΓ, then y(ή = exp2πtξ is a loop in H and p(γ) = z(£). Conversely,
if [y]eπ^fί), take a representative loop ί->exp2πί^, £e/\ But then kάgξeΓ
for some geH and p([y]) = z(ξ) = z(Aάgξ)ez(Γ).

Denote Γz = ΓCΛZ(5)\ and let Z(H)0 be the connected component of the centre
of H which has Z(§) as its Lie algebra.

Proposition 2.4. The exponential map sends 2πp(π1(H)) onto Z(H)onHss with
kernel 2πΓz. In other words,

2πΓz -> 2πp(π i(iί) APZ(//)0 n JίM (2.14)

is an exact sequence of Abelian groups.

Proof. If [yleTϋi(if), choose a representative 7(ί) = exp2πίξ,^GΓ. Then
p(γ) = z{ξ\ and so exp 2πz{ξ)eZ(H)0. But exp 2πz(ξ) = exp 2π(z(ξ) - ξ)eHss,
so exp maps 2πp(π1(H)) into Z(H)onHss.

To see it is onto, take geZ(H)onHss,g = exp2πξo = exp2πξ1 with ξ0G
Z(S),<!;ie[$,<r>], so exp2π(^ 0 -ί i) = ̂  and hence y(ί) = exp2πί(ί o ~ίi) is
a loop in H and p(y) = z(ξ0 - ξj = ξ0.

That Γz = Kerexp2πp(π1 (if)) can now be easily shown.
Z(H)onHss is finite group, so piπ^H)) is lattice or rank p in Z(£) which spans

Z(§). If C is an arbitrary element in piπ^H)), then # = exp2π( has finite order,
gM = e for some integer M. But gM = exp 2πM£, since ζ is in the centre. So

MζeΓz. (2.15)

It is easy to prove the following

Proposition 2.5. i / / e § * , then y/— If is the differential of a character of H if
and only if

( i)/([&$]) = 0

and

(i i )/(Γ)cZ.

Observe that (i) implies that / is determined by its restriction to Z(ί>) and is
invariant under AdH, so (ii) holds as soon as it holds on Γ. By Proposition 2.3
this is equivalent to f(p(πx(H))) a Z.

Consequently we have a one-to-one correspondence between ίϊ, the set of
characters of H, and the set of those elements in Z(ξ>)* which take integral values
on piπ^H)). The correspondence is given by

dx/Λf^ϊ = foZ. (2.16)

One can show that this correspondence is actually a group homomorphism.
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Proposition 2.3 allows us to find the image of p without first finding πγ(H),
since the unit lattice in a torus can be found directly and then projected into Z(§)
by z.

To calculate explicitly, choose a maximal torus T in H; let Γ be its unit lattice.
Let us choose a Z-basis ζί9...9ζp for z(Γ) and select then ηl9..9ηp from Γso that
z(ηk) = ζk9 k = 1,... p. In this way we obtain the loops γk(t) = exp 2πtηk in H which
generate the free part of π^H).

If f 1 , . . . , / P G § * vanish on [<r>, § ] and satisfy

then the conditions (i) and (ii) of Proposition 2.5 are satisfied so there are characters

χί9...9χpofH such that dχk = y ^ Ί " f\

If χ is any character of H, then

w h e r e t h e in tegers n l v . . , n p a r e c o m p u t e d a c c o r d i n g t o

nk = dχ(ζk)/^ϊ, (2.18)

and so

X — Xi "Xp - \ΔΛy)

If χ is any character and y any loop, then χ°y is a map S1 ->U(1) and has thus

a degree m (̂y) which is a homotopy invariant, and so gives us a homomorphism

m;f:π1(//)->Z. If y(ί) = exp2πίξ,ξG.Γ, then χ(y(ή) = exp2πtdχ(ξ\ whose degree

is dχ{ξ)lj^\. Hence

Using the definition (2.9) of p(y) this can be further written as

Proposition 2.6. Each character χeί) determines a homomorphism mχ: πγ(H)->Z,

1 <d*. (2.21)
2πJ— 1 y 2πJ—

If we let mk = mXk, where the χk's are the basis of H we constructed earlier, then
we get the map

