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Abstract. Solutions of ten and eleven dimensional supergravity are presented
for which the space-time metric is a product of an anti-de Sitter metric and a
strictly positive scalar function of the internal coordinates. The critical point of
the potential of seven dimensional maximal supergravity with SO (4) symmetry
is identified with such a solution.

In this letter we present new solutions of Kaluza-Klein supergravity for which the
metric is of the form:

(1)

The tensor gμv(x) is the metric for any Einstein space-time with positive
cosmological constant and dimension Dl9 and gβγ(y) is any Einstein metric with
negative cosmological constant, describing (D2 — 1) dimensional internal space.
The scaling functions ρ and σ depend only upon the remaining internal coordinate,
α. To set our conventions: indices, β,y,<5,... and the coordinates yβ refer to the
(D2 — l)-dimensional internal space; μ, v, ρ,... and the coordinates x refer to space-
time; μ, v,ρ,... will refer to the entire (Dx + D2)-dimensional space-time, and the
coordinates (xμ, yβ, α) will be denoted generically by z^. The indices α,6,c}... and
the coordinates wa will refer to the entire D2-dimensional internal space,
parametrized by (yβ, α).

The metric (1) no longer describes the direct product of a Dλ -dimensional
space-time with a D2-dimensional internal space. Indeed, the curvature of space-
time depends on the internal space. However, it has already been shown [1], and
we will demonstrate here, that such rescalings of the space-time metric are
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necessary in order to obtain the scalar structure of the D1 -dimensional gauged
supergravity theories by means of dimensional compactification.

The gauged supergravity theories have scalar potentials whose critical points
provide one with backgrounds describing a Dx -dimensional Einstein space with
positive cosmological constant and with some unbroken gauge symmetry, H. The
metric is usually taken to be that of anti-de Sitter space-time. To obtain the
corresponding solution in Kaluza-Klein supergravity, one starts by writing down
the most general metric in (D1+D2) dimensions which has anti-de Sitter
in variance in the first Dγ dimensions,

where gμv(x) is now the anti-de Sitter metric with unit radius. That is, its Riemann
curvature is:

Rμvρσ0) = ~ (dμρθvσ ~ θμσQvρ) > (3)

The metric gab(w), and the function σ2(w) still have completely arbitrary
dependence on the internal coordinates w. The existence of the extra degree of
freedom, σ2(w), was already noted in [2], where it was also proved that (2) is the
most general anti-de Sitter invariant metric. In [3] it was shown that the function
σ2(w) was necessary to explain the vacua of the four-dimensional gauged JV = 8
theory [4] in terms of the S7 compactification of eleven dimensional supergravity
[5]. It has also been shown that for no choice of the function σ(w), could the space-
time cosmological constant be made to vanish [6].

Recently, de Wit and Nicolai [1] found a solution of eleven dimensional
supergravity with a non-trivial σ2(w) which provides a 4-dimensional space-time
with SO(7)+ symmetry. An analysis of the potential of iV = 8 supergravity [4], had
revealed two solutions, one with SO(7)+ and another with SO (7)" gauge
symmetry [7,8]. The latter seemed to correspond to the Englert solution [9]. The
former critical point with SO(7)+ symmetry was shown to correspond to the
solution of reference [1]. This clearly demonstrates the importance of solutions
with non-trivial σ2(w).

If σ2 in (2) is constant, then the metric corresponds to that of a product
manifold M1 x M2. On the other hand, suppose that σ2(w) vanishes at some point,
then the metric becomes singular at this point. In general, to avoid real
singularities at this point, topological identifications must be made, in which case
the corresponding manifold is topologically different from Mί x M2. For example,
consider the line element dθ2 + (l—λ cos2 θ)dφ2. For λ = 0 this is the metric on the
2-torus, whose Euler characteristic is zero. For λ = 1 the coefficient of dφ2 vanishes
at θ = 0 and θ = π. This has the effect of pinching off the torus at each of these points
and, of course the metric at λ = 1 is that of the round 2-sphere, whose Euler
characteristic is two.

