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Abstract. Results on the links between 2-particle irreducibility and asymptotic
completeness are presented in the framework of a renormalized Bethe-Salpeter
formalism, introduced recently by J. Bros from an axiomatic viewpoint, for the
most simple class of renormalizable theories. These results, which involve the
renormalized 2-particle irreducible kernel G (i.e. from the perturbative
viewpoint the sum of renormalized Feynman amplitudes of 2-particle irre-
ducible graphs in the channel considered), complement the general quasi-
equivalence previously established by Bros for regularized (non-renormalized)
Bethe-Salpeter kernels. On the one hand, a formal derivation of (2-particle)
asymptotic completeness from the irreducibility of G is given. On the other
hand, the links between regularized and renormalized kernels are investigated.
This analysis provides in particular a converse derivation (up to some
assumptions) of the 2-particle irreducibility of G from asymptotic complete-
ness. As a byproduct, it also provides a more explicit justification of previous
heuristic derivations by K. Symanzik of integral equations between F and
various differences of values of G, and a simple alternative derivation of the
recently proposed "renormalized" Bethe-Salpeter equation.

1. Introduction

The usual Bethe-Salpeter equation reads:

G, (1)

where F is the 2->2 Green function, G is the 2-particle irreducible (2p.i.) Bethe-
Salpeter kernel in the 2->2 channel considered, i.e. is from the perturbative
viewpoint the sum of all Feynman amplitudes of 2-particle irreducible graphs, and
F o G denotes (in momentum space) the Feynman-type convolution integral

with Feynman propagators or two-point functions attached to each internal line;
pu p2 and p3, p4 denote the initial and final energy-momenta respectively and
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integration is made over the internal energy-momenta ku fe2. As it stands, Eq. (1) is
expected to hold in a theory with no renormalization (and correspondingly no
convergence problem in the integral F o G). The interest of considering equations
such as (1) in more general cases and from an axiomatic, non-perturbative
viewpoint has been emphasized in [1], with further analysis and results in [2] and
references therein. This program has on the other hand been developed in the
complex momentum space formulation in the following two approaches.

First, "regularized" kernels Gρ have been introduced [3, 4] in the axiomatic
framework and have allowed in particular study of the analytic structure of Green
functions in the low energy region in the 2->2 case [3] and in the 3->3 case [4],
with some further steps [4, 5] towards the more general multiparticle case (and
more general energy regions). A theory with only one (stable) particle, of mass
μ > 0, is considered for simplicity. In the 2->2 case, the only one to be considered in
the present work, kernels Gρ are linked to the Green function F via a regularized
version of (1):

F = Gβ + FoQGa, (2)

where oQ is defined as before but with further analytic cut-off factors χρ(fci), χρ(k2)
attached to each internal line, equal to one on-mass-shell and with sufficient
decrease at infinity in euclidean directions in order to ensure convergence; e.g.
χρ(ki) = e~ρ{k^~μ2)2, ρ>0. More usual regularization factors may also be consid-
ered, the kernel Gρ depending on the choice of this factor. In the axiomatic
framework, Gρ is in fact defined in terms of F through Eq. (2). The kernels Gρ can no
longer be expected to have a simple interpretation from the perturbative
viewpoint, even formally at ρ = 0 if the theory requires renormalization, and are
not expected to be well defined in general in this case in the ρ->0 limit. However, a
quasi-equivalence, modulo poles arising from zeroes in denominators of solutions
of Fredholm-type equations, was proved in [3] between (i) the unitarity or
asymptotic completeness equation

F + - F _ = F + * F _ (3)

in the low energy region (5 < (3μ)2, 5 = k2 = k% — k2, k = pί + p2 = P3 + P4), where *
now denotes convolution over on-mass-shell values of the internal energy-
momenta ku k2, and (ii) the axiomatic 2-particle irreducibility of the kernel GQ (in
the 2->2 channel considered) in the analytic sense, i.e. analyticity up to the
3-particle threshold. (Thus, there is in particular no singularity at the 2-particle
threshold, in contrast to F. For the more precise definition, see [3]. This property
is known on the other hand to be satisfied by possibly renormalized Feynman
amplitudes of 2-particle irreducible graphs.)

