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Abstract. Let # be the Jacobi matrix associated with polynomial T(z) of degree
N^2. The spectrum of / is the Julia set associated with T(z) which in many
cases is a Cantor set. Let f{l) denote the result of omitting the first row and
column of J. Then it is shown that the spectrum of < / ( 1 ) may be purely discrete.

It is also shown that for T(z) = ocNCN(z/(ή for α > -N/3/2, where CN is a
Chebychev polynomial the coefficients oϊ/ and f{1) are limit periodic extending
the work of Bellissard, Bessis, and Moussa (Phys. Rev. Lett. 49, 701-704 (1982)).

I. Introduction

Let C be the complex plane and let T:C->C be a polynomial; T(z) = zN +
kίz

N~1 + ••• +kN9 where N^2 and fczeC. Define the iterates of T by T°{z) = z
and T\z)=T°Tn-\z) for ΠGN = {1,2,3,...}. Let J be the Julia set for T,
[1, 2, 3]: J can be defined as the closure of the set of repulsive cycles of T. When
J is a subset of the real line R, which is the case in this paper, then J is either a
generalized Cantor set with Lebesgue measure zero or it is an interval. Let μ be
the balanced T-invariant probability measure [4] on J. (If {T'Γ1(z)}f=i i s a

complete assignment of branches of the inverse of T, then μ(Ti~
1(E)) = μ(E)/N

whenever £ is a Borel subset of C. Equivalently, for all /eL x (μ, C), we have

if(z)dμ(z) = U t f{T;\z))dμ{z)) (I.I)
iV i~ i

Let {Pn(z)}™=0 be the monic polynomials orthogonal with respect to μ; that is
Pn(z) is of degree n, with unit leading coefficient, and

$Pι(z)Pm(z)dμ(z) = 0 (1.2)
J

when / φ m. The bar means the complex conjugate. The relationship between the
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orthogonal polynomials and the iterates of T is now well-understood [4, 5, 6] and
can be summarized as follows:

P1(z) = z + kJN9 (1.3)

PlN(z) = Pι(T(z)), leN0 = {0,1,2,...,}. (1.4)

Formally one can associate with μ a semi-infinite tridiagonal matrix operator /

~ft(0) c(l) 0

«D b(l) c(2K

0 c(2) ft(2).. l }

where we define, when J a [R,

, (lsN0); a(m) = c(m)2 =^"^-, (meN); (1.6)

with

We define a(n) = 0 and b(n - 1) = 0 whenever n ^ 0. When J φ U, the coefficients
of / are defined by analytic continuation in parameter space, starting from a
polynomial transformation T whose Julia set is real.

When Jcz[R it is known from general principles that fε@t{lϊ) (bounded
linear operators on /^, where

and that / is self-adjoint with spectrum J and spectral density μ [7].
One would like to know how the spectrum changes if / changes. To this end

we consider f{1) which is derived from / by omitting the first row and column.
We find that the spectrum changes dramatically from a singular continuous
spectrum to a spectrum which may be purely discrete.

Another thing one would like to answer is how the properties of J are reflected
in the properties of / . It is known [5, 8] that there are special recurrence relations
among the coefficients in /; in an interesting recent paper, Bellissard et al. [9]
have demonstrated that when T is a quadratic polynomial these relations imply
that the coefficients in / form a limit periodic sequence, under appropriate
conditions. We believe that this almost periodic behavior is generic, and in support
of this we report almost periodicity results in connection with the family
T(z) = oLNCN(z/ot), where α ̂  1 and CN is the monic Chebychev polynomial of degree
N 7^2, orthogonal on [ - 2 , 2]. We comment briefly on the families T(z) =
α4C4(z/α) + β and T{z) = α3C3(z/α) + β, α,βeU.

Recently, the general problem of determining the spectrum of doubly-infinite
Jacobi matrices has received a great deal of attention [10-16] because of its
connection with certain quantum mechanical problems. In these problems one
begins with the coefficients in the matrix and tries to deduce the nature of the
spectrum. Here we are in fact considering the inverse problem: given the spectrum
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(the Julia set) deduce the properties of the coefficients. The examples considered
in this paper are of special interest because much is known about the spectral
measure μ and the asymptotics of the wave function [17-19].