(ml9...,mp):πι(H)-+Zp (2.22)

which is surjective and whose kernel is the torsion part of π^H). The in-
tegers m,([j]) depend obviously on the choice of the Z-basis. Note that
mk (Qxp2πtYjnjηj)=nk, consequently p([γ]) is simply

j

= Σ mk<k (2.23)

is already independent of the choice of the basis ζk.
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II.) As complete as it seems, the theory given above is not very convenient in
actual calculations, because the construction of the map δ is not explicit. Hence
one should desire an alternative description in terms of the Higgs field Φ itself. So
we examine now π2(G/H) to some extent.

Let us introduce the centralizer of § in ^ :

§}. (2.24)

It is easy to see that relative to any invariant inner product on
so we have a direct sum decomposition

], (2.25)

and a corresponding projection

(2.26)

Of course Z{ξ>) = ξ>nZy{ξ>) and (2.25) is compatible with the previous
decomposition (2.3) of § . In the adjoint representation of H on ^, H acts trivially
on ZJ&\ so z' is //-invariant:

z'(Adhξ) = z'(ξ) ξe99heH. (2.27)

Thus the 2-form z'(dθ) is //-invariant for the action of H on G by the right
translations as well as left translations by G. Further, if f is the left-invariant
vectorfield on G generated by ξ, then ξ JzfQdθ = zf(^ξθ) = 0 if ξeξ), so z'dθ
descends to G/H to give an invariant 2-form. Thus we have shown:

Proposition 2.7. There is a G4nvariant closed 2- form Ω with values in Z^(§) on
G/H such that

π*Ω=z'(dθ\ (2.28)

where π: G —• G/H denotes the natural projection.
If Φ:S2-*G/H is a smooth map, then by analogy with (2.9) we set

p'(φ) = -Ljφ*£>, (2.29)
2πs2

which is a priori an element of Z^(§). We now see how it is related to
ρ{δ[Φ]). Note that since Ω is closed, ρ'{Φ) depends only on the homotopy class of
Φ so gives a map

(2.30)

Proposition 2.8.

P'([Φ]) = PiSίΦD) for all [Φ]eπ2(G///). (2.31)

In particular, p' actually takes its values in Z(§).
Proof. This is proven by the analogous argument to Theorem 3.2 of our previous
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paper [1]. Let us consider the lifts g( of Φ over I/,- introduced in (2.2).

2πp'(Φ) = lim f g\π*Ω + J g*π*Ω = lim J #*z'(0) + J g*z'Ψ)
ε-*0 U2 U1 ε-0ί/2 U1

β) - βϊAθ) = ί z'
S1ί

S1

Si y

But on H θ is ^-valued and z = z' on §. Thus the last integral is just 2πp[y].
This proves the proposition.

Hence we get the commutative diagram

π2(G/H) P- >

(2.32)

Since δ is injective, the kernel of p' is the torsion subgroup of π2(G/H) and the
image of p' is z(Γ).

If we take a Z-basis ζγ,...,ζp for z (Γ) and extend to a basis ζu ,ζq of

Z^(§), then

fl=tΣA (2-33)

for closed, invariant 2-forms ωk on G/H. Then

<* * ir I ^̂  /̂  (2 3 4 )
I V ' CO ^— Λ

2π s2 [wfc(<5[Φ]) l<k<p

Thus the forms ωfc on G/// for 1 < k < p determine by integration the free part of
the Higgs charge [ Φ ] e π 2 (G/H) of the Higgs field Φ.