On the other hand, a "renormalized" Bethe-Salpeter equation is introduced in
[6], so far for the simplest class (beyond the superrenormalizable case) of (scalar)
theories in dimension 4 which are just renormalizable and for which the only
renormalization parts are the (4-point) vertex parts (and propagators). The 2 p.i.
kernel G is from the perturbative viewpoint the sum of all renormalized Feynman
amplitudes of 2 p.i. graphs, and the following formal expansion is derived in [6],
for the class of theories considered, by a resummation of the perturbative series,
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and is assumed in an axiomatic-type approach:

F= Σ (GoG...oG)r. (4)

n + 1 factors G

Each term (G o G ... o G)r in (4) is a renormalized multiple convolution product
in which renormalization does not apply to the internal structure of the kernels G:
see Sect. 2. From an axiomatic viewpoint, each term (G o... o G)r is well defined [6],
independently of the perturbative background, modulo suitable assumptions on G
which entail in particular that, as in [2], differences of values of G at various points
have better decay properties at infinity, in euclidean directions, than G itself.
Finally, the renormalized Bethe-Salpeter integral equation is then extracted in [6]
from perturbation theory and checked to each order in G. For our purposes, we
write it here in the following form which (in contrast to [6]) involves an ε-»0 limit:

(5)

where

(6)

and the notation [ ] means the value of the function when all external energy-
momenta are fixed e.g. at zero, in accordance with the renormalization prescrip-
tion used in defining (G °... ° G)r. In these equations, F and G are e.g. functions of

the variables k = p1 +p2 =p3 + p 4 , z = -^r—-, z'= -^——- and Λε is a function of fc

and z, which is expected to be defined in the ε->0 limit and admits in fact, at ε = 0,
the formal expansion:

Λ = l+ Σ ( G ° . . . ° G Q 1 ) Γ , (7)

n factors G

where (G o... o G o l) r is defined in the same way as (G °... ° G)r with the last factor G
replaced by the (analytic) function 1. (For ε>0, Λε will admit the same expansion
with o and G replaced by oε and Gε, where Gε is introduced in Sect. 3.) The terms
F °£ G and [i7 oε G] are not expected to be individually defined in the ε->0 limit. The
renormalized equation has correspondingly been written in [6] in a form in which
individual terms are expected to be defined at ε = 0, in view in particular of previous
assumptions on G. Other integral equations between F and differences of values of
G at various points have been given in [2]. For applications of these various
integral equations and in particular their relation with Wilson short-distance
expansion (in space-time) see [2, 6].

The aim of this note is to present some results on the extension to renormalized
kernels of the analysis of the links between (2-particle) irreducibility and
asymptotic completeness, from an axiomatic-type viewpoint. We also wish, in this
connection, to analyze the links between regularized and renormalized kernels
and, as a byproduct, to give a simple alternative (algebraic) derivation of the
renormalized equation, as also a more explicit and satisfactory justification of the
heuristic procedure used in [2] to derive the integral equations mentioned above.
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In Sect. 2.1 it is first explained, in an alternative approach to that of [3], how the
irreducibility of the regularized kernel Gρ yields the unitarity Eq. (3), in the sense of
formal expansions of F in Gρ. (A general approach of this type is proposed in [5] in
the multiparticle case.) The analysis is then extended to the renormalized case in
Sect. 2.2: namely, starting from (4), it is shown how the irreducibility of G yields
again Eq. (3), in the sense of formal expansions in G. (Complementary results
based on integral equations will be found in [6].) Our analysis can be considered
as an extension (in the most simple situation) to the case of irreducible kernels of
previous results of [7,8] on unitary in perturbation theory, as will be indicated at
the end.

