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Abstract. This paper proves that circular vortex patches in the plane are stable
for the nonlinear dynamical system generated by the Euler equations of
incompressible fluids. This is achieved by establishing a relative variational
principle in terms of either energy or angular momentum. Thus, we exploit and
extend Arnold's idea in (1965, 1969) to a nonsmooth setting as well.

1. Introduction

This paper proves that circular vortex patches in the plane (the vorticity is one inside
a circle and is zero outside it) are stable for the nonlinear dynamical system
generated by the two dimensional Euler equations of incompressible hydrodynamics.
The stability is of Liapunov type: it is global in time in the L1 norm on the vorticities.
A consequence of the a priori estimates used to establish this stability is the
following: a nearly circular vortex patch must evolve in such a way that the area of
the region of deviation from circularity it uniformly bounded, globally in time. Our
vortex patch is enclosed in a (large) circular disk, and the flow is parallel to the
boundary of this containing disk.

Our results are stated precisely in Sect. 2. Here we comment on some of the
relevant literature and the significance of the results. Kelvin (1880) showed that a
small perturbation of the circular vortex patch which is proportional to cos mθ
rotates uniformly with angular velocity Ωm = j(m — l)/m (see Lamb, 1945, Sect. 158).
In particular his result established the linearized stability of the circular patch in the
plane.

In Arnold (1965), (1969), a method for proving a nonlinear version of the classical
Rayleigh inflection point criterion for linearized stability of two dimensional shear
flows is presented. The argument involves a combination of a geometric setting for
the fluid variational principle and convexity arguments. The geometric setting has
been exploited by a number of authors such as Ebin and Marsden (1970), Benjamin
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(1976), McKee (1981), Marsden and Weinstein (1983) and Turkington (1983). The
convexity argument has also been exploited to prove stability for related Hamil-
tonian systems; see Holm, et al. (1983) and references therein.

Unfortunately, Arnold's method does not, as formulated, apply to the circular
vortex patch. The discontinuity in the vorticity forces one to work in function spaces
for which the differential calculus ideas in Arnold require careful interpretation.
Moreover, the convexity argument in Arnold (1969) does not apply directly either
(formally one is in the case of his more delicate second theorem). However, these
ideas, together with direct estimates were important to the formulation and
execution of the results of this paper.

Some hint of why the stability analysis is relatively delicate can be gained from
numerical and theoretical work. On the numerical side, Deem and Zabusky (1978)
show that nearly circular vortex patches are numerically stable, but they allow the
possibility of long thin filaments moving relatively far from the original circular
patch. Our theorem shows that although these filaments could become long and
complex, their area remains uniformly small, globally in time. This picture is
consistent with the results of Marsden and Weinstein (1983) who show that the
(Hamiltonian) evolution equation for nearly circular waves does not have strong
enough dispersion to prevent breaking or singularities, but yet the system is formally
stable. On the other hand, for vorticities in L00, there is a satisfactory global existence
theory in two dimensions (Wolibner, 1933, Yudovich, 1963). We shall not explicitly
require estimates from this existence theory since our a priori estimates are
established by other methods.

Because of symmetry, energy and angular momentum fail to be independent at
circular patches. In this situation, one can obtain a (relative) variational principle in
terms of either energy or angular momentum. A priori estimates will be obtained for
both the energy function and the angular momentum. However it is much easier to
establish a priori estimates for the latter. The ideas of using angular momentum were
developed from Marchioro and Pulvirenti (1983).

We expect that the methods based on energy estimates will be applicable to other
vortex patches. In particular we note that linearized stability of the rotating
Kirchhoff elliptical vortex patches has been proved by Love (1893). As was pointed
out to us by N. Zabusky, it would be of interest to use the methods herein to prove
their nonlinear stability; indeed, computations of Zabusky and his coworkers
suggest that the area of the filaments that form in perturbed solutions remain
bounded and may even go to zero. The theoretical setting needed to prove this is
expected to be similar to the present paper with the addition of Hamiltonian
reduction by an S1 symmetry group which realizes the Kirchhoff solution as a
relative equilibrium (a fixed point for a reduced system on a surface of constant
angular momentum). To pave a way for such an investigation, we like to carry out an
energy estimate in its simplest situation in detail, i.e. for a circular vortex patch. It
goes without saying that these energy estimates are intrinsically interesting in
themselves.

