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Abstract. We consider spaces of lattice gauge field configurations satisfying
gauge invariant regularity conditions, and intersections of these spaces with a
surface given by gauge fixing conditions. We prove that if these conditions are
chosen properly then configurations belonging to the intersection are small
and regular.

In this paper we continue our investigation of the renormalization group method
for lattice approximations of gauge field theories. A notion of regularity and spaces
of regular gauge field configurations have appeared already in a natural way in [ 3].
There the compositions of averaging operations were considered and we have
proved that they are regular (analytic) functions of the configurations U if the
following regularity conditions are satisfied

[U@p)—1l<aon*, n=L"* 0.1)

for o, sufficiently small and for plaquettes p contained in a subdomain Q CnZ*¢. We
refer the reader to [ 1, 3] for an explanation of notations and notions used here. We
will use also almost all the results of those papers.

The regularity conditions (0.1) are the most fundamental conditions we impose
on gauge field configurations. They are invariant with respect to gauge
transformations

U(x, x)—-Ux, x)=u(x)U(x, x)u"(x), 0.2)

so the space of configurations satisfying (0.1) is decomposed into a union of orbits
determined by the group of all gauge transformations.

In this paper we will consider more complicated regularity conditions, which
are gauge invariant also; but let us explain our problem and results on the example
0.1).

Our renormalization group procedure will be based on solutions of some
variational problems. To consider these problems we will have to fix gauge
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conditions, which means that we have to choose one element from each orbit, or
choose a surface intersecting each orbit at exactly one element. Of course there are
many such surfaces and we have to specify further our problem. We choose a
configuration U, satisfying (0.1) and we ask if there exists a surface passing
through the element U, and intersecting each orbit at an element sufficiently close
to U,. More precisely, this means that if U is an intersection of an orbit satisfying
(0.1) with the surface, then it satisfies the condition

UUgt=e"™,  |4]<0(ao), (0.3)

A is a Lie algebra valued configuration.

This problem has a solution, i.e. there exists a surface having the above
described property, but we have to introduce some further restrictions. An
example of such restrictions, appearing naturally in the variational problem, is
given by averaging operations

U=V on QW=0QnZ¢, 0.4)

where V is a fixed configuration on Q®, This changes somewhat the notion of an
orbit, because the conditions (0.4) are invariant with respect to gauge transfor-
mations u satisfying the restrictions u= 1 on Q®. Taking into account this change,
the remaining formulations are the same.

An example of the gauge fixing conditions, having the above property, is given
by the generalized Landau conditions investigated in [1, 2, 4]. In this paper we will
consider these conditions only.

Actually the regularity conditions and the results are much more complicated
and we refrain from the formulations in the introduction.

This paper is based on the definitions and the results of [1, 3, 4].

A. Regularity Conditions

Let us recall the definition of a covariant derivative on a lattice. For a function F
defined on a subset of the lattice T,, with values in complex N x N matrices, we
define

(DY, ,F) ) =n""(R(U(x,x+ne,)) F(x+ne,) —F(x)),
(DFF) () =n""(R(U(x,x—ne, ) F(x—ne,)— F(x)),

where U is an arbitrary gauge field configuration, and R(U)X =UXU ! for a
unitary matrix U and an arbitrary X. Let F be a function defined at plaquettes of a
subset of T;. Let us denote by p,,(x) a plaquette determined by the point x and
vectors e,, e,, u<v, ie., p,(x)=<{x,x+ne, x+ne,+ne, x+ne,y, and let
F,(x)=F(p,,(x)). We define

(DE*F) (x, x +7e,) = (DY F) (x) = EM (D F,) (x)— vgﬂ DFF ) (%) . (1.2)

(1.1)

Of course these definitions hold for an arbitrary lattice with an arbitrary scale
instead of #.
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To formulate the notion of regularity we have to describe at first a geometric
setting. We consider a sequence of domains (see also [2.I1, 4])

Q,292,22,>...02,, T, j=0,1,..,k, (1.3)
which satisfy the following conditions:
Q;=B/(QY), Q; is a sum of cubes of a size M, Ly,
(L'n)~ ' dist(€5, Q;,,)>RM, .

The number M, is a size of big blocks and was fixed in [4]. It is much bigger than
8o 1, where d, is a decay rate of propagators, and it depends on d and L only. We
assume that R is a sufficiently large positive integer (a power of L), so that all the
theorems on propagators in [2, 4] hold for RM . The sets Q; are identified with
sets of bonds, or sets of plaquettes, in the following way. If Q C T;, then we denote by

Q also the set of bonds |J st(x)={bonds bCT,: at least one end-point of b
xeQ

belongs to Q}. Similarly for the corresponding set of plaquettes. This convention
applies to an arbitrary lattice. Let us denote

(1.4)

Aj=Q§f’\Q}111, j=0,1,..,k—1, A4,=0Q¥, (1.5)
thus we have
k
Q= U Bi(4;), where B°A4,)=4,. (1.6)
=0

Let us notice that we admit the case where some domains Q; are equal to T,, for
example Q;=T, for j=0,1,...,1, ISk
Now we can introduce the following spaces of regular field configurations:
for a sequence (1.3) and a positive number o, we define U, ({€2;}, o) as a set of
all gauge field configurations U on T, satisfying the conditions

U@p)—1l<ool"2 for pe®;, j=0,1,...k, (1.7)
or |U(@p)—1l<agn*(in)~2 for pCQ;, (1.8)
(DIFOU) (B)| <aoL 2(Lim) = for be®,, j=0,1,...k. (19

We have denoted U(dp)=(0U)(p). These conditions may be written in many
equivalent ways, for example (1.7) may be replaced by

n *[1—RetrU@p)I<as(Lin)~*, peQ;. (1.10)

Of course it is enough to assume that (1.7), (1.9) hold for p, b€ B/(4), because if
these conditions hold for some j =1, then they hold for all j < I. These conditions are
invariant with respect to gauge transformations. It is obvious for (1.7), (1.8). To see
that (1.9) is invariant also let us notice that (0U") (p,,(x)) = R(u(x)) (0U) (p,,(x)),
and if a function F transforms as F*(x) = R(u(x)) F(x), then from (1.1) we get

(DE%, F*) () = R(u(x)) (DF*,F) (x) - (1.11)

This and (1.2) imply the invariance. Thus the space U, ({Q;}, o) is invariant with
respect to gauge transformations.
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Let us introduce further notations and definitions. We denote
k
B,= 4 ; (1.12)
j=0

(the same for the sets of bonds), and for an arbitrary configuration ¥V on B, we
define
B,(B,, V) is a set of all gauge field configurations U satisfying the conditions

U=V on 4A;, j=0,...k. (1.13)

Because (U™), =(U)i=u(b_) (U%),u~(b,) for bC TY, hence the set B (B,, V) is
invariant with respect to gauge transformations u satisfying the conditions

u(y)=1 for ye®,. (1.14)

They form a subgroup of the group of all gauge transformations and we are
interested in spaces of orbits of this subgroup.