In Sect. 3, links between various regularized kernels (Sect. 3.1) and between
regularized and renormalized kernels (Sect. 3.2) are established, both from
perturbative and non-perturbative viewpoints. These links explain in a direct way
why the irreducibility (in the axiomatic sense) of one of these kernels should yield
the irreducibility of the other ones. In particular, the following result (reminiscent
of well known facts on Feynman amplitudes but not a priori transparent, even
from a perturbative viewpoint, in view of the non-trivial perturbative content of
Gρ) is shown:

G=lim(G ε -[GJ) + [F], (8)

where as before [GJ and [i7] are the values of Gε and F at k = z = z' = 0. Although
Gε and [GJ are not expected to be individually defined in the ε->0 limit, their
difference is thus expected to have a well defined limit, equal to G — [G] = G — [F].
More precisely, our analysis introduces a family of approximations Gε of G, such
that F satisfies the expansion (4) with o and G replaced by oε and Gε9 with

G ε - [ G J = Gε-[Gε],Vβ (80

and [GJ = [F], Vε, in view of the renormalization prescription.
Related versions of the analysis involving functions Fε depending on β, will be

mentioned in Sect. 3.2, where the converse derivation of the 2-particle irreduc-
ibility of G from asymptotic completeness (through the previous results of [3] on
Gε, Eq. (8) and assumptions on the ε-»0 limit), and the justification of the heuristic
procedure of [2] will also be outlined. Our alternative derivation of the
renormalized equation is finally given in Sect. 3.3, as a consequence of Eqs. (2) and
(80 (and up to assumptions on the ε->0 limit).

The analysis is presented for scalar theories, like φ\, that as is well known may
not satisfy the axioms and whose existence itself is doubtful (see further analysis on
this point in [11]). However, it can in fact be adapted to more realistic cases, e.g.
renormalizable theories that exist and satisfy the axioms in space-time dimension
2 [11] such as the massive Gross-Neveu model, and it might possibly be adapted
(with more work!) to more complicated physical theories in dimension 4.

2. From Irreducibility to Asymptotic Completeness

2.1. Regularized Case

As mentioned in Sect. 1, a quasi-equivalence is proved in [3] between the unitarity
Eq. (3) and the 2-particle irreducibility of the kernels GQ in the axiomatic sense. It



Bethe-Salpeter Equations 455

follows there from an algebraic "intertwining formula," derived from (2), that
relates the quantities F + - F _ - F + * F _ and (G ρ ) + —(G ρ )_, whose vanishing
means respectively Eq. (3) and the 2-particle irreducibility of Gρ. The plus and
minus signs refer to plus and minus iε boundary values in the region
(2μ)2<s<(3μ)2. [The minus iε quantities are obtained from the plus ίε ones after
one anticlockwise turn around s = (2μ)2.] The proof is based on the relation (see
[3]):

( o ρ ) + - ( o β ) _ = * , Vρ^O, (9)

where (°ρ)+ and (°ρ)_ refer to integration contours Γ+{k) and Γ_(k).
We present below an alternative way of understanding how the irreducibility of

Gρ yields Eq. (3), at least in the sense of formal expansions. To that purpose, we
consider the Neumann series expansion of F in Eq. (2):

F= Σ (Gρy°in+ί)

= ΣGβoβGa...oeGs. (10)

n + 1 factors Gρ

The assumed analyticity of Gρ [at s<(3μ) 2 ] and the relation (9) yield the
discontinuity formula:

- Σ (Ge°A-°A)+*(Gβ°β-°A)-, oυ

k n-k+1

where (Gρ °ρ ... oρ Gρ) + = (Gρ) + (>ρ) + ... (Oρ) + (Gρ) + , a similar relation holding with
minus signs, and where (Gρ)+ =(G ρ )_ by assumption. Equation (11) follows from
systematic cancellations, due to Eq. (9), between the terms in the last sum Σ .