Finally, we note that the motion of vortex patches are not only of interest in fluid
dynamics, but arise as beams in the study of guiding center plasmas; see Morrison
(1982, p. 31).
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2. Statement of the Main Result

Let D c R2 be a disk of radius R centered at the origin. Consider the motion of an
incompressible inviscid flow with unit density in this fixed domain D, in the absence
of external forces. At any instant, the velocity field u = (w, v) can be described by a
stream function φ, u = (φy9 — φx) and its vorticity ω = vx — uy given by ω = — φxx

— Φyy = —Δφ. Given a vorticity ω, denote by Gω the stream function associated to
ω which is defined by Δ(Gω) = — ω and Gω\dD = 0 (the restriction of Gω to the
boundary dD of D is zero). The vorticity evolves according to the vorticity equation:
ωt + uωx + vωy = 0. Denote by Φt(ω), t ^ 0, the vorticity at the time t, with initial
vorticity ω.

A vortex patch ω is a vorticity distribution in the form λχA, λεR, where χA denotes
the characteristic function of a subset A in D. Here λ and the area of A are called the
strength and the size of this patch respectively. From Yudovich (1963), the evolution
operator Φt is implemented by area preserving homeomorphisms (of a certain
Holder class); it follows that Φt preserves vortex patches together with their strength
and sizes. Denote by ω 0 the circular vortex patch of radius y (0 < γ < R), with unit
strength, i.e. ω o = χβ, where B = {x\\x\ ̂ y}. By circular invariance, one sees
immediately that ω0 is a stationary solution.

Now, we can state the main result of this paper as follows.

The Stability Theorem. Let ω0 be the circular vortex patch of unit strength and radius
y in a disk of radius R. For any η>0, there isaδ>0 such that if ω is any vortex patch
satisfying \ω — ω0\Li < δ, then \ Φt(ω) — ωo\Lι<η for all t ^ 0.

Additional results on stability relative to vorticity distributions other than
patches are given at the end of the paper in Sect. 7.

Translating the L1 norm into areas, we have the following.

Corollary. Let B be the circle of radius y centered at the origin in U2 and let ω0 = χB,
as above, and ω = λχA. Let η > 0. Then there is δ > 0 such that if

(i)\λ-l\<δ
and (ii) area l(B\A)v(A\B)Ί < δ,
then area l(At\B)v(B\At)] < η for all t ^ 0, where Φt(ω) = λχAt.

Using integration by parts, we express the total energy £ as a function of the
vorticity ω as follows:

The total energy £ is a first integral of our vortex flow (i.e. E(φt(ω)) = constant).
We note that deviations from the circular vortex patch are also limited by

conservation of "angular momentum" due to S1 invariance, namely of

Jθ= $r2ω(x,y)dxdy.

In the geometric setting of Arnold, one needs to show that the total energy E has
a "non-degenerate" local maximum on the coadjoint orbit through ω 0 . This
coadjoint orbit consists of vortex patches having the same strength and size as that
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of ω 0 . In analytic terms, the above idea is implemented through the following a priori
estimate:

There are constants c3 > 0, C 3 > 0 and ε > 0 such that

(E) c 3 |ω c - ώ\l S E(ωc) - E(ώ) ̂  C3\ωc - ώ | L 1 ,

where ωc and ώ are vortex patches of the same size and strength with ωc circular and
satisfying \ωc — ωo\Li < ε and \ω — ω o | L i < ε.

Alternatively, one can also show that the total angular momentum J has a "non-
degenerate" (local) minimum on the coadjoint orbit through ω 0 . In analytic terms,
one wants to establish the following a priori estimate:

There are constants c4 > 0, C 4 > 0, and ε>0 such that

(J) cι\ωc - ώ\l ^ J(ώ) - J(ωc) S Q | ω c - ω|L i,

where ώ is a vortex patch of the same size and strength as the circular patch ω c, and
satisfying \ωc — ωo\Lι < ε.

As we shall see in the later sections, the left-hand inequality (E) is the difficult one;
the right-hand inequality (E) will be easily proved. The inequality (J) can be
established without any difficulty. The proofs of our stability theorem based on
either inequality (E) or inequality (J) are essentially the same. Thus, we present the
arguments only for the former one.