We proceed as follows: in Sect. II we demonstrate the fact that under certain
conditions the spectrum of f{1) is purely discrete. Then in Sect. Ill we derive results
concerning the almost periodic nature of the coefficients in the Jacobi matrix
associated with the polynomial transformations discussed above. Finally (Sect. IV)
we discuss some physical consequences of these results.

II. The Spectrum o f / ( 1 )

Let C be the complex plane and C = Cu{oo} . Let T(z) = zN + / q z ^ " 1 + •••,
N ^ 2, and μ be the balanced measure associated with Γ, then the Stieltjes transform,
G(z), of μ,

Δ

is an analytic function of z for zφJ. Furthermore from (I.I) it follows that G(z)
obeys the following functional relation,

Viz)
^G(Tz). (112)

We now assume that J c / = [/),α], where / is the smallest real interval
containing J. Then / as given in (1.5) is self-adjoint with μ as its spectral measure.
Let f{1) be derived from J by omitting the first row and column and let μ(1) be
the spectral measure associated with £/ ( 1 ).

Theorem 1. Let G{1)(z) be the Stieltjes transform associated with the spectral measure
μ(1), then Ga\z) is a meromorphic function in C/J with the representation

G"\z) = Σ RiTKz)) Π V6(Hz)). (II.3)
ί=O j=O

Here

Qi^ψ and J W-"WI«W(Γ«W». ( I L 4 )

Proof. Since the Julia set J is bounded, / and a fortiori £ / ( 1 ) are bounded operators.
Consequently, G(1)(z) is analytic outside some interval / containing / and
zG{1)(z) = 0(1). Comparing the continued fraction expansion of G{1)(z) with that
of G(z) and using (II.2) it follows that

Iterating the above equation one finds that for z large enough

= J R(T'z) lΐ VQ(TJ{z))+ Π \/Q(P(z)))G(T"
i = 0 j=0 7 = 0
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Since T(z\ Q(z\ and R(z) are monic polynomials of degree N, N — 1, and N — 2
respectively, there exists a k>4 such that for \z\>k9 \\z\N < \Tz\ <2\z\N

9

ilzl^" 1 < \Q(z)\<2\z\N~\ and ^\z\N~2 < \R(z)\ < 2\z\N~2. Consequently

2-(^-l/N-l)|z|lV'<|Γi(z)|<2N'-l/iV-l|z|N« j ( I L 7 )

| K ( r ( z ) ) | < 2 ( N l - 1 / N - 1 ) ( N - 2 ) + 1 | z r / + 1 - 2 ^ , (II.8)

and

Πlβ(r^))l>
7 = 0

from which it follows that

R(T(z))

Π
j = o

<22Ni\zΓ2Ni

(II.9)

(11.10)

Thus for \z\ > k one can pass to the limit w-* oo in (II.6) giving (II.3). Now using
(II.3) as an analytic representation of G{1\z\ one finds, since \Tm(z)\>k for m
large enough and zφJ, that G(1)(z) is analytic for zφJ except at the zeros of
<2(T(z)), i = 0,1,2,..., that do not lie in J. Since G(1\z) is a Stieltjes function all its
isolated singularities are simple poles and the theorem now follows because each
zero of Q(T\z)) that is not in J is not an accumulation point of other zeros of
Q(Tjz)J = 0,1,2,..., and is therefore isolated.

Remark. 1. Denoting P n , P i υ and P{

n

2) as the monic orthogonal polynomials of
degree n associated with /, f(1) and f{2) (omit first two rows and columns of f)
respectively one finds that

Nn = Tn(z)-b(0\ and (11.11)

Labelling the zeros of Q(z) by z 1 , z 2 , . . . , z N _ 1 , it follows that the zeros of
Q(Tj(z)) a r e z^m=T^j(zJ w i t h m = 1 , 2 , . . . , N - 1 a n d k=l,29...9N

j. H e r e
{7\~J, k = 1,2,..., NJ} denotes a complete assignment of branches of T ~j.
Supposing that z(^mφJ one finds that the residue of G{1)(z) at that point is

* k,m — (11.12)

ifj

Using the fact that zψm is one of the fh inverse iterates of zm9 and using (II.4)
and (11.11) yields

where

l7 \ I

ί = i rN(

(11.13)

(11.14)
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Lemma 1. Let I be the smallest real interval containing J and suppose / = [—
Let zm be such that Q(zm) = 0 and zmφJ, then

fl ,ιί-2

and

R(τιzm)

Q(τιzm)
R(τ2zm)

Q(τ2zn

/ = 2,3,.