Equation (11) yields in turn Eq. (3) in the sense of formal expansions in Gρ:
namely the formal expansions of the two sides of Eq. (3) coincide as is easily
checked. (F+= Σ (G°/n+1)) + , F_ = Σ ( G ^ " + 1 )

2.2. Renormalίzed Case

We first recall the definition of (G °ε ... °ε G)r for ε ̂  0. It is for ε > 0 a sum of terms
associated with all possible sets U ( = forests in Zimmerman's terminology) of
brackets that contain sequences of ^ 2 factors G and have no overlap. To each
bracket [ ] is associated a constant, which is the value when all external energy-
momenta are fixed at zero (k = z = z' = 0) of the function inside the brackets. The
latter is the Feynman-type convolution product of factors which are either kernels
G or constants associated to subbrackets. For instance [Go g Go ε G]
= (GozGoεG)\k=z=z, = 0, where

(ε)

G o G °P G —
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and (ε) indicates regularization factors χε for each internal line; [G oε G oε [G oε G]]
= (Go e Go £ [Go e G]) | f c = z = z , = 0 = [ G o ε G o f i l ] χ [ G o e G ] . Finally a multiplicative
factor ( — l ) ^ ^ , where JV(C/) is the total number of brackets [ ] is included. E.g.

(GoG) r = G o G - [ G o G ] , (12)

(Go G° G)r = G° G° G — [ G ° G ] o G - G o [G° G] — [GoG°G]

(13)

where ε has been left implicit.
As in the case of renormalized Feynman integrals, the above definition is only

symbolic at ε = 0: each individual term G ° G, [G ° G ] , . . . is expected to be infinite.
(Go... o G)r can be defined at ε = 0, e.g. by first introducing, as in Zimmerman's
approach, a renormalized integrand [9, 6], or alternatively by first considering the
term (G° εG...o£ G)r, and then letting ε-»0. By an extension of the previous work
[9], it is shown in [6] that, if G is 2-particle irreducible ( = analytic up to the
3-particle threshold), then (G o... o G)r is well defined and analytic in a cut domain,
(which contains euclidean space), with the cut along s^(2μ) 2 , and has also well
defined boundary values (Go... oQ)? and (Go... oG)~ at s>(2μ) 2 . This result
relies on the assumption that the 2-point function H2 (attached to each internal
line in the convolution products) satisfies the axiomatic analyticity properties
(with a pole in s = k2 at μ2, where μ is the physical mass), and on "graduation
assumptions" on both H2 and G: e.g. a decrease factor (1 + | z±z ' | )~ 1 is gained for
each derivative of G with respect to components of z, z', or oϊk = p1 +p2 = p 3 + p 4 .
(See details in [6].)

We now wish to show that the irreducibility of G also yields the unitarity Eq.
(3), again in the sense of formal expansions, and to that purpose, we prove below
the following discontinuity formula, which replaces (11):

Δ{GoG...oG\= Σ (Go...oG),+ * ( G o . . . o G ) - . (14)

n + 1 k n—k+l

Equation (3) then follows, in the sense of formal expansions in G, in the same
way as before, with (10) replaced by (4).

Proof of (14). We prove below (14) with o replaced (everywhere) by oε? ε > 0. Since
(G o... o G),τ - lim (G o ε . . . o ε G)* by an adaptation of the methods of [6], Eq. (14)

ε->0

itself follows.
To that purpose, we shall use the formula (which is easily checked):

(Got...oεG)r=Σ Σ Π ° ε Π ° ε Π , (15)

where [ ] ε = G if n = 1 and is, for n > 1, the sum of all contributions to (G oε ... oε G)r

^ n
in which a bracket [ ] includes all factors G. E.g. it is equal to — [G oε G] for n = 2,
and

Π ε = - [ G o ε Goε G] + [[Goε G]oε G] + [Goε [Goε G]] .



Bethe-Salpeter Equations 457

A term in the sum of (15) is a Feynman type convolution integral of factors
which are either kernels G (if n{ = 1) or constants [ ] ε (if nf > 1). By using again Eq.
(9), together with the assumed analyticity of G (and the obvious analyticity of
constants), its discontinuity is the sum of all terms obtained by replacing one of the
operations ° ε between two factors by *, with respective plus and minus iε boundary
values on the left and right sides. The discontinuity of (G °ε ... °ε G)r is the sum of
these discontinuities, i.e. is a sum of * convolutions of left and right terms which are
themselves plus and minus iε boundary values of Feynman-type convolutions of
factors G and [ ]e. By regrouping all contributions with a given number k of
kernels G_on the left (and n — k+1 kernels G on the right), including those inside the
factors [ ]ε, and by applying again Eq. (15) with n+ 1 replaced by k or n~ k + 1,
one reobtains exactly the term (G°£ ... oε G)r

+ *(G°ε ... °ε G)~. Equation (14)
follows QED. ' ' ' ϊ—""

v k n-k+l
Note. After this work was completed, J. Bros has obtained an alternative proof of
(14), which avoids our ε->0 limiting procedure, but uses more complicated
partitions of contours.