Proof of the Stability Theorem Assuming (E). Let ω* be the circular patch with the
same size and strength as ω. Write ω = λωx = λχA, ω* = λωf, and ω 0 = χB. One may
assume | ω - ω o | L i <δ ^ |ω o | L i , which imply 2\χBχA\Li ^ |ωo |Li and | λ - l | | ω o | L i
^ 2\ω — ω o | L i(< 2(5). Since ω? and ω 0 are both supported on concentric disks,

|ω* - ωo |Li = J ωf - j ω o | = | J ω x - f ω o | ^ J \ωί - ωo\ = \ωx - ω o | L i .

Combining the above two inequalities, we have

= \^ωi - ωo\n ^ W l ω ί - ωo |Li + \λ ~ 1| |ωo |Li

<,\λ\\ω1-ω0\Ll + μ- l | |ω o | L i

By conservation of circulation, Φt(ω) is the same size and strength as ω and hence as

ω*. Suppose \Φt(ω) - ωo\Li < ε/5 on some interval 0 ^ t ^ tl9 so by (E), applied to

ω* = ωc and ώ = Φt(ω\ we get

\Φt(ω) ~ ω*\l £ cς'lE(ω*) - E(Φt(ω)n = c^' [£(ω*) - £(ω)] ̂  C3c^' \ω* - ω|Lι

by conservation of energy. Thus, for 0 ^ t ^ tί9

l*r(ω) - ω o | L i ύ \Φt(ω) - ω*|Li + |ω* - ω|Li ^ (C3c3 ' |ω* - ω | L l )
1 / 2 + |ω* - ω o | L ι .

Now |ω* - ω|Li ^ |ω* - ω o | L i + | ω 0 - ω|Li ^ 6^, so if | ω 0 - ω|Li < δ, then

|Φr(ω) - ω o | L ι ^ (C3C3-1)
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Now, choose δ small so that

Thus, if |ω - ωo |Li < δ, then \Φt(ω) - ωo\Lι < ε/5 for all t ^ 0. Hence, \Φt(ω) - ωo\

g y/6(C3cϊ 1)ll2^/δ + 5£ < η for all t ^ 0 •

The inequality (J) is justified in Sect. 3. So, we obtain a short and elegant proof of
our main result. The rest of this paper establishes the inequality (E). In Sect. 4, we
reduce the justification of the inequality (E) from a general L1 small perturbation to a
C 1 small radial one (Proposition 1). In Sect. 5, by using potential theory, one has a
neat expression for the Taylor expansion of E (Proposition 2). The second order
term is shown to be negative definite (Proposition 3). Consequently, we establish the
inequality (E), and hence our main stability result follows.

3. The Proof of the Inequality (J)

Denote by |S| the measure of a set S c R2. First, let us establish the following
inequality

(J') ~\XA ~ Xc\l ύ J(XΛ) - JiXc) ^ γ\XΛ - ZCIL ,

where C = {x\ |x |^r 0} is a disk in D, and \A\ = \C\. Putting |X\C| =

= Ί\XA ~ Xc\n = a>

J{χA)-J{χc)=lr2dxdy-\rHxdy= J rHxdy- \ rHxdy
A C A\C C\A

On the other hand,

J(XA) — J(%c) = ί r2dxdy — J r2dxdy ^ j r2dxdy — j
A\C C\A Σy Σ2

where Σx = {x\r0 ^ \xx\ ^ r j , and Σ2 = {x\r2 ^ |x| ^ r0}. The values of rl9 r2 are
determined by the condition \Σί\ = \Σ2\ = a. Clearly, one has r\ — a/π + ΓQ, r\ =
ΓQ — a/π. Therefore,

J(χA) - J(xc) ^ x ί(rt - rί) - (4 - 4Ώ = - = Λ-\χA- xc\h •
4 π 4π

Here, one uses the simple facts that r2 = constant are circles, and r2 in an increasing
function of the radius r.

Write ώ = λχA, ωc = λχc, and take ε = \ωo\L. Thus, \ωc — ωo |Li < ε implies (0 <)
λ^2. Therefore, we have by the inequality (J)',

4τd'



440 Y. H. Wan and M. Pulvirenti

For l/8π \ώ — ωc|£i ^ ί/4πλ |ώ —ω c | 2 i, the inequality (J) follows by choosing
c 4 = l/8π, and C 4 = # 2/2.