B. Gauge (Fixing) Conditions

Generally speaking a gauge condition is a surface in a space of gauge field
configurations, intersecting each orbit at exactly one point. Usually such a surface
is given by equations F(U)=0.

There are many gauge conditions. An axial gauge is defined by the equations

for x;eA;,j=1,....k, weput U/'"NI . )=1 for x;_;eB(x),
UL, 5, )=1 for x;_,e€B(xj_y),..., (1.15)
U, )=1 for x,eB(x,),U(l}, ,)=1 for xeB(x,).
It is easy to see that these equations together with (1.14) for gauge transformations
determine uniquely an element in each orbit.

We will choose gauge conditions relative to some fixed configuration U,,. This
means that if we consider new variables U’ defined by

U=UU,, or U=UU;!, (1.16)

then the conditions are imposed on the variables U’, and the surfaces pass through
the element U . If we apply a gauge transformation u to U and if we demand that in
the above representation for U* the configuration U , is unchanged, then we get the
following transformation law for the configurations U”:

U™(x, x)=u(x) U'(x, x)R(Uo(x, x D" }(x"). 1.17)
If we are interested in a dependence on U, then we may consider another point of
view. We demand that U and U, are transformed in the usual way, and then we get
for *U’'=U"(UY)~!:
“U'(x,x)=Ru(x))U'(x,x"). (1.18)
Defining gauge conditions we will use the first point of view expressed in the
transformation law (1.17).
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Now let us define the axial gauge conditions relative to U,. They were
introduced in [3], (64-72) by the conditions:

for xo € B(x)), x;€ A4;, 1< j <k, we define a sequence of points xg, Xy, ..., X;_1,

x; by the conditions x, € B(x, ), n=0,1,...,j—1, and we put

(R'(l),x,.+1U~/n)([;c,.+1,xn)=b [T RO, ., N0=1. (1.19)

Xn+1 2 Xp

Let us recall that the average U” was defined in [3] as
Ur=UT )T . (1.20)

The conditions (1.19) determine uniquely an element in each orbit given by the
subgroup (1.14). We denote this gauge condition by Ax, (B, Uy).

Let us analyze it for k= 1. More exactly we want to understand implications of
(1.19) and (1.7). We have for a plaquette p=<{x, y,z, w)

U(dp)=(U'U,) (dp)
=U'(x, ) R(Uo(x, y)) U'(y,2) Uo(0p) R(Uo(x, W) U'(z, w) U'(w, x) , (1.21)
and let us denote
Oy, U) (0)=U'(x, y) R(Uo(x, y)) Uz, ) R(Uo(x, w)) U'(z, w) U'(w, x) . (1.22)

Let us introduce a set of bonds. For a bond ¢CTY we take a set of bonds
connecting the blocks B/(c_), B/(c,) and denote it by B’(c), thus

Bi(c)={bCT:b_eBi(c_),b, eBi(c,)}. (1.23)

Later we will need to consider a general situation which is described in the lemma

Lemma 1. Let V,,, V'V, satisfy the condition (1.7) for k=1 and L arbitrary, and let
RV, )=1 for xeBY),|VVo—Vol<ay; on QF. (1.24)

Then for o, o, small the configuration V' is also small, more precisely we have the
bound

V' —1|<4d0y+0o; on . (1.25)
We will prove the lemma. From (1.22) and the assumptions we have
0y, V") (P) = LI =|Vo(0p) — 1| +1(V'Vo) (9p) — 1] < 20,0 L 2. (1.26)

The conditions (R, V") (I}, ;) =1, xe B(y), imply V;=1 for bCI, ,. This and the
above estimate imply |V, —1|<(d—1)(L—1)2a,L"? for bCB(y) by the same
reasoning as in [3] (between (44) and (46)). For a plaquette p connecting two
neighboring blocks B(c_), B(c,) we take two bonds b’, b” Cdp, b’, b” € B(c) and
from (1.26) and the bounds on |V, — 1] for b’, b” belonging either to B(c_), or to
B(c,), we get |[R(Vo(b_,b"))Vy — Vy| <20L™ 2 +4(d—1)ag L™ ! <4doyL™*. Thus
IRVo(Iy,, s NVs— Vil <(@—1) (L—1)4daoL™ ' <4(d—1)da, for an arbitrary
bond b e B(c) and b, being the unique bond of ¢ belonging to B(c). The con-
dition |VV,—V,l=|V"—1|<a, implies |R(Vo([c_, bo 1)V, —1|<4(d—1)
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(L—1)LoyL™? 4o, <4(d—1)ay+ a4, hence finally we have the bound (1.25) for an
arbitrary bond b.

From this proof it follows that the result is local in the sense that the bound
(1.25) for a bond b depends on bounds (1.7), (1.24) on B(c_)UB(c..), if b belongs to
this set.

The bound (1.25) holds for arbitrary L, unfortunately for Llarge it is too weak.
We expect that choosing properly a gauge condition we can get V' =¢'L™ '4 with a
bound |4|£0(xg+ ;). The good gauge condition for which this is true is the
Landau gauge condition considered in [2, 4].

Let us recall the definition of this gauge, asit was givenin [2,4]. We consider the
subspace N(Q'(U,))={4: Q' (Uy)A=0} of the space L*(Q2,, g) of functions on Q,
with values in the Lie algebra g. We assume always that U, is a sufficiently regular
configuration, so that operators depending on U, are well defined and all
necessary properties hold for them. Later we will state precisely the assumptions.
An operator R(U,) is defined as an orthogonal projection in this real Hilbert
space, onto the subspace 4} N(Q'(U,)). The Landau gauge condition can be
defined formally on the whole space of gauge field configurations in terms of the
variables U’ by the equation

R(UO)D’Z,”;%IogUEO. (1.27)

This definition has a sense really only for configurations in a small neighborhood
of Uy, thus for A'= %log U’ sufficiently small.