Remark. If / \ . . . , /Ms the dual basis to ζγ,..., ζq then

ωk = f\Ω). (2.35)

It is easy to see that for k > pjk(z'θ) descends to G/H to give a 1-form α* with
ωk = dak which explains why the integral (2.29) only takes values in Z(§). In fact
Z^(§)* represents all closed invariant 2-forms on G/H, and those in Z^(§)* which
vanish on Z(ξf) are the exact invariant 2-forms. The quotient space H2 (G/H R)
is thus Z(S)*.

In what follows we drop the prime on p and denote both maps by p. This is
justified by Proposition 2.8.

3. Generalized Invariants

In our previous paper we considered also some other invariants which are
generalizations of the "topological charge" and also can be used to describe the
electromagnetic properties.
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/. Invariant Integrals. By an invariant function on ^ x (G/H) we shall mean a
function

R, (3.1)

which is linear in the first variable and satisfies

, xeG/H, geG.

Such an invariant function can be viewed alternatively as a map (denoted by the
same symbol /)

f(ξ,x)9 (3.2)

which is equivariant for the coadjoint action on #*. Its image is then determined by

g f0 (3.3)

Thus the image is G/o, the coadjoint orbit of f0. Note that (3.3) gives/in terms
of / 0 and tells us that in order to define / by (3.3) it is necessary and sufficient
that H be contained in the stabilizer of / 0 . Since H is connected this is equivalent
to the infinitesimal version

</o> [ & * ] > = & (3.4)

Equation (2.25) tells us that / 0 is determined by its restriction to Z^(§). Thus Z^(§)*
parametrizes the set of invariant functions.

It is clear that setting

α/=</ 0 ,/2> (3.5)

associates a closed invariant 2-form ωf on G/H to each invariant function/ in a one-
to-one manner.

Remark. If ώ is Kostant-Kirillov-Souriau 2-form on the coadjoint orbit of/0

[17,18,19], then it is easy to show that ωf = f*ώ.
Suppose that (A, Φ) is Yang-Mills-Higgs pair satisfying the finite-energy

condition D Φ = 0. The field strength is given by the curvature F = dA +
(1/2)\_A A A~] of A. If/ is an invariant function, we can form a gauge-invariant
2-form/(F, Φ) on S2. On the other hand we can pull back ωf by Φ to give a second
2-form Φ*ωf. We claim that their difference is exact. This will allow us to evaluate
the integral of/(F, Φ) in terms of p ([Φ]).

First we translate the finite energy condition in terms of the orbit G/H a V.

Proposition 3.1 // we define the vector fields ζ on G/H by

then Φ satisfies the finite energy condition (i.e. DμΦ = 0) if and only if for every tangent
vector X on S2

= 0. (3.6)
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Proof. This follows at once from DXΦ = X(Φ) + A(X). since G/H is sitting in the
linear space V and in that case X(Φ) = Φ*X*

Proposition 3.2. // / is an invariant function then

d{f(A, Φ)} = f(F, Φ) + (MίA Λ A], Φ).

Proof. For ξeΉ, X a tangent vector on S2, Proposition 3.1 gives

X(f(ξ,Φ)) = Φ*X(M, ))= - Ax(X)Φ(x)(f(ξ,-))

= -jf of(ξ,exptAx(XyΦ(x))

d

= MA(X),ξlΦ(x)).

Thus for vector fields X, Y on S2,

X(f(A(Y), Φ)) = f(X(A(Y), Φ)) + f(LA(X), A(Y)l Φ)

Then

d{f(A,Φ)}(X, Y) = Xf(A(Y),Φ) - Yf(A(X),Φ)- f(A&X,

= f(dA(X, Y),Φ) + 2f(lA(X), A(Y)IΦ)

= f(F(X, Y),Φ) + fdAX), Aim,Φ)