The ideas of our main stability theorem based on an angular momentum
estimate can easily be adapted to recover the case where our circular patch lies in R2

instead of a bounded disk.
If one is only interested in the stability of circular patches, the proof based on

conservation of angular momentum appears to be satisfactory. However, in order to
handle the non-linear stability questions in general, it seems natural to establish a
(relative) variational principle in terms of an energy function subject to certain
natural constraints. These natural constraints may come from the symmetry of the
system. Conservation of angular momentum can be one of them.

At circular patches, the energy function and the angular momentum are not
independent. Indeed, a relative variational principle can be formulated in terms of
the energy function or the angular momentum alone. As the simplest model
example for establishing an energy estimate, we aim to give its lengthy proof
throughout the rest of this paper. This is the price that one may have to pay for
important generalizations in return.

4. Reduction to the Radial Case

Recall that Gω solves the Dirichlet problem:

— Δφ = ω inD

φ = 0 ondD.

For the circular patch ω0 of radius γ, with r = Jx2 + y2,

R2

R2

{y2 - r2) + y2 In —=-, r < y.
y

Thus

r> 1 2i ^ i<5(Gω0) 1

Gωn=iy In^r-,and— =—~y o n r — y.

y dr 2

As we shall see in the proof, it will be enough to prove (E) for the special case

ωc = ω0 and ώ = ωu where ωγ is a vortex patch of unit strength, Jω x = Jω 0 , and
D D

ωx is L1-close to ω 0 . From the Calderon-Zygmund (1952) ίZ-estimates for the
Dirichlet problem (see also Morrey, 1966) and the Sobolev inequality W2P a C 1

iϊp > 2, one knows that ζ = Gωι is enclose to Gω0. Thus, Gω 1 ? (GωJ x , (Gωjy are
uniformly close to Gω 0, (Gωo)X9 (Gωo)y in D. Fix a number α, 0 < a < y, and set
ζ* = Gω o | w = f l / 2 . For |ω x — ωo |Li sufficiently small, (ζ,θ) defines a C^coordinate
system with δζ/dr<0 on the annulus-like region f*(θ)^r^R, with f*(θ)^a.
Here, (r, #) denotes polar coordinates and r = f*(θ) describes the closed curve
ζ = £*. Note that ζ = 0 when r = R. Hence, there exists a unique vortex patch of
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unit strength ώ1 which is the characteristic function of the set {{x,y)e

D\Gωί(x,y)^ζ0}, for some constant ζ0 close to Gω o | r = y such that J ώ 1 = Jω 1 .
D D

Note that ώx is a vortex patch whose boundary is a stream-line for ωx; it
plays a key role in "completing the square" in Proposition 1 below. Furthermore,
the boundary Gωx = ζ0 of the vortex patch ώλ can be represented as r = f(β).
Indeed, f(θ)->γ (the function r(θ) = y) in C^-norm as ωί -+ω0 in //-norm.

Let us first show that

\E(ω0) - Eiω^ ̂  C 3 |ω 0 - ω J L i ,

which will prove the right-hand inequality of (E), assuming the left-hand
one. Indeed,

E{ω0)- E(ωί) = %(ωθ9Gωo) -%(ωί9Gωί

y>

= K ω o - ωί,Gωί > - i<coo, Gωί - Gωo>.

Since Gωx is C 1 close to Gω0 and G is bounded in L1,

^ l ω o - ω ^ i +i(supω o ) |Gω 1 - Gωo |Li

Now we turn our attention to the left-hand inequality in (E) and shall reduce its
proof to the radial case.

The next two lemmas will be needed in carrying out the reduction.

Lemma 1. Let ζl9 ζ2 be two constants, 0<ζ2<ζ0<ζι< (*, such that area

{(x,y)\Co ^ ζ(x,y) ^ Q = area {(x,y)\ ζ, ̂  ζ{χ9y) ^ ζ0}. Then,

f ζdxdy- j δdxdy=^r^2{(x,y)\ζ0^ζ(x,y)^ζ^ ζ2}

for some constant A depending on ωί9 with I/A -• — l/4π as \ωλ — ωo |Li ->0.

Proof. Set A = f r(ζo,0) dr/dC(Co>#) <*0.