We may formulate our problem in the form of the following statement: each
orbit in the space W,({€2;}, )N B(By, V) intersects the surface given by (1.27) at
exactly one point 4’ satisfying the bounds |4 < O(aeL™’) on Q;. Unfortunately,
such a statement may not be true. Having in view also the future applications to the
variational problem, we are interested in a slightly changed problem. The allowed
gauge transformations u are restricted by the conditions (1.14): u(y)=1, ye%B,.
These conditions are very hard to work with analytically and we have to replace
them by conditions imposed on some averages of u rather than on values of u at the
points of B,. We choose the averages which were described in detail in [3],
formulas (78)~(80), and denoted by R,u’. Let us notice that for u(x)=¢*™ and 1

small a linear part of the function %log(ﬁo—u’) (v) is equal to (Q}(U,)4) (»), and the

definition of the Landau gauge depends on these averaging operations. The
restrictions on gauge transformations are now given by the conditions
Row) ()=1,yeA4;,j=0,1, ..., k. The problem with these conditions is that they
do not agree with the group structure of the space of gauge transformations, that is
if u,,u, are two transformations satisfying these conditions, then generally the
product u,u, does not satisfy them. This implies that the notion of orbit is not well
defined and depends on an element U chosen to generate the set {U* '}. Let us
remark that we have changed the convention how to define an orbit. From now on
we will use inverse elements u~ !, in accordance with the definitions and formulas
of the paper [3]. A way out of this difficulty is to choose in some way an element U
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from each orbit defined by (1.14), that is to choose some preliminary gauge
condition, next to generate the set {U" '} for all u satisfying the conditions
Row/ =1, and finally to find an intersection of this set with the surface determined
by the Eq. (1.27). We would like to prove that this intersection is unique and that
the corresponding configuration A satisfies the bounds |A| <O(x,L™’) on Q;.

As the preliminary gauge condition we choose the axial gauge given by the Eq.
(1.19). Now we can formulate the problem precisely. Let us take an arbitrary U’
such that

U'Uye W, ({Q;}, 00) N By(By, V)N Ax(By, Uy) (1.28)

and let us consider the set {U™ '} for gauge transformations u satisfying the
conditions

Ro)(y)=1 for yed;, j=0,1,.. k. (1.29)

Our problem is to prove that there exists a gauge transformation u such that U™,
1 -1 . o

or rather A= —log U™, satisfies the Landau gauge condition (1.27) and the

bounds |4], V5, A| <0(ocoL‘f) on Q;. We would like to prove also that such a
gauge transformation is unique, i.e. the set {U™ "} intersects the part of the surface
(1.27) satisfying the above bounds at exactly one point.

The rest of this paper is devoted to a proof of this statement.

Let us make few remarks assuming that this statement is true. The unique
gauge transformations described in it define a mapping of the set (1.28) into the
regular part of the surface (1.27). Let us denote the image set of this mapping by Y,
and U" '=U,. The set ¥, is not contained in B,(B,, V) because the gauge
transformations u do not satisfy the necessary conditions (1.14). The configu-
rations U’ satisfy the equations U“=V(T{)"! on Aj, hence U, satisfies

(0= u(b-) (T])uRh pu™'(b1)=Vo(Th); ', be 4;. (1.30)

Let us notice that we do not assume that U, satisfies (1.13),1.e. that U, € B, (B, V),
hence the right-hand side in (1.30) generally is not equal to 1. We will assume only
that it is close to 1.

In [3] we have determined the gauge transformation u in terms of the
configuration U,. We refer the reader especially to the formulas (87), (99), (97), and
(105) of that paper. If both end-points b_, b, of a bond b belong to A;, then the
expression on the left-hand side of (1.30) is equal to (T%), by (92) of [3]. If abond b
crosses the boundary of 4, then one of the end-points belongs to 4;,e.g. b, € 4;,
and anotherto 4;_,,b_e€ A j—1- In this case the formulas (97), (99), and (87) of [3]
imply

(O =R~ U (0= V,(Td); "
where by the formula (105) of [3]

R_—_{;fbl_ﬁ{‘lzexp[i S L log(Ry U4 (0 x)}

xeB(b-)
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All sites of the contours I, belong to 4;_ 4, hence U}~ ! in the above formula is
equal to V(U4 1)~ L. Let us denote V(U})™*=V". We can write Eq. (1.30) as

(U)),=Vy=expiB,, if bCA;(i.e,b_,b,eA),
_. 1 _.
(Ui)b=eXp[—i 2 L"‘;log(Rb,‘b{ V)(Fb-,x)] Vs

xeB(b-)
=expiB,, if b_ed;_,,b,eA;, (1.31)
or )
—ilogﬁj=B on A;, j=0,1,..k,

where the configuration B is defined by the above equations. Thus we have
>, C{a set of configurations U=U,U,, Ue W, ({Q}}, ), U =™,
|4l < O(ao(Ln) ™), IV, Al < O(ao(Ly) %) on  Q;, Q(Uo,nA)=B,
R(Uy)DftEA=0}. (1.32)
Let us remark also that we have chosen the preliminary gauge condition Ax, not

only for the reason of simplicity and convenience, but for deeper reasons connected
with properties of the averaging operations UY.

C. Formulation of Theorems on Transformation from the Axial Gauge
to the Landau Gauge

At first let us formulate precisely the assumptions we have to make on the
configurations U,, U=U'U,. We assume that:

Uoe ({2}, 29), U, satisfies the regularity condition (3.35) in [4].

(1.33)
UU,e uk({Qj}: o) NAX (By, Uy), (1.34)
(UU,Y-Ull<a, on A;,  j=0,1,...,k. (1.35)

We need the second condition in (1.33) to apply all the results of [4] on
propagators with the background gauge field configuration U,. We will see later
that this condition is a consequence of the first one in (1.33), so eventually we will
drop it out of the assumptions. The condition (1.35) replaces the equalities for the
averages in the conditions (1.28). It is satisfied if V is close to U4, more precisely if
|V-U|<a,.

Now our problem is to construct a gauge transformation u satisfying the
equalities (1.29) and such that U, =U™"" satisfies the conditions

U,=e",|A|<B;(eo+0,) ()™, [V, Al < By(org + 1) (L) 72,
“AHI,B<BZ(ﬁO)(a0+a1)(Lj’7)_2_ﬂ9ﬁ§ﬂ0<19 on Qja j=0,1,..‘, k;

(1.36)

QiUo,nd)=B on 4;, j=0,1,....k, B is given by formula (1.31) with
V'=U",

|B]<2dLx, by the assumption (1.35), (1.37)

R(U,)DEA=0. (1.38)
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Of course the last condition is the most important constraint on 4 which assures
that the others are satisfied. It holds by the construction. Also the condition (1.37)
is basically of an algebraic character and it follows from the construction, as in
(1.30), (1.31). The only fact we need to write it this way is the representation of U,
and the first condition on A4 in (1.36). Thus (1.36) contains all the results we have to
prove about A, besides its existence. This condition describes fully regularity
properties of the first order derivatives. Such information is unavailable for the
second order derivatives, but we have the following bounds for the second order
operators acting on A:

IDFEDY Al 1AL, A< By (oo +0,) (Un) ™ on Q;, j=0,1,....k. (1.39)