(11.15)

(11.16)

Proof. Since / is the smallest interval containing the Julia set, one has that Tz
is expanding for \z\>a. Furthermore for z real φI,Tιz,l^l is of fixed sign.
Since the zeros of Q(z) lie at the finite maxima and minima of Tz, the assumptions
that J is real and that zmφJ imply that \Tzm\>a. The fact that the zeros of
Q(z) interlace those of T(z) imply that Q(z) is monotonically increasing for z ^ a
and \Q(z)\ is monotonically decreasing for z g - a. Consequently \Q(Tιzm)\ ^
\Q(T2zm)\, for 1^2 which yields (11.15). (11.16) follows from the above arguments
and the fact that R(z)/Q(z) is an [N-2/N- 1] Pade approximant (see (11.11))
with positive residues, and with all its zeros and poles strictly inside /.

Lemma 2. Let I, J and zm be as in Lemma 1. If Tzm > 0 then

\Q(T2zm)\ > \Q(Tzm)\, (11.17)

(11.18)
R(τ2zm)
Q(τ2zm)

<
R(Tzm)

Q(Tzm)
<

R(a)

Q(z)

and

= \Tzm-b(0)\^\a-b(0)\. (11.19)

// Tzm < 0, and Ta = a and T(- a) = - a, then (11.17) remains unchanged, and (11.18)
and (11.19) remain valid with a-+ —a.

Proof. Inequalities (11.17) and (11.18) follow from the same argument given in
Lemma 1 and the fact that T2zm has the same sign as Tzm. Equation (11.19) follows
from the expanding nature of T on Γ and the fact that — a < b(0) = j xdu < a.

Theorem 2. Let J be real and zmφj, then Γm > 0.

Proof. Let / be the smallest real interval containing J. It is without loss of generality
that / = [—a,ά]. If this is not the case, by using a mobius transform of the form
Lz — z + c,c real we can symmetrize J without changing either the monic character
of T, or the nature of the fixed points of T, or the fact that zmφj. Since / is
the smallest interval containing J, one has that Ta = a and either T(—a) = a or
T(—a)= —a depending upon whether the degree of T is even or odd. The proof
now breaks up into two cases; Case 1, Tzm > 0 or Tzm < 0 and T(— a) = —a, and
Case 2, Tzm < 0 and T(—a) = a. To prove Case 1 we note that a consequence of
(11.15) and (11.16) of Lemma 1 and, (11.17) and (11.18) of Lemma 2 in (11.14) is

Γm>\-
R(±a)

PN(±a)Q(±a)

1
(11.20)
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Here one chooses a if Tzm > 0 and — a if Tzm < 0. From the expanding nature of
the T on /c, the monotonicity properties of Q on Γ, and (Π.4) one finds that

\Q(Tzm)\>\Q(T±a)\ = 1 +
R(±a)a(ί)

(±a~b(0))

The last inequality follows from the fact that R{±a) = (±a-b(0)/a(ί)). Since
R(± a)/ ± a — b(0) and Q{ ± a) are positive it is a consequence of the above equation
and (II.4) that

>
> υ 'l - l /β(Γz m )

where again a is chosen if Tzm > 0 and — a is chosen if Tzm < 0.
To prove Case 2 we note that in this case Q(Tιzm) > 0, i ^ 2, R(TιzJ > 0, i ^ 2,

Q(Tzm) < 0 and PN{zm) < 0. Therefore (11.14) becomes using Lemma 1,

Γ m > l -
m)Q(Tzm) PN(zm)Q(Tzm)(Q(T2zm) - 1) '

Here we have used the fact that Q(T2zm)> 1. Now using (II.4) yields

Γ > j _ / P ^ T z J ^ Γ z J - P ^ T z J λ _ /(P(Tzm)β(T2zJ - P(T 2 zJ)

which yields

P ( Γ 2 z m ) - P ( T z J

The above result has the following immediate consequences.

Corollary 1. Let J be real and suppose at least one zero of Q(z) lies outside J, then
^/(1) has an infinite number of eigenvalues.