Express the closed curves C = C2? C — Ci m polar coordinates as r = f2(θ), and

' == J1 V̂ /

2π/2(θ) 2πζ2 ^ r

(i) area {x\ζ0 ̂  CW ̂  C2} = f f r ί ί r ^ = ί J r~^
0 /(β) 0 ζ 0 <̂ 4

= ί ί r^dθdζ = A(ζ2 - Co) + o(\ζ2 - Col).
ζo 0 CJL,

Similarly, area {Ci ^ C ^ Co} = Mίo ~ ίi) + o{\ζ1 - ζo\).
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2πζ2 r)γ 2πζ2 r)γ 2πζ 2 7)γ

(ii) \ J ζr-dζ dθ = Co Π ^ Λ? + J J (ζ - ζo)r~dζ dθ
O ζ o ^ 0 ζo C4 0 ζ 0 ^ C

= Co area{ζ0 ^ ζ ̂  ζ2} + \Ag2 - ζ0)
2 + o(\ζ2 - ζo\

2).

Similarly,

^dζdθ = Co area{ζx ^ ζ ̂  ζ0} -\A{ζγ - ζ0)
2 + o{\ζ, - ζo\

2).

(iii) Since (dr/dζ)(ζOiθ) = ((dζ/dr)(y,θ)Γ1->-2/y as K - ω o | L i - > 0 , we have

o cς

Hence, Lemma 1 follows from (i), (ii) and (iii). •

Lemma 2. Let cί be a constant such that 0<c1< l/16π. Then {ώ1 —ω1,Gω1}

= c i l ω i ~" ̂ I I L 1 if \ωi ~~ ^OIL 1 ί 5 sufficiently small.

Proof. Write ώi — ω i = χ κ — χ^ as a difference of characteristic functions. For
\ωx — ωo |Li sufficiently small, one can choose ζ2 < Co? a n d Ci > Co s u c h that
area{Co ^ C ^ C i } = area £/ = area{Ci ^C^Co} = area K, and so the hypotheses
of Lemma 1 are fulfilled. It is not hard to see from dζ/dr < 0 that

(χu,Gω1)^ J ζdxdy,

<χ κ ,Gω!>^ J ζdxdy.

The desired inequality now follows from Lemma 1. •
Now, we present the reduction proposition:

Proposition 1. Suppose E(ω0) — E(ώ1)^c2\ώ1—ω0\lι for some constant
c 2 > 0 , when f(θ) is Cλ-close to y. Then, E(ω0)-E(ω1)^c3\ω1-ω0\li with
c3 <^min(c 1,c 2) when \ωί — ωo\Li is sufficiently small.

Proof. E(ω0) — E(ω1) = E(ω0) — E(ωι) + E{ωι) — E(ωx)

= E(ω0) - E ^ ) + ( ώ1 - ωl9 2

= E(ω0) - E(ώι) + <ώi - ωl9 Gωι >

^ E(ω0) — E(ώι) -h {ώί — ωί9 Gωx >(since {ώx

^ E(ω0) - EiώJ + cγ \ώγ - ωt\lι (by Lemma 2)

^c1\ώί —o)ι\lι +c2\ΰ>ι — ωo |£i (by hypothesis)

^ 2C3(|Q>1 - ω^lx + \ώ1 - ωo |£i)
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^ Caflώ! - ω ^ i + \ώ1 - ω o | L i ) 2

This completes the proof of Proposition 1. •
Consequently, by Proposition 1, one needs only to verify the inequality (E) for

radial perturbations Xsrύm\ = X/9 \χfdxdy = J ω 0 , where f(Θ) is enclose to γ.
D D

5. A Second Order Taylor Expansion of E(χg)

Set @ = {f:S1-^U\feC\ 0<a<f(θ)<R}, where S1=IRmoά 2π, and a
is a small fixed number, 0 < a < y. To each / e ^ , denote by χf the characteristic
function of the set {r^f(θ)}. Thus, χf is a vortex patch of unit strength, with
boundary given by a radial function r — f(θ). For convenience, in what follows
we shall use the complex notation: z = x + ίy = reiθ.