Of course we want to prove that the constants B;, B,(f,) in (1.36), (1.39) are
absolute constants depending on d and L only, B,(,) on f, also. We expect that
we have to assume that «,+ o, is sufficiently small.
We can formulate now the main result of the paper.
Theorem 2. There exist constants By, B,(B,), ¢, such that for arbitrary Uy, U'U,
satisfying (1.33)—~(1.35) with aq+a, <c, there exists exactly one gauge transfor-
mation u satisfying (1.29) and such that the conditions (1.36)—(1.39) hold for the
configuration U, =U""",
We will be proving this theorem, and its reformulations, in the rest of this
paper.
Let us separate some aspects of the proof. It will be by induction with respect to
k and we will construct the configuration U, perturbatively, the perturbation
around a configuration constructed in a previous step. This method will not give us
good constants in (1.36), or (1.39), and we have to prove the bounds in (1.36), (1.39)
by some other method, assuming that we have constructed U, satisfying
(1.36)—(1.39) with worse constants. This raises the question of what are the best
constants in these bounds. This question may be answered independently of a
proof of Theorem 2.
Let us consider a somewhat more general situation. We assume that we have
configurations U,, U,U, satisfying the following conditions
Uo, U U e Wi ({2;}, 20), Uy
satisfies the additional regularity condition (3.35) in [4], (1.40)
Uy=e"™,|A|<ay(Ln)™" on &, (1.41)
R(Uy)D{EA=0,Q(Uy,nA)=B on A;, |B|<2dLa,, (1.42)
(i=0,1,...,k above). Thus we have apparently much weaker regularity now. We
will prove that in fact these conditions imply all the other conditions in (1.36),
(1.39), and we will find the constants B,, B,, and restrictions on o, o, o,. We start
investigating implications of (1.40).
We derive formulas and estimates which will have other applications in the

future, so we formulate them now in the most general way needed. We have from
(1.21), (1.22),

(U1U0) (0p)—1=[U(x, ) R(Uo(x, y)) Us(y, 2) — 11 [U(dp) — 1]
’ R(Uo(xa W)) U1(27 W) UI(W’ X)
+[Uo(0p) — 11 [R(Uo(x, W)U 1(z, W)U 1 (W, x) — 1]
+[Uo(0p)— 11+ [(0y,U1) (p)—11. (1.43)
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The first two terms on the right-hand side can be bounded by 4a,a0(L/) ~ 3> for p
CQ;. If we apply the derivative Dy, to dU U, then the derivative of these two
terms can be bounded by 8da,xy(Ln) ~ 3y*. Further we have

Let us denote by O, () an expression which can be estimated by «, i.e. |0 ()| Zo.
Thus we have

Dty,0U,Uo=DFi0U o + Dy, 0y, U1 + 0, (10doga, (L) ). (1.44)

Let us consider the second term on the right-hand side above. From the definition
(L.1), (1.2) we obtain that a value of this expression at a bond {x,x+7e,) € Q; is
equal to

(D¥iv,0u,U 1) (x, x +ne,) = (DFy (0y, U, — 1) (x, x +1e,)
= (D'lljg(anUl - 1)) (x’ x+ 7’]@“)
+ X 717 'R(U(x, x—1e,))

v<pu

“(R(U(x, x—=1e,)) — 1) (OpoU1) (pyu(x —1ne,)) = 1)

— X 77 'R(Uq(x, x—1ne,)) (R(U(x, x—ne,)) = 1) (Oy,U ) (Pu(x —1,)) = 1).
s (1.45)

We expand R(U,(x, x—ne,))— 1 in A. Because 9y, U; —1=0,(4o,(L'n) " 'n), so it
is enough to consider a term of the first order, a remainder is 0,(3[nA4l?)
=0,(3a3(L/n)~*n?). The term of the first order is i ad 4y, — ye,) = 01 (202 (Lin) ™ 'n).
Similarly, if we take this term and expand d;,,U, — 1, then it is enough to consider a

term of the first order only, a remainder is O, <% 112(6|A|(p))2>
=0,(8¢3(Lin)~*n?). The term of the first order is in*(D}, A) (p). This gives
(D¥v,0u,U1) (x, x +1e,) = (DY (0y, Uy — 1)) (x, x +ne,)
+1* X R(Uo(x, x—1e,)) ad 4x, x - ye(DF,A) (Pun(x —1e,))

v¥Eu

+0,(28de3(Lin) ~31?). (1.46)

Let us consider the first term on the right-hand side of the above equality. We
expand it in 4 up to the third order and we get

(00,02 (0)— 1= in(Df, ) (0)— $1°VaUoy A, )
+o,(3reaen), (1.47)

where V, is a polynomial of the second order in 4. Thus

43 :
Dy(9y, Uy — 1) =in*DiDy, A — 30D Va(Us, A) + 0, <? do3(Ln)~°n? > :

(1.48)
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We find easily the polynomial V,:
Va(Uo, A, 0p) = (A(x, y))* +2A(x, ) R(Uo(x, y) A(y. 2)
+2A(x, ) R(Uy(x, W) A(z, w)
+24(x, ) Aw, x) + (R(Uo(x, ) A(y, 2))*
+2R(Uo(x, y) Ay, 2) R(Uo(x, w)) A(z, W)
+2R(Uo(x, ) A(y, z) A(w, x)
+(R(Uq(x, W) A(z, w))?
+2R(Uy(x, w)) A(z, w) A(w, x) + (A(w, x))?
=*((D%,4) ()* + {[A(x, y), R(Uo(x, ) A, 2)]
+[A(x, y), R(Uo(x, w)) A(z, w)1+ [A(x, y), A(w, X)]
+[RUo(x, ) A(y, z), R(Uo(x, W) A(z, w)]
+[R(Uo(x, ) Ay, 2), A(w, x)]
+[RUo(x, W) A(z, w), A(w, x)]} . (1.49)
This equality holds for arbitrary A in the complexified Lie algebra, but if A4 is
Hermitian, then the first expression above is a real part of V,, and the second is an
imaginary part of V,, multiplied by i. Let p=p,,(x), then the expressionin {...} can
be written as
{...}=2[A4,(x), 4,()]+2n[A,(x),(D,A4,) (x)]
+21[(D,4,) (%), A,(x)]—n[4,(x),(D,4,) (x)]
—n[(D,4,) (x), 4,)]1=n*[(D,4,) (x),(D,4,) (¥)],  (1.50)

where D, denotes the derivative D, ,. From these equalities we see that all the
terms in V,, except the first term on the right-hand side above, have some powers of
n. If we apply DJ* to V,, we use these factors to cancel 7 ™' and to replace D}¥ by

Dg*, which is a very simple bounded operator. Thus

DEV,(Uy, A)= —2 i D¥[A4,, A1+ 0,(48d|A]|,Al) . (1.51)
v=1
Further
(DY [A4, A,D) (x)=n[(D}A4,) (x), (D¥A4,) ()] + [(DFA,) (x), 4,(x)]
+[A4,(x), (DT 4,) ()], (1.52)

hence, taking into account the identity (D}A)(x)= —R(Uy(x—ne,, x))(D,A)
(x—ne,), we get

3°DFEVA(Uo, A)=0,(32d|4] [V, Aln?) = 0,(32da,(Ln) ™ [V, Aln?) . (1.53)
Gathering together the equalities and the estimates obtained until now we get
Dy,0U,Uo=DE0U o+ in> Dy Dy, A+ 0,(36day (L)~ |V, Aln?)
+0,(50de3(Lin) ~*n*) + 0,(10daee, (i) “3n*) on Q;. (1.54)
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This is the basic estimate. It will be applied in several different situations in the
future. Let us recall that it was derived under the assumption (0.1) for U, and (1.41)
for U,.