Proof. From Theorem 2 we have that Γm > 0. The result now follows from (11.13)
and the fact that the zeros of PN(z) and P$+1 _ 1 (z) are simple.

The following corollary is a consequence of Theorem 2 and the fact that

oo N i

y y Γu) < i
ίmU ' ' k,tΠ ^^ *

j=Ok=l

Corollary 2. For every ε>0 there exists a y and w such that

1oo NJ

Σ Σ
j=yk=l

Σ
l

R(τ'zj π

(11.21)

(11.22)

We now show how dramatically the spectrum may change in going from / to /a).

Theorem 3. Let J be real and let all the zeros of Q(z) lie outside J, then the spectrum
of fw is purely discrete.
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Proof. Since j du(l) = 1 we will prove the result by showing that the sum of all
— 00

the residues of G(l\z) is equal to 1. From (11.11) one sees that the first term in
(II.3) is just the [N - 2/N - 1] Pade approximant to Gw(z).

Now consider the sum of the first two terms in (II.3)

R(Tz) R{z)

Q(z)Q(Tz) Q(z)

z) - PN(Tz) + ( z - b(Q))Q(z) - P

=wn_

Q(z)Q(Tz)

(z-b(O))Q(z)Q(Tz)-P

Q(z)Q(Tz)
N(Tz)Ί

NWΊ

which is just the \_N2 — 2/N2 — 1] Pade approximant to G(1)(z). Proceeding by
induction it is not hard to see that the sum of the first in terms in (II.3) give the
IN" - 2/N" - 1] Pade approximant to G{1\z). Labelling the residues of l(Nn - 2)/
Nn — 1] by "Γ[J)

m, where 7, k and m have the same meanings as in (11.12), one finds
that

n-1 NJ N - l

Σ Σ Σ
7 = 0 fc=l m = l

Subtracting "Γ^m from Γ[% and using (11.14) yields,

T7 Σ R(τι

(11.23)

Γ(j) _n
1 k,m

k,m

k,m ' 1 i

s= 1
(11.24)

Set M = max (A, B\ where A = max \PN(zm)Γm\ and

B = max £
" ;Mβ(τ'zj

then Corollary 2 implies that there exists a 7 such that

M X L.H.S. (11.21) <ε/2.
m = l

(11.25)

From the definition of P$+1 _ x (z), (11.11), we see that

Setting

= max
1

it is a consequence of Corollary 2 that there exists an w large enough such that

M,γ X L.H.S. (11.22) <ε/2. (11.26)
m = l
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Now choosing n large enough in (11.24) so that n — y > w, we have from the above
arguments that

N - l oo NJ

Σ Σ Σ(Γΐm
m=lj=0fc=0

N - 1 oo NJ

Σ Σ ΣΠ2.-1
m=lj=Ok=l

1N-l oo NJ

Σ Σ Σ
m=l j=y k = l

i V - l y - 1 NJ 1 oo

Σ Σ Σ^7 Σ
m=lj=Ok=l l v J l = n -

thus yielding the result.

A 1

III. Limit Periodic Behavior

In Sect. II we make frequent reference to the following result, which is proved in
[17] (Theorem 3 there).

Orthogonality Theorem. // feLι(J,μ\ then

]Pι(z)f(Tn(z))dμ(z) = O, l,

whenever Nn does not divide I.
We also make use of [4, Theorem 2].

Reduction Theorem. If feLι{J,μ\ then

l j = 1,2,...,N - 1,

where the s/s are given recursively by

sm=-mkm-
1=1

m= 1,2,3,... .

Throughout we suppose that J c U and that T{z) is a polynomial of degree
N ^.2. Then it is well known that the monic orthogonal polynomials associated
with μ satisfy the recurrence formula

(III.l)

where the a(n)'s and /?(π)'s are defined in (1.5) and (1.6). We will always understand
that b(n — 1) = a(n) = 0 and Pn^1(x) = 0 whenever n ^ 0. Also throughout we use
the notation l\l = {1,2,3,...} and f\lo = ί^u{0}; and the value of a summation
where the lower index exceeds the upper index is zero. T(z) has definite parity
when T(z) =T(-z) or T(z) = - T( - z).