Denote by K the Green's function for the Dirichlet problem (cf. Morrey, 1966)

^ ^ ^ rf ^ ^ R χ h ^ = ^ χ

φ = 0 on 3D D
with K ( z , ξ ) = l / 2 π D n | ξ - z ' | / | ζ - z | + l n | z | / Λ ] , z, £ e C , |z | , | ξ | ^ Λ , where

z ' = (R2/\z\2)z, the reflection point of z with respect to the circle dD of
radius # . It is not hard to see that 1 S(\ξ -z'\/\ξ -z\)-(\z\/R) S(\ξ\ +
\z'\)\z\/\ξ - z\R S 2R/\ξ - z\. Let \θ - θ'\ < π/2, r' ̂  α; thus,

-2π \reiθ-r'eiΘ'\

1 2R
ι2πln\

for some constant M1>0 (indeed, M1 = (l/2π)ln(2Λ/α)).
2π

For a continuous function h'.S^M, set \h\1= j \h(θ)\dθ9 \h\2 =
o

' 2 π \ l / 2

^\h(θ)\2dθ) , and W^^max^hφWθeS1}. For heC\ W^^l, and
/

^ 1, we have the Sobolev type inequality

Therefore, \ti\n is small if \h\2 is small (and W^ {h^ ^ 1).
Now, let g, g + /ze^, and write

= (Xg + h - Xg, GXg> + 2<Xg + h ~ Xg,

2πg(θ) + h

=$ J
0 g(θ)

2πg(θ) + h(θ)

$ J G(Xg)(reiydrd9. (3)
(θ)
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Fix θ, and expand in r at g(θ)eiθ, noting that G(χg)eC\

G(χg)(reiθ) = G(χg)(g(θ)eiΘ) + d<^ί{gφy«)(r - g(β)) + o(\r - g(θ)\),

rG(χg)(reίθ) = rG(χg)(g(θ)ew) - g(θ)) + o(\h(θ)\)

Hence at g(θ)eiθ we have

dG

2 π 1 2 π

= J G(χg)ghdθ + - j

(4)

, Ih']^ ̂  1, w eLemma 3. For g, g + ι

ίG(χg+h)-<

uniformly in r'eιθ>.

Proof. For each ε>0, choose (5>0 small (δ<π/2), so that J K2dθ<

r'ew) = | K(g(θ)eiθ,r'eiβ')g(θ)h{θ)dθ + o{\h\2),
0

ε2, where X = (l/2π)ln(l/|sin(0-
2πg(θ) + h(θ)

lG(χg+h) - G(χg)-](r'eiθ) = f f
0 flf(β)

M x is defined by Eq. (1). Since

0, we get

- G{χg)Weiθ') ~ f K(g(θ)eiθ

i/eiθ)g(θ)h(θ)dθ

g(θ) + h(θ)

J j K(reiθ,r'eiθ)rdrdθ
θ~θ'\^δ g(θ)

K(g(θ)eiΘ,r'eiθ')g(θ)h(θ)dθ

θ'+ δ g(θ) + h(θ)

I J K(reiθ,r'eiβ)rdrdθ
θ -δ g(θ)

by the mean-value theorem,

^ J \K(g(θ)ew,r'eiθ')g(θ)-K(g(θ)ew,r'ew)g(θ)\\h(θ)\dθ

θ' + δ

J \K(g*(θ)eiβ,r'eiβ)g*(θ)h(θ)\dθ

θ' + δ

\K(g(θ)eiθ,r'eiθ)g(θ)h(θ)\dθ.
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Since \h\L«> is small, g and g* are uniformly close to g, and so by the
Schwarz inequality, Eqs. (1), (2) and our choice of δ, the above is

for \h\2 sufficiently small.

Lemma 3 implies that

2π g(θ') + h(θ')

\dθ' J r'dr'
0 g(θ )

J K(g(θ)eiβ,r'eiβ)g(θ)h(θ)dθ + o(\h\2)

2π g+h C2π )

ff j r'dr'l \ Kghdθ\
9 I 0 J

(5)

2π g(θy + h(θ') (2π )

Lemma 4. J dθ' j r'dr'l j K(g(θ)eiθ,r'eiθ')g{θ)h{θ)dθ \
0 0(0') t 0 J

o(\h\2

2).