Since [A Λ A](X, Y) = 2[A(X), A(Y)2 this proves the proposition.
It remains to examine the term f{\_A A A],Φ). We again need the finite energy

condition, but this time we use the following form. If we lift Φ by g over an open set U
(see 2.2). This amounts to gauging Φ to a constant. The transformed potential

takes its values in ξ>. Thus

f(\_A Λ Λ],Φ) = /(Adg- 1 ^ Λ AleH) = </0,[Adg-M Λ Adg"M]>

Since f0 vanishes on [§, §], we have

The structure equation of the Maurer-Cartan form gives then

f&A ΛA1,Φ)= -2g <fo,dθ>= -g <fo,2>dθ}

= -2g*<fo,π*Ω}= -2</ 0 ,Φ*β>

= -2Φ*ωΛ

Combining this with Proposition 3.2 we obtain
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Theorem 3.3. For any invariant f and any finite energy pair (A, Φ) with Φ: S2 -» G/H

f(F,Φ) = d(f(A,Φ)) + Φ*ω'. (3.8)

Corollary 3.4. For any invariant function f the integral

) (3.9)

is a topological invariant which can be calculated as

/<'> = 2π</0,p([Φ])> = 2π/(p([Φ]),x0). (3.10)

Proof. The integral of the exact term vanishes so

But the integral of a closed 2-form is a homotopy invariant, so (3.9) depends only on

This statement can be reformulated in a number of ways. For instance, by (2.31)
and (2.23) we obtain

Corollary 3.5.

/(/) = 2π £ </0,Cfc> mfc([Φ]) = 2π £ /(i*>*o)'W*

= 2 π f /(ifc,xo) m* (3-11)

Since / projects to the centre.

This shows that the invariant integral formed from the Higgs and the gauge field
has as its values a linear combination of the Higgs charges with the coefficients given
by the invariant function / and a suitable basis ζί,..., ζp of the centre of §[1,20].

//.) Electromagnetic Properties. First the electromagnetic direction must be defined.
This can be done in a gauge-invariant way only by a Higgs field in the adjoint
representation. Our Higgs field Φ is however in some other representation in
general.

The point is that, to any vector ζεZ(ξ>\ we can associate a new Higgs field in the
adjoint representation. Indeed, let us consider a local lift g{x) of Φ (2.2), and let
ζeZ{ξ>) be an arbitrary vector playing the role of a base point. Set

Ψ(x) = Adg(x)ζ. (3.12)

Ψ (whose ζ-dependence has been omitted for simplicity) is well-defined since ζ is in
the centre. It is also covariantly constant if Φ is so. This is seen in the gauge where Φ
is constant, noting that Ψ(x) = ζ now and that D Ψ = [α, ζ] = 0 because a is §-valued
and ζ is in the centre of §. Let (.,.) denote an arbitrary invariant inner product on §.

Let us define the electromagnetic field,

(3.13)
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and the electric charge operator by

(3.14)

respectively. As explained in [4]—see also [1], Sect. 5—in order to have quantized
electric charge ζ must generate aί/(l) subgroup. There exists then a minimal U(l)
generator i.e. one whose generated loop closes first at t = 1 parallel to ζ. Assume for
simplicity that ζ itself is minimal, i.e. a generator for Γz. Theorem 5.2 of [1] implies
then

Proposition 3.6. All electric charges are multiples of

<Zmin = ^ j . (3.15)

In order to calculate the magnetic charge let us notice first that the orbit (in V) of
x0 projects to the orbit (in 9) of ζ; the projection is defined by

Observe that Ψ(x) = πζ(Φ(x)). Let us define

. (3.16)

/ is an invariant function of 9 x ΘXo, and it is also linear in ξ. The magnetic charge is
thus expressed as

= (l/4πeo)$J(F,Φ). (3.17)

Here we recognize the generalized invariant /(/). By Corollary 3.4 we get

Theorem 3.7. The magnetic charge is given by

) ( 3 1 S )

The electric, respectively magnetic, charges satisfy a generalized Dirac condition.
Proposition 3.6 and Theorem 3.7 imply in fact

Proposition 3.8.