We will apply it to get regularity results for A4, assuming (1.40)(1.42). From
(1.40) the term on the left-hand side and the first term on the right-hand side can be
estimated by ao(L/) ~3n?. This implies that

DDy A=J,
[J| < (Qotg + 36da,(Lin)* |V, Al + 50do3 + 10deg0,) (L) ~3 (1.55)
or

|J|( 3= 20‘0 + 36(10(2 | V[;IOA|( 2) + 50d0€2 + IOd(XoO(z .
where the norms |- | ,, were introduced in [4]. For the reader’s convenience let us
recall the definition: |4],, = sup sup (L'n)~*|Al.
The configuration 4 satlsﬁes (1 42) also. Proposition 4 from [3] implies that
Qo nA)=LnQ;A+ C{LnA), |C{LnA)| £ C,|UnAP < Cya3, (1.56)

hence I'nQ;A=B,, B,=B—C,LinA) on A;, |B|<2dLa, + C,a3. We make the
translation A=A, + H(U,)B,, where the operator H(U,) was defined in [4], and
we get the equations

DDy, Ay =J — DYDY, H(Uo) B, , L5
0;4,=0 on 4;, R(Uy)DyA;=0.
They imply finally
A=G(U,)J—-G(U,) DDy H(U,)B, +H(U,) B,
=G(Uo)J +G(U) T 01 4,(Lin) *By, (1.58)
where the operator G(U,) was introduced and investigated in [4]. Let us recall
only the definition:

G(Uo)= <DE’J*;D?;0 b R(Uo) DE;+ ZQ -(L’??)"ZQ;)"1

Theorem 3.3 of [4] implies the bounds:
14l (= 1) IV, Al(— 2, IDTEDT Al - 3, |AT,Al - 3y = Bo(l |- 3)+ [By])
< Bo(20ty + 36dat, |V Al - 5)+ 50de3 + 10dogot, +2d Loy + Cya3) . (1.59)

Let us take this bound for |V} A| -, on the left-hand side, and let us assume that
By36da, <1/2. This gives us a bound for [V} A| - ,), equal to the right-hand side
above without this term and multiplied by 2. Using this bound we get

[Al (= 1) 1WAl - 205 IDTEDG Al (- 35 14T Al (- 3y
< Bo(4ay+4d Lo, + 202 +20dogo, +2C,03) . (1.60)
Now we assume further that

202 +20dog0, +2C,03 S+ 0y (1.61)
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This and the previous inequality give finally
|| < 5dLBy(ato +0t1) (L) ™, Vi, Al < SdLBo(0tg +ty) (Ln)~2,
[[All1,5<S5dLBo(B) (0o + 1) (Ln)~27*, IDEEDY,AlL 148, Al
<5dLBy(ao+a) (L)% on Q. (1.62)
Let us formulate the results in

Proposition 3. If U,, U,U, satisfy (1.40)-(1.42) with «,, oy, o, bounded by a
constant depending on d and L only, and o, satisfies the additional restriction (1.61),
then U, satisfies (1.36)—(1.39) with B, =5dLB,, B,(f,)=5dLB,(f,), where B,
By (B,) are the corresponding norms of the operators G(U,), H(U,), and depend on d
and L only, By(B,) on B, also.

This proposition explains how the constants B;, B, may be chosen. Let us
make some comments on the restriction (1.61). In the future we will get a
configuration A satisfying (1.41) with o, = B} (¢ + ;) = C1B; (g + ;). The restr-
iction follows from the bounds

20do,000 + 205 4+ 2C,02 < (20dB, C} + 2B2C2 +2C,B2C?) (g + 001) > Sog + 01y,
(1.63)
hence from
(20dB;C} +2(14+C,)BiC?) (0o +a) 1. (1.64)

This is a restriction on «,+0o, depending on d, L, and C}, and in the future
considerations we will have to make sure that C; depends on d and L only.
We will prove Theorem 2 by induction. To use the inductive assumptions easily
we have to reformulate the conditions (1.35). The first two conditions (1.33), (1.34)
have the property that they hold for k— 1, if they hold for k. We will replace (1.35)
by an equivalent condition which has this property also. By Proposition 2 of [3]
the bounds |0U — 1| <ayn? imply 007 — 1| <aol?n*+2C (0o [*n?)* < 20, [*n?
j=0,1,...,k for o, small. Let us take j=k—1 and let us apply Lemma 1 to
VO—U" T , VVo=(UTUy) '=U*1U%" 1. Of course all the assumptions are
satisfied and we obtain V' —1|=]0*" 1 1|<8dzoc0+oz1 We apply again the
Lemma 1 to V,=U%"2, V'V,=U%*"20%2 and the constant a, replaced by
8d%uy+ a4, and we obtain IU”‘ 2 1[<8d2a L™ 2+48d%uy+0o,. Continuing these
arguments we get |UY—1|<8d%a L 2* IV | +8d%a,L 2 +8d%ay+0,

<8d> 5 +oy <11d%ay+a,. Thus the conditions (1.33)1.35) imply

1
0601 L
TTo) — Tl =|07—1|<11d%ao+a; on QY. (1.65)

We will assume that the above bounds hold instead of (1.35). For simplicity let us
write o, instead of the right-hand side above, so we assume that

(TT)-Uhl=107-1|<e; on QFV, j=0,1,...k. (1.66)

Now we are ready to give an inductive proof of the following
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Theorem 4. There exists a constant ¢, such that for arbitrary U,, U'U, satisfying
(1.33), (1.34), (1.66) with g+ o, < ¢, there exists exactly one gauge transformation
u satisfying (1.29) and such that the conditions (1.37), (1.38), (1.62) hold for the
configuration U, =U""".

Of course this theorem implies Theorem 2. Proposition 3 implies that it is
enough to prove (1.37), (1.38) and

|4] < B} (o +2,) ()™ on Q, B;=C}5B,, (1.67)

with an absolute constant C7, i.e. a constant depending on d and L only. In the rest
of this paper we will be occupied with a proof of these conditions.