θ + ό _

Proo/. To each ε>0, there exists δ>0 (δ<π/2) such that j K2dθ<ε2

2π g(θ') + h(θ') (2π

0 gf(θ') I 0
\ rfeiθ)g(θ)hθ) dθ

2π

K(g(θ)eiθ,g(θyΘ')g(θ)g(θ')h(θ)h(ff)dθdθf

ίβ, r'eiθ)g(θ)h(θ)dθ

J
J έ/0' J r' rfr'
0 0(0')

- f d θ ' ί K(g(θ)eiθ,g(θ')eiθ')g(θ)g(θ')h(θ)h(θ')dθ

θ' j r'dr'l I K(g(θ)eiθ, r'eiβ')g(θ)h(θ)dθ}
β(β') l\β-β'\£δ J

K(g(θ)eiθ,g(θ')ew)g(θ)g(θ')h(θ)h(θ')dθ

Applying the mean-value theorem, the Schwarz inequality, and Eqs. (1) and (2),
we get

= εC2\h\l for \h\2 sufficiently small.
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Now, we can write down the second order Taylor expansion of E(χg) together
with an estimate on its remainder term.

P r o p o s i t i o n 2 . F o r g , g + h e & \h\009 l / i ' l ^ ^ 1, w e h a v e

,+h)-E(χg)= ί G(χg)(gφV>(θ)HΘ)dθ
0

0 0
K(g(θ)eiθ, g(θ')eiθ)g(θ)g(θ')h(θ)h(θ')dθ dθ'

Proof. This follows from Eqs. (3), (4), (5) and Lemmas 3 and 4. •
Notice the expansion is good for geffl, and uniform in C^norm on g. Therefore,

Corollary 1. E(χg) is of class C2 in g with respect to the Cγ-norm.

6. The Spectral Analysis of the Second Variation and its Consequences

Let us consider the Taylor expansion of E(χg) at g = γ as given by Proposition 2. We
2π

also restrict ourselves to area-preserving deformations, i.e. \χγ+h = J χ r Thus, 1/2 j

\ 2π

1
I h2dθ= 0. (6)

Since G = (l/4)y2ln(tf2/y2) = c and ^G/^r = -(l/2)y on |z| = y, we get

9 y
2 ζ K(yeiθ, ye'

o

i < , > o(|Λ||), (7)

where Lh= - (y2/2) h + ^/ί, and

= γ2 2ξ K(reiθ, r'eίθ')h(θ')dθ.

Next, we need to compute the eigenvalues of j f as a linear transformation on
L2[0,2π]. Clearly, jf is a bounded self-adjoint linear transformation on L2[0,2π].
Let θ' = θ + ff, and ft(0') = einθ'. Since K is circularly invariant,
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"*) = γ2 T K(γew, yeiθeiU)einθeιnU dθ = y2 ? K(y, yέΰ)einθeιnB dθ
o o

Hence einθ are eigenfunctions of Jf v/ith real eigenvalues,

2π 2π 1 Γ 1 (V/R)2piθ —

= 7 2 J ̂  "i
Since ln(l-(y/R)2e i θ)= - ^ (y/R)2V"7« ( ln( l-z)= - z - z 2 / 2 - z 3 / 3 - X we

n> 0

get

f In |1 - (7/K)2 6?i()| cos nθ dθ= - (y/R)2nπ/n, for 0 < y/K < 1, n > 0. Thus,
o

N =ίl V \R

= b

The linear transformations L has eigenfunctions eιnθ with eigenvalues — y2/2 + an.
2π 2π

Let h = ht + hn, hn= l/2π J /ί d#, and j htdθ = 0, be an L2-orthogonal
o o

eigenspace decomposition of L on L2[0,2π]. The linear transformation L has
eigenvalues — y2/2 + an^ — (y2/2)(y2/R2), when restricting to the eigenspace {ht}.
Therefore,

y4

Proposition 3. Gii βn ε > 0 , there exists η>0 {small) such that <

— (y4/2JR2 — ε) \h\l, if heL2 [0,2π], \hn\2/\h\2<η>

Proof. (h,Lh) = (h, + hn,L(h, + /*„)> = <h,,Lh,> + < h n , L h n >

V4

^ — - ^ ( h t , h t ) + |L|2^
2|/z|2,(by Eq. (8), and the Schwarz

2R
inequality)

"