All of the solutions we describe have non-vanishing σ2(w), and so the metrics
may be continuously deformed back to ones which are products of D1 -dimensional
internal space. In particular, our solutions may all be viewed as continuous
deformations of some generalization of the Freund-Rubin ansatz. Accordingly,
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one might expect that the linearized field theory about these new solutions will
decompose into spherical harmonics in much the same way as it does for σ2 = 1.

We will present the following new solutions:
(i) Solutions of eleven dimensional supergravity compactifying to four dimen-

sions, using any 6-dimensional Einstein space gβy(y). This extends the solution of
[1], which in our formulation corresponds to taking gβy{y) to be the metric on the
round S6.

(ii) Solutions of eleven dimensional supergravity compactifying to a seven-
dimensional space-time, using a three-dimensional Einstein metric gβy{y). In
particular, there is only one solution which has an SO (4) internal symmetry, and it
corresponds to the SO (4)-invariant critical point [10] of the potential of gauged
maximal supergravity in seven dimensions [11].

(iii) Solutions of JV = 2, chiral supergravity in ten dimensions [12], compactify-
ing to 5-dimensional space-time, using any 4-dimensional Einstein metric gβy{y).

Our method for generating these solutions is quite general, and may obviously
be used to find new solutions for other models.

The background metric will be taken to be of the form (1). The principle reason
for using this specialized form of (2) is that it is obviously one of the simplest
possible choices. It will be shown later that the solution of reference [1] may be
reduced to a specific metric of the form (1). It is clear that the function τ is
redundant in the parametrization of the metric, since one can choose a new
coordinate β(oc) such that dβ = τda. However, should one use this parametrization,
the resulting equations verge on the impossible. Our solutions would appear as
complicated combinations of elliptic functions. The apparently redundant para-
meter, τ, is extremely valuable in simplifying the form of our solutions.

For eleven dimensional supergravity we give the field Fμvρσ the following
expectation values:

Bi = 7: Fabcd = mσ-

= rnσ-DHρ*ldetgβy(y)r2εabcd, (4)

*>i = 4: Fμvρσ = im [det gμv(x)]1/2sμvρσ, (5)

where m is an arbitrary constant, and all other components of Fμvρσ vanish. The
Bianchi identities are obviously satisfied, and it is easy to check that the
generalized Maxwell equations are automatically satisfied [this requires the factor
ofσ~ jDlin(4)].

In the ten dimensional, chiral N = 2 theory, the field equation for the four index
antisymmetric tensor is that its curl is self-dual. Thus the most general anti-de
Sitter invariant ansatz for this tensor field, with Dί = 5, is:

Fμvρσλ = im [det flfμv(x)]1/2 εμvρσλ, (6)

F abode = ™ [det0α f t(w)] 1 / 2 εabcdeσ " 5

= mσ-γτldetgβy(y)r2sabcde. (7)

All other components of Fμvρσ, and all other fields, except the metric, vanish. It is
straightforward to check that this ansatz is selfdual.
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It remains to solve the Einstein equations, with the sources (4)-(7). They are:

ϊ9μv(FQάύ)2 for D1+D2 = U, (8)

Rμv = 4 m 2 σ - 1 0 ^ v ( x , y ) , ^ = - 4 m 2 σ - 1 0 ^ ( y ) , for Dx+D2=l0. (9)

We will first compute the Ricci tensor for the metric (1), with D1 and D2

arbitrary. Then we will make an ansatz based upon Weyl rescaling, to eliminate
one of the functions ρ, σ, and τ. Finally, we shall consider the models discussed
above and find a solution to the Einstein equations for these models. In what
follows, we shall only assume that gμv(x) and gβγ(y) are Einstein metrics, and we
shall not require (3).