The situation is particularly simple if Z(ξ>) is one dimensional. Then ^
^ Z. Let yo(t) = exp 2πtη0 be the loop which generates the free part, and let ζ denote
the (unique up to sign) generator of Γz. Then

= p{γ) = m p(y0) = m'z(η0)

for some integer m.
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According to (3.18) the magnetic charge is now

g = (m/2eo)(z(η),ζ/\ζ\),

but z(ζ) is in the centre so z(ζ) = Mmζ, where M is the order of exp 2πz(η)e
Z(H)onHss. So, using Proposition 3.8 we get:

Proposition 3.9.

(3.20)

(ii) the electric—respectively magnetic-charges are quantized,

1 = n-qmin = n-eo/\ζ\'neZ; (3.21)

9 = m'9min = m'\ζ\/2e0M,meZ; (3.22)

(iii) The generalized Dirac condition reads

2gminqmin = l/M. (3.23)

This agrees with the results known previously [4,10,21].

4. Particular Cases

The theory outlined in the preceding sections gives a conceptual framework valid
for any compact Lie group G and a Higgs field Φ in any representation of G. Now we
consider some of the physically most important particular cases.

(i) G Compact and Simply Connected, Φ in the Adjoint Representation. The theory of
Sects. 2 and 3 is consistent with the results in [1]. Observe first that G is now
semisimple so the Killing form B is non-degenerate. Let us choose our maximal
torus T so that X contains the base point ξ0.

The four sets of fundamental quantities introduced in [1] are: the simple roots,
cc1,..., αr; the fundamental weights μ1,...,μr, and their duals ξl9...9ξr and ηu...,ηr

which satisfy (see 5, 6, or 1, Sect. 2.):

j) = δtJ; μfaj) = δu; B{ξh ηj) = δiJl2%/^ϊ/ai(ηJi'] (4.1)

Those ξik's for which aik(ξ0) φ 0 form a basis for Z(§), the centre of the Lie algebra

of the stability group H of ξ0. The unit lattice in turn is generated by (^/— 1 times)

the f/f's.
The semisimple part of H is now simply connected, π^H^) = 0 so π^H) is free,

π^H) ca Zp, where p is the number of the indices ik defined above.
p defined in (2.9) is hence an isomorphism between πί and z(Γ), the projection of

the unit lattice to the centre of § .

Proposition 4.1. The ζk = z(yj — lηikYs form a basis for Z(9)).

Proof. The image under z of the J — l ^ 's generate the centre. On the other hand
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z(y/— lηi) = 0 if ί Φ ik. Indeed, the decomposition (2.4) is orthogonal with respect to

the Killing form B; by (4.1) B(ξik, ηj = 0 if i Φ ik, so y/^Ληi belongs to [£, § ] . Those

1-forms dual to the χ / — lηik are just the μik/y/' — Γs. Hence

χk(exp 2πξ) = exp 2πμik{ξ\ ξe9). (4.2)

is a character of//, and, by (2.21), we have p Higgs charges m1,..., mp. According to
(2.21), (2.22):

Proposition 4.2. The Higgs charges are calculated as

(4.3)

Observe that a loop having mί9...,mp SLS Higgs charges is given by

y(t) = exp {2πy : =Tί £ mkηik}.
ik

Indeed, its image under p is

ρ(y) = y/-ϊ Σwk'ziiik)

The Higgs charges are expressed also as surface integrals [1,2]: by (2.33) we get in
fact

where

which, by (4.1), reads also

(4.4)

(4.5)

(4.6)

The 2-form B{ξik,Ω) is seen to be just ω{ξik) of [1].