The result of this subsection is an extension, in a simple case, of previous results
of [7, 8], where unitarity is proved in fact [7] at each order in perturbation theory
through a T-product formalism, a method which can also be adapted [8] to prove
general discontinuity formulae on individual renormalized Feynman amplitudes.
Our case corresponds to the graphs > O C I ^ X ^ but with general irre-
ducible kernels rather than constants at each vertex. Our procedure, in
contrast to that of [7, 8] is first to establish the discontinuity formulae for
individual terms, and then unitarity.

For a converse derivation of the irreducibility of G from unitarity, see
Remark 2 at the end of Sect. 3.2.

3. Regularized and Renormalized Irreducible Kernels and Bethe-Salpeter Equations

3.1. Regularized Kernels

The following link between two regularized kernels Gρ, GQ> is proved by a direct
adaptation of the proof of Lemma 4 in [10]:

GQ-Gρ> = GQxρ,Q>Gρ., (16)

where

In view of Eq. (9), applied to oρ and oρ/j the operator xρ>ρ, satisfies:

Kβ ')+-(xβ.ρ ')-=0, (18)

a relation which, together with (16), explains why various regularized kernels can
be expected to be 2-particle irreducible (in the axiomatic sense) if one of them is.

3.2. Regularized and Renormalized Kernels

The formal Neumann series expansion of Gρ in Eq. (2) in terms of F reads:

Gρ= Σ Q ( ~ Ό n F o ρ F QρF, (19)

n + 1 factors F
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where F can be expressed in terms of G through Eq. (4). This gives the following
formal expansion of Gρ in terms of G:

Gρ= Σ «?«)»> (20)

P^l Πi,...,np^l

From a perturbative viewpoint, the content of Gρ follows from Eqs. (20), (21) by
replacing G by the sum of renormalized Feynman amplitudes of 2 p.i. graphs. It is
not simple, even from a purely formal viewpoint at ρ = 0, and the irreducibility of
(Gρ)n, i.e. of Gρ at each order, is not directly transparent. We explain it below,
independently of the detailed perturbative background, starting from the assump-
tion that G is 2 particle irreducible (in the axiomatic sense). To that purpose, we
first consider the functions (Gρ)n,ε, ε > 0 defined by:

• I T I — > > I — 1 1* I 1 T O O i T i O O I I T O O I T I \ / / \

\KJρ/n, ε L—I Δ^ V ι ) \ ε " ' ε KJ Jr ρ ρ v ^ ε ε ^Vr ? \^^)
p^l « i , . . . , « p

 v v ' s v '
ΣHί = n + ί n i nP

i.e. the operator o has been replaced by oε everywhere in the right-hand side of (21).
From Eq. (15), the following expression of (Gρ)π ε is easily checked:

(Gβ)n,ε = Σ ni Σ > i Π ε \,β • • • χ.,s Π ε , (23)

where, in accordance with (17), (18), x ε , ρ = °ε— °ρ satisfies Eq. (18). The 2-particle
irreducibility of (Gρ)π>fi, Vε>0 can then be proved on the basis of this result and of
the fact that all factors [ ] ε in (23), which are either equal to G or constants, are
analytic (i.e. satisfy more precisely the axiomatic 2-particle irreducibility).

Coming back to the expression (22), it should be shown by methods of [6], as
we shall admit here, that the functions (Gρ)M,ε are uniformly bounded in adequate
regions and converge to (Gρ)n in the ε->0 limit, this limit being then itself 2-particle
irreducible. Q.E.D.