A proof of the first step, for k=1, will be included in a proof of the general step.
Thus let us assume that Theorem 4 holds for some k — 1 and we will prove it for k.
Let us take configurations U, U'U , satisfying the conditions (1.33), (1.34), (1.66). It
was already noticed that they imply the same conditions for k—1 (we do not
consider the set €,). Applying the inductive hypothesis we get a gauge transfor-
mation u, such that

(RouY(y)=1 for yed;, j=0,1,...,k—2, and

for yed,_uB(4,), j=k—1, (1.68)
U,=U"" =l =g |4 <B,(0g+a,)(Lin) 1,
V3 Al<By(oo+0,) ()% on Q;, j=0,1,...,k—1. (1.69)

The other conditions in (1.37), (1.38), and (1.62) hold also, but we will not need
them. It is clear from (1.69) that we have to improve the bounds on the domain Q,.

Let us consider the gauge transformation u,. From (64)87) of [3] it follows
that u, is determined uniquely in terms of U and is given by (106). From (105) and
(106) we have for x € B(A)),

) -ll= Z (l(ROan D=1+IRS ., 0D (I, ) — 1)
]—-1

Z max
=0 ¥€B(Xn+1)

Using (130) and (1.69) we obtain

log(Ro s 0D (G| - (1.70)

1 _ _
1og(Ro, ., UD(LL,, o)) S1u(Uo, n AL, )

+0((1Qu(Uos I, )?) <2By(oo+ay) L' IdL
+0((2B, (0o + ) [*7dL)?) < 4dB,(o0g + ot ) 7Y (1.71)

for oy + o, sufficiently small, hence
|u1(x)—1|<8dB1(oc0+oc1) ! I 1 S16dB (0 +a), x€Q4. (1.72)

The same argument can be applied to the averages R,u}, and we get
(Rout) (%) =11 <16dBy (o +1), X, € Q. (1.73)
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From (108) and (1.71) we obtain also
(Rou1) ™" (X 1) (RY x,,, Rotg) (x,) — 1| <4dB; (oo +a ) L1 (1.74)

for x,€B(x,+1), X,+1€B " YA, n=0,...,j—1, j=1,...,k—1 (we take
A1 VUB(4,) as A, —y).

We will use only the properties (1.69), (1.73), (1.74) of the configurations u,, U,
in the future. They are satisfied in the case k=1 also, if we take u; =1, U'=U,,
because then by Lemma 1 we have |U; — 1| <4d?0, +«, and U, =4 =€l 4 with
A satisfying the bounds (1.69), at least for B, not too small, e.g. for B, satisfying
5dLB,=8d?. The conditions (1.73), (1.74) are important because we have analyzed
the averaging operations for gauge transformations in [3] assuming that they
satisfy these conditions. We will use the results of that paper.

The gauge transformation u; transforms the configuration U’ into the
configuration U, which is sufficiently regular and close to 1. We want to find
another gauge transformation u’ which transforms U into a configuration U% ™"
satisfying the conditions (1.37), (1.38), (1.67) and which satisfies the conditions
Row'u,’=1on A;. The composition u=u'u, of these two gauge transformations is
the transformation we are looking for. The conditions which have to be satisfied
for u’lead to restrictions on u’, e.g. u” has to be a small configuration also, and they
lead to equations on u’. We will analyze these equations and we will prove that
under proper conditions they have a unique solution.

D. Equations for the Gauge Transformation u»’

We fix a configuration U, and we omit it in formulas below, for example we write D
instead of DY, . We are looking for a configuration u’ such that UY " satisfies the
conditions (1.37), (1.38), (1.62). In particular (1.62) and (1.69) imply

Wb )Ro (b )= 1S (b-)U, 4Ry (b ) —1]
+w b ) Uy, — DR pt'(b )| <2B; (g +a) (L) "
on Q;, j=1,..,k—1. (1.75)

Reasoning as in (1.70)«1.72) we have |uu;—1|<16dB,(0y+2,). From the
inequality (1.72) for u, we get

' — 1)< 32dB,(ag +0.,). (1.76)

The estimates (1.75), (1.76) imply that u’ satisfies the regularity conditions (176),
(177)[3] on Q;C T}, - ; with oty = 32d B (o + ;). The estimates (1.73), (1.74) together
with the condition Rouj =1 on A; imply that u, satisfies (166), (167) [3] on B/(4,)
C Ty, -5 with a3 = 16dB, (¢ + ), thus for o, + o, sufficiently small the assumptions
of Proposition 10 are satisfied and we have the representation (213) and the bounds
(214) [3].

We have to construct the configuration #’, so we have to change somewhat our
point of view. The above estimates show that it is natural to assume the regularity
conditions (176), (177) on Q;C T - ;, with some constant a, to be determined later.
Here it is more convenient to work with regularity conditions of the type (207) [3].
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Thus we consider the set of configurations u’= e with 1 satisfying
|Al <oy, (DA) (B)| <oy (Lip)~' for beQ;, j=0,1,...,k—1, (1.77)

where «, is sufficiently small, but otherwise arbitrary (i.e., not necessarily given by
oy =32dB, (o4 + ;). These conditions imply the regularity conditions (176), (177)
on Q;CT,-;, with 4o, instead of o,.

The configuration u, is fixed and determined by U, hence we keep the same
meaning of a5 as before (i.e. a3 =16dB, (2 + ). The transformation u'u; has to
satisfy the conditions (1.29), and u, satisfies (1.68). Of course (Rou;* 1) (x)=1 for
x € B(A,) implies (Ryu,*) (y)=1 for y € A,, hence u, satisfies the conditions (1.29)
and we may write these conditions for u'u, in the following way

i=Ralu(Rouy) =1 on 4;, j=0,1,...k, (1.78)

or equivalently as
Q'(uy,A)=0 on B, /1=%logu’, (1.79)
where
Q/(”pla)’):Q;’(“pla)’) fOf yG/le%k.