Lemma 3. Let T(z) = zN 4- k2z
N 2 + -f kN be of definite parity, then the
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following relations hold for all neN0:

a(nN)a(nN - 1).. .a(nN -N+l) = φ ) , (III.2)

a(nN) + a(nN + 1) - - 2k2/N, (III.3)

b(n) = 0, (III.4)

/ p ,.p M4_ Λp \
a(nN + m)^ mVi" + "-\"M>

\rnN + m-l /

tn

+ Σ (a(l) — a(nN + m — t)), meN (III.5)

Proo/. Equation (III.2) was derived in [8]. To prove (III.3) we begin with

\rnN/ \rnN/

where (III. 1) has been twice. The result now follows upon employing the Reduction
Theorem.

Equation (III.4) follows from the fact that if T(z) is of definite parity then J is
symmetric with respect to the origin and μ is invariant under change of sign.
Consequently, all of the PM(x)'s have definite parity and (1.6) shows that b(n) = 0.

To show (III.5) we begin with

a(nN + m)= 2 , for neNOi meN.
\ PnN + m - 1 /

Using the recurrence formula twice yields

/ -,2 p2

( PnX + m - 1 )

which can be written

a(nN + m) = 2

2

π i V + m~^ -h α(l) - α(̂ iV + m - 1).

Now eliminate one of the Pπ i v + m_1 's using (III. 1) and then eliminate xP2 using
(III.l) to obtain

a(nN + m) = — ^ + m - i wΛr + w -2 4

Continuing this procedure yields (III.5).

Corollary 3. // T(z) is of definite parity then for neN0,

a(nN + ΛΓ - 1) = ^ (a(j) - a{nN + N-j- 1)). (III.6)

That is, a(0 + nN) + a{\ -f niV) + - h φ - 1 + wN) is independent of neN0.

Proof. This follows from (III.5) and the Orthogonality Theorem. Π
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Lemma 4. Suppose T(z) is of definite parity and that a(jN + i) = a2 for i = 2 ,3 , . . . ,

TV — 1 and j = 0, l , . . . , ( n — 1), for some neN, then

N>=0 for |fc| = O, l , . . . ,ΛΓ- l with \k\φm,

Proof. We note that (*) is immediately true in the following cases: whenever
m<\k\, by orthogonality of the PM's; whenever j = 0; whenever m = N and
|fc| φ 0 by the Orthogonality Theorem; and whenever m = N and /c = 0, by parity
(which implies all of the fr's vanish). Thus, let us assume (*) is true whenever
j = 0,1,..., (n — 1); then we will show that it is true when = n. Here we assume
m<N since the case m = N has already been taken care of. Choosing k= — 1, we
use the recurrence formula (III. 1) to obtain, for m< N,

The first term is equal to zero by the Orthogonality Theorem. If m = 2 the remaining
two terms are equal to zero by orthogonality. If m is greater than 2 then one
eliminates PnN-u and then xPm-2 in the last equation, with the aid of (III. 1), which
yields

aim - 1) [a(nN - 2) < Pm _ 2PnN _ 3PnN

The first term here vanishes by the supposition in the statement of the lemma.
The coefficient of a(m — 1) is zero when m < 5 by orthogonality. If m ^ 5 we repeat
the procedure until a proof which works for m < N is arrived at.

Next we carry out an induction through negative values of k. We use the identity

( P P P y / AT _ J , 1\

(*) now follows for k < 0 by induction and the fact that it is true for m = N.
To obtain (*) with j = n when k ^ 0 observe the identity

= \ Pm + 1 PfiN + k-ίPnN / ~~ ^ ( ^ ) \ P m - 1 PnN + k- 1 ̂ niV /

which allows us to carry out an induction through positive values of k, upon
recalling the observations at the beginning of the proof.

We are now in a position to consider the coefficients associated with the scaled
Chebychev polynomials.
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Theorem 4. // T(z) = ocNCN{z/oc) with N^2anda^0, where CN(z) is the degree N
monic Chebychev polynomial of the first kind, orthogonal on [—2,2], then the
following relations hold for all neN0,

a(nN)a(nN - 1)... a(nN -N+l) = φ ) , (III.7)

a(nN + 1) + a(nN) = 2α2, (III.8)

l) = α2, for y = 2 , 3 , . . . , N - l .