Here, |L|2 denotes the operator norm of the bounded linear operator L,
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The Proposition follows by taking η sufficiently small. •.
Finally, with all the preparations made in Sect. 4 through 6, we prove the validity

of our inequality (E) as stated in Sect. 2.
For γ + he0l (i.e. heC\ a<y + h<R\ with \h\^ ̂  1, Ife'L ^ 1,

^ 7λ/2π \h\2 + 2\h\2, by the Schwarz inequality,

Suppose also that J χ y + Λ = j χy (i.e. area-preserving deformation). Then Eq. (6),
D D

2π 2π

namely, J γh dθ + ^ j h2 dθ = 0 gives |ftJ2/|Λ|2 = O(|Λ|2). By Proposition 3, and

Eq. (7) and (9), there exists a positive constant c2 such that

E(χγ + h) - E(χy) ^ - c2\χγ + h - χy\l, (10)

provided \h\2 is sufficiently small.
For \ω1 — ω o | L i small, the boundary r = f{θ) of ώt is enclose to γ (for the

definition of ώl9 see Sect. 4). Hence, one can take h=f — y and assume l/z^, Ih'l^
small. Therefore, \h\2 must be small, and Eq. (10) becomes:

Eiβi) - E(ω0) S ~ c 2 |ώ! - ωo|£i

for ω x sufficiently L1-close to ω 0 . Applying Proposition 1, we obtain the desired
inequality (E).

Consequently our stability theorem follows as was shown in Sect. 2.

7. Stability for Vortex Distributions

So far we have proved that the circular vortex patch is nonlinearly stable within the
class of vortex patches. A somewhat stronger stability result is the following.

Stability Theorem. Let ω0 be circular vortex patch of radius γ in a disk of radius R. For

any η > 0, there is a δ > 0 such that if ω is a vorticity distribution in L00 satisfying

2δ
(i) 0 ^ ω ( , ) / ) ^ λ, \λ— 1|

and (ii) \ω — ω o | L i

then || Φt(ω) -

for all t ;> 0.
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As in the case of patches, the proof is based on inequality (E) for more general ώ.
More precisely, if ωc is of strength λ,λ close to 1, (E) is valid if ώ is a vorticity
distributions satisfying

0 g ώ(x) g λ, and JD ώ = jD ωc.

The proof that (E) implies the stability theorem proceeds essentially the same as
before.

In the earlier arguments in Sect. 2, we first establish |ω* — ω o |L i g 5δ, a fact
which follows by assuming ω is a vortex patch. Here, we simply take \λ — 1| |ωo | < 2δ
as hypothesis. The rest of the proof is formally the same.

It suffices to justify the inequality (E) for more general ώ, in the special case where
ωc = ω0, and ώ = ω1 with ω1 a vortex distribution obeying O g ω ^ x j g l . The
definitions of ζ0, ( 1 ? ζ2 and the statement and proof of Lemma 1 is unchanged.

Proof of Lemma 2. Let U = {(x,y,v)eD x U\ώ1(x,y)= I and ω1(x,y)^v^l}

and V = {(x,y,v)eD xU\ώί(x,y) = 0 and Og vgω^Λ,, j/)}. Since J ώ 1 = j ω 1 ,
D D

we have vol V = vol U and

< ω 1 - ώ 1 , G ω 1 > = J j

= f C(x,)^)dxdydv — \ζ(x,y)dxdydv.
u v

For \ω1 — ωo\Lι sufficiently small, choose ζ2 < Co < Ci s o that

area {ξ0 ^ ^ ί 2 } = ™11/ and area {^ ^ ξ ^ ξ0} = vol K

Thus the hypotheses of Lemma 1 hold. From dζ/dr < 0 one sees that

1

j ζdxdydv g j J ζdxdydv = J
17 ° ί o ^ c 2 co^c^c2

and

1

j ζdxdydv^ j J ζdxdydv= J

Thus,

{ω
1
—ώ

1
,Gω

1
}^ j ζdxdy — J ζdxdy,

and so the lemma follows from Lemma 1 as before. •
One might not have guessed that inequality (E) would be valid for all vorticity

distributions that are nonnegative and L1 close to ω 0 in view of the fact that formally,
this class includes many coadjoint orbits. However, the coadjoint orbit of vortex
patches is very singular and E in fact has a nondegenerate L1 local maximum on a
whole convex set of coadjoint orbits containing ω0. This agrees with Turkington
[1983].
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