We get a second equation for A using (1.38):

1 .
RD* —logU% '=0. (1.80)
n
We have
(UL )=t/ " (b)) U, pRo yu/ (b, ) =R 1 ED A0 =120 giRo0.230+)
— MR 1B Ap p—iAb-) Hikb-)+in(DA)(b) , (1.81)

and using the formulas (32), (36)(41) [3] we obtain
(UY 1), = eMRW = Hb-)4s gingliada ) (DA ®)+ in?F1(Ab-). DA ®) (1.82)

where the Lie algebra valued function &, satisfies the bound

I§1(A(b-), (DA) (b)) = O(DI(DD) (B - (1.83)

We assume of course that o, is sufficiently small. Using (28) and (31) [3], we get

1 o1 _
alog(U'I )o=R@ ' (b_)) 4y +g(iad,,_)) (DA) (b) +1F2(A(b_), (DA) (b), 4y),
(1.84)
where

1F2(A(b-), (D7) (b), Ap)| = O(1) |4, [(DA) (b)) - (1.85)
Now we apply the derivative D* to the expression on the right-hand side of (1.84).

nD* is a bounded operator, hence D*y{, satisfies the bound (1.85). The operators
R~ '(b_))=e""*%e-rand g(iad,, ) are given by power series in ad,, . Let us
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consider for example a term (ad,_,)"4,,

77D7: (adz(x))" A#(x) =R(U(x, x— ﬂeu)) (adl.(x— neu))nAu(x - neu) - (ade))"Aﬂ(x)
= (adR(Uo(x, x—neu)) A(x— ne,,‘))’l R(Uo(x’ X— neu)) Au(x - ’79,;)

—(ad ;)" 4,(x)
= ad(D,’:).) ®t adx(x))n (”I(D;’f Au) () + A,(x))
—(ad ;)" 4,(%), (1.86)
hence
D;f (adl(x))nAu(x) = (ad).(x))n(D:‘Au) (X) + P,,(/l(X), D:/,{(x)’ Au(x)9 Au(-x - r[eu)) s
(1.87)
and

<D* i—lﬂ—log Uy~ ‘> (x)=e" 242 (D* 4) (x) +g(iad ;) (D*DA) (x) + F3(A(x), D4, 4),
(1.88)
where &5 depends on (D2) (b), A, for b e st(x) and satisfies
1&3(4(x), DA, )| = O(1)|DA| |4]. (1.89)
Equations (1.79), (1.80) can be written as
Rg(iad,)D*DA+Re ™~ 292D* 4 4 RF;(4, DA, A)=0,
Q'(uy, 2)=0.

The function Q’(u,, 4) is almost equal to Q’4, the linear averaging operator used in
the definition of the operator R, the error is of second order in a5, o, If it was equal
to Q’A, then D*DA= 44 would belong to the subspace R=AN(Q") and we would
have

(1.90)

Rg(iad,) 4).=RA\+ O(ay) Ad=(4+Q*aQ") )+ O(a) 4.

Thus the main linear part in 4 of the left-hand side of (1.90) would be given by the
invertible operator, the remaining terms being small. We will reduce the problem
(1.90) to such a situation by a change of variables. We want to find a
transformation of variables A which linearizes the function Q’(u,, 4), more exactly
transforms it into the function Q’A. This transformation has to be applied to Egs.
(1.90) also, hence it has to be sufficiently regular. Of course such a problem is highly
indeterminate because a number of variables involved is much bigger than a
number of conditions. In the next section we will find one solution of this problem.
Let us introduce the operators

H'=G?*Q*(QG*Q*™ ', G=(4+0Q%*aQ)'. (1.91)

They were investigated in [4], and the following inequality can be obtained from
the results of this paper:

IH'X) ()L, [(VH'X) ()| < Bo[1, (L)~ '1IX| for xeQ, (1.92)
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where
HX)(x)= > (U'n)'H'(x,y)X(),

V'€Bx

and Bj is an absolute constant (depending on d and L only).

In the next section we will prove that for o, o, sufficiently small there exists a
function D’(u,, A) such that the change of variables A—A— H’D’(u,, A) transforms
the function Q’(u,, A) into Q’A. The function D’(u,, A) is analytic in A, defined on a
set of A satisfying (1.77) with 1/2 o, instead of «,, and is bounded by C5 (05 + o) 4,

1
and also by 5g. % This change of variables applied to Egs. (1.90) gives the
0
following equations
Rg(iadl—H’D’(ul, }.))A (A—H'D'(uy, A)) —Rexp(— iadl—H’D‘(u;,}.))D*A
_R;}E&(i _H/D/(ul’ /1)’ DJ'_DH/DI(ula j')5 A) =0 B

Q'A=0. (1.93)
The first term in the first equation can be written as
[I+R[g(iad; - gp,») —11R]44, (1.94)

because RAA= 44 for 4 satisfying 9’4 =0. For o, small the second operator above
has a small norm. Let us recall that from Theorems 3.1, 3.2 of [4] it follows that
|Rf| < By|f], hence the operator R[...] R has a L* norm bounded by O(a,) B¢. We
assume that a, is so small that O(e,) B <%. Then the operator in the square
bracket in (1.94) is invertible. Multiplying Eq. (1.93) by an inverse operator we
obtain the equations

AA—RD*A—R%, (4, D1, A,D*A)=0, Qi=0. (1.95)

Now we will investigate properties of the function R{,. Let us denote by V the
operator g(...)—1 in the internal bracket [...] in (1.94). It is a very simple local
operator of the form (V) (x) = V(x) f (x), where V(x) is a linear operator on the Lie
algebra g, satisfying the bound |V|< 0(«,). The operator in (1.94) acting on 44 is
equal to I+ RVR and its inverse is given by the Neumann series

(I+RVR) '=I+ ﬁ (=D"(RVR)"=I+ i (=D)"R(VR)". (1.96)

Let us consider the term with the function &5 in Eq. (1.93). Using the inequality
(1.89) we can bound a value of this function at a point x € Q; by

0(1) max |(DA) (b) — (DH'D(uy, 4)) (b)] | 4p] < O(V) ety (L) ™" By (oo +01) () ™"
=0(1)B (oo + oty )og(Ln) ™. (1.97)

Thus it is a function with a bounded norm |- |,
The operators R and V are bounded in this norm, and we have

IRfl-=Bolfl-25  Wl-2=00@)|f|-2- (1.98)
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This and (1.96) implies that the operator (I+ RV R) ™! applied to the last term in
(1.93) gives a term bounded by O(1) B (cto+ ;) oty(L/y) ~* on Q;. We get the same
bound for the term with D* A4 (but with RD* A4 subtracted), and with AH'D"(u, A).
Thus we have the bound

IR§ (4, DA, A, D*A)| < C,By (g +0y) o, (L) ™% on  Q; (1.99)
for j<k.
Equations (1.95) can be changed into the equivalent equation
A=G'RD*A+G'RE,(4,DA, A, D*A). (1.100)

If 4 is a solution of this equation, then A satisfies both Egs. (1.95) because
Q'GR=Q'G(I-GQ*(Q'G?*Q*)~1Q'G)=0. Of course (1.95) imply (1.100). A
solution of this equation may be interpreted as a fixed point of the transformation
given by the right-hand side of the equation. Let us denote it by &(1). We will prove
that for o,y + o, sufficiently small and for o, chosen properly there exists exactly one
fixed point of .