Proof. Equations (III.7) and (III.8) follow at once from Theorem 1. To prove (III.9)
begin by noting that TN(z) is the monic Chebychev polynomial of order N on the
interval [— 2α,2α]. As such one has by moment analysis [17,20] that the first N
monic orthogonal polynomials {Pm}m = o associated with the invariant
measure for T(z) on the Julia set are the same as the first N scaled Chebychev
polynomials; namely Pm(z) = αmCm(z/α) for m = 0,1,2,...,AT- 1. Therefore from
the standard formulas for Chebychev polynomials [20] one has α(/) = α2 for
/ = 2,3,..., N - 1. The result now follows from induction using Lemma 4 and (III.5)

D

Remark 2. It is interesting to note that in these cases for large N the Jacobi
matrices have a large proportion of constant terms. However, the spectrum for
all finite N and α > 1 is a Cantor set.

Definition 1 [20]. A bounded sequence {&(«)} £=-oo is called limit periodic if it

is the uniform limit of bounded periodic sequences; that is, there exist periodic

sequences {&(m)(n)}£=-oo s u c r i that

\im(sup\b(n)-b{m)(n)\)) = 0.
m->oo n

(A sequence {b^Xn)}-^ is called periodic when and only when there exists a
positive integer Lm such that

b{m\n + Lm) = b{m)(n) for all n = 0, ± 1, ± 2,.. .

Theorem 5. Let T(z) = otNCN(z/(x) where N ^ 2 and α > 1. Then

Πma(mNn + s) = a(s) forall seNOi meN0.

Moreover

\a(mNn + s) ~a(s)\ ^ 2oc2yn for all seN0,nεN,meN, where y = l/{(2α2 - 2) α2 ( N-2 )}.

In particular {φ)}*= _«, can be redefined for n<0 so that it form a limit periodic

sequence whenever (2α2 — 2) α2(Λ/~2) > 1 (which is always true when α > ^(3/2)).

Proof. The arguments used for proving the first assertion are basically the same as
those given in [22] and [9], and will only be sketched here. Both results are
immediate if s = k mod N, k = 2,3,..., N — 1, since all of the corresponding α's are
equal to a2. For 5 = Omod N we observe from Theorem 2 that

2α 2 - a({m -

Using this it follows by induction that for a > 1 we have 0 < a(nN) < a(n). Therefore
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(2α2 - 1)" (2α2 - 1)"

for neN, where we have used a(ή) ̂  2α2. Thus

Lim a(mNn) = 0 = α(0).
n-* oo

The rest of the assertions in the first part of the theorem now follow by repeated
application of Theorem 4.

To prove the second part of the theorem, we first note that from the above
inequality it is true for s = 0, and s = k mod N, for k = 2,3,..., N — 1. The case s =
l m o d N can be reduced to the case s = 0modN using \a(mNn + 1) — a{\)\ =
a(mNn). Therefore we consider

a(mN» + Ns) - a(Ns) = ̂  + *> " ^N^+NS - t ΐ f f + N'~N+ί\

where β = oc2{N~2) and we have used (III. 7). Using (III. 8) this can be rewritten

a{mNn + Ns) - a(Ns) =
β(2oc2 - a(mNn + Ns-N))

a{Ns){a(Ns - N + 1) - a(mNn + Ns - N + 1))
+ 2α2 - a(mNn + Ns-N) '

Therefore, assuming \a(mNn -fj) — a(j)\ ̂  2α2y" whenever j < Ns, we have

^M ( 2 α 2 - 1 )

— n2α2 ( 2 α 2 - 2 Γ "

as desired, where the fact that α(Λ/s) < 1 and \a(i) — a(j)\ < 2α2 for all ί andj has been
used.

We now prove the limit periodicity assertion. We assume γ < 1 and redefine a(s)
for s < 0 by

a(s) = Lim a(mNk + s).

The limit exists for each m because a(mNk + s) is a Cauchy sequence in k, as the

following computation shows. We have for k> k and mNk + s > 0,

I a(mNk+s + s) - a(mNk + s)\ = \ a(mNk - mNk + mNk + s) - a(mNk + s) |

= \a{(mNk~k - l)Nk + mNfe + s) - a(mNk + s)\

S 2α 2 / .