The generalized invariant (3.9) reads in turn, according to (3.10) and (3.11),
simply

(4.7)

cf. [1] Theorem 3.5.
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Finally, let us study the electromagnetic properties. Let (.,.) denote now the
Killing form B on ̂ . According to Sect. 2 any CeZ(§) can be chosen to single out the
electromagnetic direction. For example, if we choose ζeΓ0 to be r-ξik(r >0), the
electric charge is given by (3.15) while the magnetic charge becomes

^ (^) (4.8)

This is just the "partial charge" (5.18) of [1]!

Alternatively, we can choose ζeΓz to be parallel to ξ0. Expanding as ζ = £ bkξik,
ik

we get

^ (4.9)

as stated in [1], Theorem 5.4.

(ii) H = U(l). A second, even more simple case is when the residual symmetry group
is H = U(l). We identify it obviously with U(l)em of electromagnetism.

Let ζeΓz be the minimal generator of U(l). δ[Φ] is represented by the loop

y(ί)=exp2πtr£ reZ.

So the Higgs charge is now reZ. The integration in (2.3) is trivial, yielding

rζ. (4.10)

Let us suppose that the Higgs field Φ is covariantly constant. The generalized
invariant (3.9) becomes simply

/ω = 2πr /(C,α (4.H)

There is now no ambiguity in choosing the electromagnetic direction. The
electric charge reads, by (3.15),

(4.12)

while the magnetic charge is expressed, by (3.18),

g = r-\ζ\/2e0. (4.13)

Consequently

Proposition 4.3. // the residual symmetry group is U(l), the original Dirac condition is
satisfied:

(4.14)

Equation (4.14) provides us also with the physical interpretation of the integer r. It
shows also that the mere existence of fractional charges and monopoles having one
unit of Dirac charge imply that the residual symmetry group can not be simply U(l).
In other terms non-electromagnetic interactions must exist [4].
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Interestingly, the integer r is expressed as a surface integral. Indeed, by (2.34)

1
r =

r = ̂ 4 τ f Φ * ω , where ω = (ζ,Ω). (4.15)

(iii) Breaking to U(3). Most present-day physicists believe that the exact symmetry
group in nature should be that of strong- and electromagnetic interactions:

ff = SU(3) c xU(l) e m . (4.16)

We argue here that this can be true only locally, i.e. at the level of Lie algebras:

(4.17)

and it should be replaced rather by

fl = U(3). (4.18)

Our argument is based on the hypothesis that particles with fractional electric
charge (quarks) and monopoles having 1 Dirac unit magnetic charge exist
simultaneously, so that the quantization condition becomes

2qming = mβ, meZ (4.19)

rather then the original condition (4.14) of Dirac.
The statement follows from proposition (3.9). Indeed, for (4.16) Z(H')uH'ss =

{1}, so M = 1 in (3.22) and the Dirac condition reads 2gminqmin — 1.
For H = U(3) we have M = 3 since now A(H) and Hss intersect in 3 points, so the

Dirac condition is (4.19) as required.

Theorem 4.4. // particles with fractional electric charge and monopoles with 1 Dirac
unit magnetic charge are to coexist in such a way that they satisfy (4.19), then the only
possibility to have su(3) x u(l) as local symmetry is by having H = U(3) as exact
symmetry group.

Note that this same conclusion can be obtained alternatively from the study of to
which multiplets the fermions coupled to the theory belong [16].

In what follows we analyze the symmetry breaking to U(3) in some more detail.
Let us represent H = U(3) by 3 x 3 antihermitian matrices. 7^(11(3)) a* Z is

generated by

^ Γ ° Ί
y(ί) = exp2πί>/0 = e x p 2 π ί , / - l 0 . (4.20)

is also 1-dimensional; it is generated by

(4.21)-Hι • J
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The projection z:u(3)->Z(u(3)) reads:

(4.22)

where Tr is the trace operator on 3 x 3 matrices. Consequently

Co = *foo) = ί/3 (4.23)

is a Z-basis for z(Γ). Thus

p(Φ) = m-z(ηo) = m ζβ (4.24)

Let /e[u(3)]* be defined by

/ = Tr/y^T. (4.25)

/ is dual to η0 and takes integer values on Γ so it integrates to a character χ of U(3):

X(g) = detg. (4.26)

Obviously m = Ίv{p(Φ))lJ^\.