The kernel Gρ is not defined at ρ = 0. However, a purely algebraic calculation at
ρ = 0 gives:

° CJJ + ... . (24)

This is in fact the particular case ρ = ε = 0 of formula (23), with xε> ρ = xε — xρ = 0
for ρ = s. From Eq. (24), one finds in turn:

(25)

which suggests that, although Go and [Go] (like [Go G],...) are expected to be
infinite, their difference is a meaningful finite quantity, equal to G — [G]. This result
is confirmed in the following more precise way:

lim (G ε -[G ε ]) = G - [ G ] , (26)

by writing F (see below) in the (formal) form analogous to (4):

F=Σ(Ge°εGε...oεGε\ (27)
n>0
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if lim Gε = G. In fact, the same algebraic analysis as above (with now no infinities
ε->0

at ε>0) gives:

n factors Gε

(29)

from which Eq. (26) follows.
Equation (8) of Sect. 1 is thus obtained, since [Gε] = [F] in view of the

renormalization prescription. [(Gεoε ...oe Gε)r is equal to zero at k = z = z/ = 0.']
Finally, one checks (see [12]) that F does admit the expansion (27) with:

Gε = G ε - [ G J + [ F ] . (30)

We note that the "inverse" of Eq. (28), e.g. derived from (29) and from (10)
(considered at zero external momenta) is:

Gε = Gε+ Σ [ G ε o ε G ε . . . o ε G J . (31)

We now make the following comments:
1) Various related versions of the above analysis can be given, e.g. by

introducing functions Fε which, from the perturbative viewpoint, may be sums of
all renormalized Feynman amplitudes in which cut off factors χε(k) are attached to
each internal line Aim Fε = F\. Gε is then similarly the sum of renormalized

Feynman amplitudes of 2p.i. Feynman graphs with the same regularization
factors. The algebraic analysis is identical to that above with F replaced by Fε.

2) The converse of Sect. 2.2 (from unitarity to the irreducibility of G) can be
obtained from (30), which yields the irreducibility of Gε from that already
established [3] for the regularized kernels Gε, from the assumption that lim Gε = G

and from further assumptions of uniform bounds on Gε (i.e. on G ε - [ G J ) when
ε-*0. The latter can be viewed as associated with the class of theories considered.

3) The following heuristic derivation of integral equations between F and
differences of values of G is given in [2]. Starting from the usual Bethe-Salpeter Eq.
(1) which, as already mentioned, cannot be expected to be valid by itself (even with
possibly some regularization), these new equations are derived formally. Indi-
vidual terms in the new equations can now be expected to be well defined in view of
the assumptions on the decrease of differences of values of G, and these equations
can be verified in perturbation theory (although the verification is not given
explicitly in [2]). Thus, they can be assumed to hold.

A more explicit and satisfactory justification of this procedure follows from our
analysis: one may start for ε > 0 from a regularized form of (1) involving a kernel Gε

different from G (or Gε). However, in any derived equation, differences of values of
Gε at various points can be replaced in view of (29) by differences of values of Gε,
and hence of G in the ε-»0 limit.

3.3. Derivation of the Renormalized Bethe-Salpeter Equation

We first consider ε > 0 and show below from Eqs. (2) (at ρ = ε) and (30) that

GB-ΛεlFoeGJ. (32)
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The renormalized Eq. (5) follows if Gε is assumed to have a limit G when ε-»0 and

up to details not to be discussed here.

Proof of (32). Equation (2) and the relation:

Gε = G δ - ( [ F ] - [ G J ) , (33)

derived from (30) yield:

F = Gβ + F o e G β - ( [ F | - [ O J ) ( l + F o e l ) . (34)

On the other hand, Eq. (2) restricted at k = z = z' = Q gives:

ίn-ίόj = ίF%6j (35)
The relation

FoεGε = FoεGε-lFoεGJ(F°εl) (36)

derived from (33), (35) then gives, at k = z = z' = 0:

[ί f°.<5j(l + [Foβl]) = [Fo β GJ. (37)

Equation (32) follows. Q.E.D.

As in Sect. 3.2, the same algebraic derivation holds with F replaced by Fε.
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