The limit is independent of m because

\a(mNk + s) - a{mNk + s)| = |α((m - m)Nfc + mNk + s) - α(mNfe + s)\ ̂  2α2γfc
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whenever k is sufficiently large. Furthermore, we now have

\a(mNk + s) - a(s)\ = L i m \a{mNk + mNκ +s)- a{mNκ + s)\^ 2 α 2 / .
£-00

We have shown that when y < 1 we can redefine a(ή) for n < 0 so that

yn forall seZ,neN,meN.

We now define sequences {d N \n)}^ _ ̂  for k = 1,2,3,... by α(2Vfc)(n) = Φ m o d JVfc),
from which it follows at once that

and

Lim sup \a{N\n) _ φ ) | = o. Π
fc — oo n

The following result is immediate.

Corollary 4. w/ien y < 1 the frequency module of a = {a(n)} is contained in the set of
all numbers for the form 2π(Np + k)/Nn where n ^ 1, 0^p^Nn~\ l^k^N-1.
That is, we have Fourier representations of the form

a(n) =

We define

/ =

I

φ

\

0,0

0

+
0

0

1)

I

c(n

c(n

Λ

J

0

+

0

k Σ

1)

2)

Γn,p,k

c(n

exp{:

0

+ 2). for n e N 0 ,

where we recall c(n)2 = a(n) and c(ή) > 0 when JcR. Then f{n\ being bounded, can
be considered as a self-adjoint operator on /^, and Theorem 5 provides the
following result.

Corollary 5. // y > 1 then f^mNP+*)-+/& as p^oo for fixed ssN0, meN0, the

convergence taking place in the strong operator topology on £(/^~). If y < 1, which is

always true when α > Λv/(3/2), then the convergence is in the norm topology on BQ^).

(The topologies here are defined by Reed and Simon [23].)

Remark 3. If α = 1, then a(\) = 2 and a(ή) = 1 for n ^ 2, whence the above result
holds for 5ef̂ J but not for 5 = 0.

Remark 4. Using the a(n)'s redefined for negative n as in Theorem 5, and cor-
respondingly defining c = {c(n)}^.Q0 and cm = {c(n + m)}$L_a0 for meZ, define
a transformation Tn by Tπcm = cm — cm+n. Extending f{n) to a doubly infinite matrix
f(cn)eB{l2l we see that Γπ has a realization in £(/2) [13] of the form Tn/(cm) =
f(Tncm) = S~n/(cm)Sn, where S is the unitary matrix which obeys (Sφ)(n) = φ(n - 1),
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and Sn = S S"'1. Theorem 3 says that for γ < 1, T can be viewed as a con-
tinuous limit periodic flow [24] on the hull of f{c).

Remark 5. We have also considered the transformations Tz = α3C3(z/α) + B and
Tz = y4Ct(z/γ) + Δ and found that for α ̂  5 and \B\ ̂  5, and γ ^ 2 and \Δ| < 22
the coefficients in the Jacobi matrices associated with the above two transformations
are limit periodic [25].

IV. Physical Consequences

The above results have a number of physical consequences. Here we shall for
simplicity consider the transformation Tz = z2 — 2α. Writing

G(E) = <0|(£ - /)- 1 10> = (E - α(l)G(1>(£)Γ \

where in the language of solid state physics [26-29] G(E) is the <0|,|0> matrix
element of the Green's function and G ( 1 ) (E) is the "self-energy", one sometimes
determines numerically whether G(E) has extended states by determining whether or
not G ( 1 ) (E) has a branch cut. In the above model with α = 1 one finds that the branch
cuts of G(E) and G ( 1 ) (E) coincide on - 2 g E ^ 2 and both / and / ( 1 ) have only
extended states. In this case

/O 2 \

2 0 1

1 0 1

1 0 1

and

and gives rise to the Chebychev polynomials of the first and second kind
respectively. For α > 1 we see from above that c / ( 1 ) has only localized states and

oo 23 Γ(j)

ΣΣΛ- (iv.i)
j = 0 k=l Z — Zk

since Q(z) = z. Equation (IV.I) implies that G ( 1 ) (E) does not have a branch cut.
However, since du is the equilibrium measure associated with the Julia set (a Cantor
set in this case), it is known that / has only extended states.

It has also been pointed out to us (Bellissard, private comm.) that the eigenstates

of f{1) may be considered as surface states [30].
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