Proposition 4.5. The Higgs charge m = [Φ] is expressed also as a surface integral

m = ̂ - J Φ ω, (4.27)

where

52 (4.28)

Ω here being the Z(u{3))~valued 2-form defined in (2.28).
The generalized invariant J ( / ) becomes, by (3.10),

/<'> = 2πmf(η9 *o) = 2πmf(ζ9 xo)/3 (4.29)

for any invariant function / on 9 x {G/U(3)}.
The only choice for the electromagnetic direction is that given by ζ9 so

qmin = eβ, (4.30)

where e = χ/
/3^/2. The magnetic charge reads in turn

9 = m'gmin = m/2e. (4.31)

So the generalized Dirac condition is (4.19) as expected.

5. The SU(5) Monopole

Let us consider the prototype GUT of Georgi and Glashow [11] with gauge group
G = SU(5).

At energies of order 10 1 6 GEV the SU(5) symmetry is broken by a Higgs field Φ
in the adjoint (24) representation, (i) of Sect. 4 applies to this case.
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Let us choose the base point [12,13]

Ί
1

1
-3/2"

"3/2 J

The residual symmetry group is

H = S[U(3) x U(2)]

with the Lie algebra

5 = su(3) x su(2) x u(l).

(5.1)

(5.2)

(5.3)

ξ 3 = (VCΓϊ/5)diag(2,2,2; - 3, - 3).

Hss = SU(3) x SU(2) is simply connected, so π1(H) = Z is generated by

H mediates strong-weak- and electromagnetic interactions. Z(§) = u(l) is generated
by

(5.4)

(5.5)

(5.6)

(5.7)

where η3 = •sf-^\ diag(0,0,1, - 1,0). Under z°s/^\r\3 projects to

2 '
2 *

1 - 3

i - 3 ,

which generates z(Γ) according to Proposition (4.1). Consequently

The 1-form dual to (5.6) is
/ = ̂ / y r ^ = Tr3/yirT, (5.8)

where Tr3 is the trace on the upper U(3) part. It exponentiates to the character

X(g) = detz(g) (5.9)

(determinant of the U(3) part). The Higgs charge m can be recovered as m =
μ3{p{Φ))l^/— 1. Plainly, mη3 generates a loop whose Higgs charge is m.

The Higgs charge is calculated also as a surface integral:

(5.10)

where

(5.11)
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If / is an invariant function, the integral invariant / ( / ) is calculated as

/<'> = 2πm /(C, ξ0) = 2πm-f(η39 ξ0). (5.12)

In particular, the trace invariant appearing in the Bogomolny bound of the energy is

I = 5πvm. (5.13)

The base point is chosen sometimes to be rather

"1
1

1
-3/2

1-3/2-εJ

(5.14)

where ε is of order 10 1 4 [12]. The residual symmetry group becomes now

H' = S[U(3) x U(l) x U(l))]. (5.15)

It consists of those matrices of the form

ΛeU(3),
aua2eu(l) (5.16)

A

a2
detA'U1u2 = 1.

Its Lie algebra § ' is all

A
(5.17)

') is 2-dimensional. It is generated by ξ3 above and by

ξ 4 = (>/ΓT/5)diag(l, 1,1,1,-4).

πx(H')~Z2 is hence generated by those loops in (5.5) and by

exp2πN/— ltη4, (5.19)

where τ/4 = ̂ J — 1 diag (0,0,0,1,-1). There are now two Higgs charges, m and rri.
The projection z: § ' -> Z(9)') is expressed as

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

. 3 ' 3 ' 3 1* 1 ' '
Hence for z(Γ) we get the generators

Ci = z(η3) = y 3 ! diag(1/3,1/3,1/3, - 1,0)

ζ2 = z(η4) = y r j diag (0,0,0,1, - 1).