Let

EM = σ(a)eM,EA = ρ((x)eA

9E
o = τ(a)doί, (10)

where eM and eΛ are the vielbeins for gμv(x) and gβJy). By taking exterior de-
rivatives of (10) one obtains the spin connection Ω . Its components are

QMN = ωMN^M) QAB = ωABseA)

ill)
σ'σ-1τ-1EM'EAO 'Q-1-1EA V }

where capital letters denote flat indices and the superscript 0 denotes the flat index
corresponding to the coordinate α. Taking one more exterior deriative one obtains
the curvatures

Rm = iRMpQEpE* = dΩM + Ωύ

R A Ω™. (12)

Normalizing the curvatures of eM and eA to

RM%P = RM

P = λ1(D1-l)δP

ί;RA

c = RAB

BC(eA)=-λ2(D2-2)δA, (13)

we find that the non-vanishing components of the Ricci tensor RM$ are

+ ( 0 2 - l ) ( ρ 7 β - e / τ / ρ - 1 τ - 1 ) ] . (16)

If τ2λ2 = σ = l and ρ = sinα, then, from (15) and (16), the internal metric must be
that of a D2-dimensional Einstein space. This we will consider as the "central"
vacuum state, while the new vacua will be considered as a deformation of it. The
compactifϊcation of eleven dimension supergravity on round S7 and round S4, and
the compactification often dimension supergravity on the round S5, would all be
central vacua. If our new solutions are to be viewed as scalar deformations of the
central vacuum, then one might expect the conformal rescaling, σ, of the space-
time metric to be equal to the Weyl rescaling suggested by compactification on flat
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manifolds [13,14]. Accordingly we take

σ(α) = CzΓ ( D l - 2 ) ~\ (17)

where A is the determinant of the vielbein deformations from the central vacuum.
/ ρ YD2-υ

Clearly A = τ —— , and so we will eliminate ρ(α) by taking
\smα/

(18)

The arbitrary constant in (17) has been absorbed into the arbitrary scalings, λγ and
λ2, of the Einstein spaces with metrics gμy and gβy.

In order to solve the Einstein equations, we begin with R°o in (16), from which
we eliminate ρ"/ρ and σ"/σ by means of (14) and (15). From the result we eliminate
ρ' and ρ by means of (18). Denoting the Einstein equations in a vielbein frame
generically by . . , , , .

we get the following result

τΛ
-)[2(/)2-2)]cotα-(D2-l)(D2-2)cot2α2

Di~2) 2E>2

T1}, (20)

where we have multiplied throughout by — τ2.
Our strategy will now be as follows. The appearance of cot α and sin2α in (20)

suggests that σ and τ may well be simple functions of sin α, particularly since the σ
and τ independent term in (20) is proportional to cot2α. Guided by the discussion
at the end of the paper about the solution of reference [1], we require that

σ(α) = α3(l + /sin2α)m3; τ(α) = α1(l + /sin2α)Wl, (21)

for some constants al9 α3, ml9 m3, and /. From (18) we find

ρ(α) = α2(l +/sin2α)m2sinα, (22)

where a2 is a constant and

mx + (D2 - l)m2 + (D± -2)m 3 = 0. (23)

These choices ensure that the right-hand side of (20) takes a relatively simple form.

Let x = sin2α, then the terms bilinear in — and — in (20) are proportional to
σ τ
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x(l - x) (1 + Ix)" 2, whereas the terms linear in — and — in (20) are proportional to
( l -x) ( l + /x)-i. σ τ

There are two terms with a n x " 1 singularity in (20), and by requiring that the
sum of their residues vanish, all terms on the left-hand side of (20) become, after
multiplication by (1 + Ix)2, proportional to either x2, x1 or x°. Therefore, the right-
hand side of (20) must become a quadratic expression in x after multipliation by
(l + /x)2. This will give three relations for the two exponents m1 and m3. The
remaining exponent, m2, will then be obtained from (23). Finally, the remaining
constants will be determined (as far possible) from the Einstein Eqs. (14)—(16). The
result will be a metric which satisfies all three equations completely. It should be
noted that the scales λγ and λ2 are redundant since they may be absorbed into α2

and α3. It is only the ratios λja\ and λ2/aj that will be determined.
For the compactification of eleven-dimensional supergravity to seven dimen-

sions, the sources are determined by (4) and (8), and in the notation of (19) they are
given by 2 2

Γ 3 = τ σ " 2 i ) 1 ; Γ i = Γ 2 = " ^ L σ " 2 Z ) 1 (24)

After multiplication by (1 + Ix)2, the exponents of (1 + Ix) for the three terms on the
right-hand side of (20) are respectively

iV1=2m1-2rn3 + 2,

(^) + 2, (25)
D2-IJ ' ' \D2-l

N3=2m1-2Dίm3 + 2,

where D1 = Ί and D2 = 4. However, the right-hand side must be quadratic in x.
Hence Nu N2, and JV3 must be integers with

£3. (26)

One finds that there is only one possible solution

m1=m3 = i;m2=-^. (27)

The Einstein equations for (14) with source terms given by (19) and (24) are
satisfied provided the coefficients of x°, x, and x2 vanish separately. This yields

6(α1/α3)
2>l1 = l;/=-ί;m 2 f l f£i3 1 4 = l . (28)

The remaining two Einstein equations for (15) and (16) are then also satisfied
provided the coefficients of the x~1 terms as well as those of the x°, x, and x2 terms
vanish. The vanishing of the x~* singularity in (15) forces the scale factors of ρ and
τ (a2 and at respectively) to be the same as those for a Z)2-sphere (for which ρ = sinα
and τ is a constant), namely the square of their ratio must be equal to the curvature
constant of the (D2 — l)-dimensional Einstein space

l . (29)

This relationship is model independent.



Ten and Eleven Dimensional Supergravity 147

One may check that with the choices of constants (27)-(29), all the Einstein
equations are satisfied. Thus we have obtained the following solution of eleven
dimensional supergravity, compactifying to seven dimension,

= α 3 (l-is in 2 α) 1 / 6 ;τ = α1(l-

= α2(l — jsin2α)"1 / 3sinα, (30)

α7 1 2 = 6/Um~2:1 — ) = 6/L:[ — ) = λΊT 2

Finally, we note that the Weyl rescaling condition (18) was only imposed in
order to determine the ansatz (22), and the exponents in that ansatz (27). We then
substituted the result directly into the Einstein equations and solved with an
arbitrary coefficient a2 in ρ(α). If one imposes the conditions (18), one obtains the
further constraint

(31)

This sets the relative scale of the space-time and internal space in terms of the
overall scale m.

As we remarked in the beginning of this paper, σ(α) does not vanish. Moreover,
since gβy(y) is a three-dimensional Einstein metric, it must be maximally
symmetric, and therefore the round 3-sphere (since it has negative curvature). Thus
there is only one new solution, with SO (4) symmetry. The potential of maximal
seven dimensional supergravity has two critical points [10], one with SO(5)
symmetry, corresponding to a compactifiction on the round S4 [15], and the other
with SO (4) symmetry. We identify the second critical point with our new solution
in (30). It would be interesting to see how the relative scales defined by (31), and the
corresponding relative scales in the usual S4 compactification, relate to the scales
of the cosmological constants of the SO (4) and SO (5) invariant vacua of the seven
dimensional gauged theory.

Next we apply our techniques to the compactification of eleven dimensional
supergravity to four dimensions. From (8) and (5) one finds that

2m

3 x 2 3

The same steps as before yield the solution

/-i 4 o^ r i2 \l/3. (\ j4_ p -2 ./vl/3
o — (Λ'Λ l — •?• s i n oc) . T — Mi \ i — T s i n oci ,

(33)
ρ = α 2(l — f sin 2 α)~ 1 / 6 sinα,

_ 1 . 2 2^— 8 2. n rfin^ 1 C\A\

Note the change of exponents in (33) in comparison to (30).
If gβy(y) is the metric on the round six-sphere, we obtain the solution of

reference [1], but, as we discussed before, we obtain a solution for any
6-dimensional compact Einstein space.