The dual 1-forms are

Z1 = μ3/ J--ϊ = Tr3 yf^ϊ,
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They exponentiate to the characters

= 3,4.

If [y]~(m,m'), then

p{y) = rri'ζι = ^ / - ldiag(m/3, m/3, m/3, - — rri).

The Higgs charges are recovered as m = Tr3(p(Φ))/χ/— 1 and m' =
Alternatively, they can also be calculated according to

m = _ L f φ * ω and m' = ^ - f Φ * ω ' ,
2π s2 2π £2

where ω is the same as in (5.10) and ω' is given by

If / is an invariant function, the corresponding integral reads

/"> = 2π{m'f(ζuξ0) + m' f(ζ2iξ0)} = 2π{m-f(η3,ξ0) + nt'f(ηA,ξ0)}.

(5.25)

(5.26)

^/- 1.

(5.27)

(5.28)

(5.29)

In particular, the trace invariant (topological charge) becomes

/ = (5 - 2ε)πv m + 2επv rri. (5.30)

In the physical applications [12] ε~O(10~ 1 4 ) so the Bogomolny bound for the
energy are essentially the same as with ε = 0.

At much lower energies (~ O(102) GeV) the symmetry is broken at a second time
by the vacuum expectation values of a new Higgs field χ in the (standard)
fundamental representation {5}. In order to apply our theory we have to consider
the two Higgs fields as a single one, say Ψ = (Φ, χ). Ψ belongs to the representation
(24 + 5}. If we require that DμΨ = 0, then the energy is finite.

The base point becomes now x0 = (ξθ9χo\ where

χo = H0,0,0,0,l), (ϋ~O(102)GeV). (5.31)

χ0 alone has SU(4) for stabilizer, so the unbroken symmetry group for (5.17)
becomes K = Hn SU(4)(respectively H'nSU(4)). Interestingly, in both cases we get

K = Jdet^Γj I (5.32)

ΛeU(3). So

= i[su(3)xu(l)] = αesu(3),A6 v /-lX. (5.33)

U(3) is, as explained in Sect. 4, the physically relevant residual symmetry group: it
propagates the electrostrong interactions, (iii) of Sect. 4 applies now. π^K) ~Z is
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generated by

exp2πi 0
1

t = exp 2πJ— ltη3.

539

(5.34)

There is one Higgs charge, say m Z(Jf) = Z(i(u(3))) = *(l(u(3))), where i denotes
the inclusion map *:u(3)->Jr>c su(5) Z p f ) is generated by

1

1
= J-ι

1

- 3
(5.35)

Hence, by (4.27), z(Γ) is generated by

= C/3,

so now the 1-form dual to Ci is

(5.36)

(5.37)

The Higgs charge is recovered as m = T
Alternatively, it is also expressed as a surface integral:

V 2π I ω'

where

= τr3(Ω)/J-ϊ.

(5.38)

(5.39)

Observe that the Higgs charges of Ψ and of Φ are the same.
The generalized invariants are given by (4.29). It can not however, be used to

calculate the lower bound of the energy.
In order to discuss the electromagnetic properties a new Higgs field has to be

constructed using ζ as base point, as indicated in Sect. 2. We do not construct it here
explicitly; it is sufficient to know that it does exist.

According to (iii) of Sect. 3, electric charge is quantized (since ζeΓ0) in units of

qmin = eβ, (5.40)

where e = ^/3eo/2. (Alternatively, one can use (3.15) directly, noting that £ =

yf-~ϊ(r\ι + 2η2 + 3^3) = 4ξ3 - 3ξ4r.) The magnetic charge becomes in turn

g = m/2e, (5.41)

[12,13,14], so Dirac's condition reads now

as required.
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