As another application of our method of obtaining solutions of supergravity
models we consider the chiral N = 2, D= 10 supergravity theory [12]. It ia well-
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known that the field equations admit a solution which is the direct product of a five
dimensional anti-de Sitter space-time and a round five sphere. Here we will
construct a solution of the form (1), with gβy(y) any 4-dimensional Einstein space
with negative Ricci scalar. The Einstein Eqs. (19) lead via (16) and (20) to the same
conditions as in (25), except that now D1=D2 = 5. Again there is a unique solution,
for the same values of Ni9 but the exponents mγ are now given by

m1 = m 3 =-wi 2 = i . (35)

The first Einstein Eq. in (9), with (14) and (18) yields

; Λ ? α s 1 0 ^ . (36)

The remaining Einstein equations are satisfied, provided that (29) also holds. This
leads to the solution

ρ = α 2 ( l-fs in 2 αΓ 1 / 4 s inα, (37)

The imposition of the condition (18) on the scale factors aί9 a2, and a3 yields

ί2m2λ2

2 = (2λ1)
Ί/2. (38)

It has been conjectured [16, 17] that the massless supermultiplet of the S5

compactification of the chiral N = 2 ten dimensional theory could be consistently
truncated to a maximal N = 8 gauged SO (6) supergravity theory in five dimen-
sions. If this is so then presumably the solution (37), with gβγ taken to be the metric
on the round 4-sphere, will correspond to an SO (5) invariant critical point of the
scalar potential.

Although we have found only one solution of the triplet of second order partial
differential equations, we expect that no further solutions exist which are smooth
over the whole internal space.

Finally we describe the relationship of our work to that of reference [1], and
show the motivation for our ansatz for ρ, σ, and τ.

The solution of [1] is defined as follows. Let eb

β(w) be the vielbein on the round
S7, and let e™(x) be the vielbein on the corresponding 4-dimensional anti-de Sitter
space of the SΊ Freund-Rubin compactification. Let η\w) be the Killing spinors on
S7 satisfying

ι(w) = 0, /=1, . . . ,8 . (39)
^ /

Introduce the quantities

, (40)
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where CIJKL is the SO (7) invariant, self-dual tensor of [8]. Let ξa denote the unit
vector ξjζhξ

h)~112. Then the new SO(7) invariant solution of [1] has vielbein

^(x,w) = zΓ1/2(w)e™(x), (41)

ea

β(w) = eb

βSba(w), (42)
where

ί ' 3 r 9 1-ϊ)ξJb}, (43)
2, (44)

(45)

(46)

and τ is a (constant) root of

99τ2 + 1 8 τ - l = 0 . (47)

Both roots produce the same metric.
1 o

First observe that ξβ = - — Dβξ. Moreover, ξ has a much simpler form in terms
JjfYlη

of conformal scalars. Let φi(i=l, ...,8) be the eight fc=l scalar modes of the
Laplacian on SΊ. These so-called conformal scalars satisfy a number of remarkable
identities [18], which follow directly from the fact that if one embeds SΊ in R8,one
can identify the φ{ with the cartesian coordinates x\ In particular we may
normalize φι by

φ*φ. = 1 (sum over i = 1, 8). (48)

One can also show that (on a unit S1)

Furthermore the Killing vectors may be written as

^ββ1, (50)

as well as in the form

If one views the η1 as transforming in the left-handed spinor representation of
SO (8), then the φι transform in the vector representation of SO (8). However, self-
dual tensors over left handed spinors are isomorphic as an SO (8) representation to
symmetric tensors over the vectors. Therefore

j (52)

where c is a constant depending upon normalization, and

,l,-7) (53)
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is the SO (7) invariant symmetric traceless tensor. Therefore, using (48) and (49) one
obtains:

ξ=( Σ Kβ

iJKβiJ-2KfKβiΛ (54)

= 12c[ l -^ 2 ] , (55)

where φ = φ8 = x8 is the eighth conformal scalar. In the polar coordinate system
used at the outset of this paper we identify x8 = cosα and hence ξ = l2csin2α.
Furthermore, it follows that

, (56)

and g has the form
2 ) 1 / 2 , (57)

where a and b are constants. The precise ansatz (21) and (22), with exponents

mi=m2 = 1/3, m3 = -1/6, follows directly from (41)-(47), (56), and (57). Observe
that Eqs. (41) and (46) coincide with the condition (18).

At last it seems that we are understanding the ansatz for the scalars in relating
massless sectors of the spherical compactifications to maximal supergravity
theories in lower dimensions. In addition, this understanding has led us to a
complete new class of solutions for any gβγ in an arbitrary Einstein metric with
negative cosmological constant.
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