At first we will find domains in A which are invariant under the transformation
&. One of the results of [4], Theorem 3.1, tells us that G’ is a bounded operator
from a space with the norm |- | _ ,, into a space with the norm | - | for functions, and
the norm |- |_,, for their first derivatives. Thus we have

[F(DI=BoB1(og +01) + BoCoBy (0 + 0ty
IDF(A) = (BoB1 (oo +1) +BoCyB (oo + ) ot) () ™' on Q;,
if A belongs to the space
{A:|Al <Py, DA< Poy(ip)~" on Q;, j=0,1,...,k—1}, B=3,

(1.101)

or simply (AL DA~ 1, < Bta) (1.102)

The function § is obviously an analytic function in A and we consider
configurations A with values in the complexified algebra. The function § maps the
domain (1.102) into itself if Cjo, <1 and

Bo(1+ Cho4) By (oo +0) 2B By (orp +0tp) < Py
hence if
Pog . (1.103)

0y Koo =

< _1
=c,’ 2B, B,

Now we will prove that for «, sufficiently small the transformation is
contractive. We have

&(41) —F(12) = G'(RE4(41, DAy, A, D*A) — R4 (42, DAy, A, D* A))

1
G| dt%R&(al +(1=1)A,tDA, +(1—£)D1,, A, D*A)
0

1
=G| dzj—rR&(tzl +(1 =4y +1(A; — 4,), tDA,
0

+(1—0) DA, +t(DA;—D1,), A, D*A)|,_, . (1.104)
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Let us take A, 4, from the domain (1.102) with f=% and let us apply the Cauchy
formula for the derivative of the analytic function in 7 above. We have

B~ B0 =G' dt5 . | SREA(+(1=0ds 4704 1D,

2
of=rT
+(1—=1t)DA,+1(DA,—DA,), A, D*A) (1.105)

with r=(4max{|A; —4,|, |DA;—DA,|_)}) 'oy. The argument A, +(1—1)4,
+1(4; —4,) belongs to the domain (1.102) with =1, and we use the inequality
(1.99). We get

(A1) = &A1, ID(F (A1) — F(A) (1)
S BLCyBy (o +0y) 4max{|i; —4,|, IDA; — DA, - 1} (1.106)

and by (1.103)
4C,B,B; (o +01) S2C,foy =3Ch0, =3 for f=7%.

Thus the transformation § maps the domain (1.102) with = % into itself and is
contractive if the inequality (1.103) holds with f=%. The contraction mapping
theorem implies that there exists a unique fixed point of this transformation in the
considered domain. To get a best uniqueness result we have to take a largest
possible a,. It isindependent of &, + ;. To get best bounds on the solution we have
to take a smallest possible «,, hence o, =8BgB (o, + ), and then we have to
assume that o+ o, is so small that all the conditions on a4+, «, are satisfied.

The solution A4 of Eq. (1.100) determines the configuration
w=exp[i(A—H'D'(u,,2))] we are looking for. Let us formulate the obtained
results in the following

Proposition 5. There exist positive constants c,, ¢5, depending on d and L only, such
that for an arbitrary configuration U satisfying (1.69), and for the configuration u,
determined by U, and satisfying (1.68), (1.73), (1.74), if aq+o, =c,, then there
exists a configuration u' = e** satisfying the equations

1 -1 BT i .
RD*ElogU’{ =0, Rou'u,’=1 on A,j=0,1,...,k (1.107)

and the bounds
|Al, IDA] - 1) <8BoB; (09 +ty) . (1.108)
Such a configuration u’ is unique in the domain
[Al, IDA] -1y <c3. (1.109)

The part of this proposition concerning the existence of u’ was proved
completely. The uniqueness follows from the fact that the image of a set {4:]4],
IDA|(—1)<%,} by the transformation A—A—H’D’(uy, A) contains the set {1":|2’],
IDA'| - 1)< %4 for o, sufficiently small. This follows from results of the next section.

Now let us consider implications of the proposition concerning the inductive
proof of the Theorem 4. It gives us a gauge transformation u=uu; such that the
conditions (1.29), (1.37), (1.38) are satisfied. This follows from the inductive
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construction of U, and from (1.107). The bounds (1.108) and the representation
(1.84) imply

= |4yl +1gGad,g, ) (D) (D) + O(1)nI(DA) (b)] |4yl

'%Mg(v';"‘).,
<21y +21(DA) (b)) < 2B, (o0 + ) (L)~
+16BgB (0 +0q) (Ljn)_1
—(2+16By)By(ao+0) ()" on Q,j=0,1,....k—1,

(1.110)
hence

<(2+16By) LB (ot + ;) (L) ~*

1 oy

.| u

li’? og(UT ),
=CiBy(ao+a)(Un)~" on ,j=0,1,....k, (1.111)

where C] is an absolute constant depending on d and L only. Thus all the
assumptions of Proposition 3 are satisfied and for «,+ o, sufficiently small it
implies Theorem 4, except the uniqueness statement.

To prove the uniqueness let us assume that there are two transformations u, u,
satisfying the conditions of the Theorem 4. Then we have two configurations
U,=U"",U,=U"",U,=e"1, U, =e"2 They satisfy all the conditions of the
theorem, hence A, satisfies (1.37), (1.38), and both configurations 4,, 4, satisfy the
bounds (1.62). This implies that u’=u,u; * satisfies the regularity conditions (1.73),
(1.74) with k instead of k—1 and with a worse constant. This follows from
Proposition 8 of [3]. We have

wWu,=u,, hence Rou;’=1 on 4;, j=0,1,...k, U4 '=U,,
(1.112)
thus u’ is a solution of the problem described in Proposition 5. For aq+a;
sufficiently small the assumptions of this proposition are satisfied and we have the
uniqueness property. In the considered case a configuration identically equal to 1
is a solution also, because U, satisfies the same conditions as U,. The uniqueness

implies #’'=1, or u; =u,. Thus we have completed the proof of Theorem 4, and
Theorem 2.

E. A Construction of the Linearizing Transformation

Let us consider the function Q’(u,, ). The configuration u, is fixed and we omit u,
in the notations below. We want to construct a function D’(4) for a5, a, sufficiently
small, whose values are configurations X : B, —g, such that the transformation

AN=A—H'D(A) (1.113)
changes the function Q’(1) into the linear function Q’A:

Q) =0 CG—HD)=0'A. (1.114)
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Using the equality (213) [3] the above equation can be written in the following
form:

Q'A—QHD(A)+C(A—-HD(A)=0Q'A, (1.115)
hence
—D'(A)+C(A—H'D'(A))=0. (1.116)
The function D(4) is a solution of the equation
C(A-HX)=X, (1.117)

or a fixed point of the transformation
X->C(A—HX). (1.118)

The configurations u,, A are treated as parameters and a solution of Eq. (1.117)
depends on them.
At first we will find a set of functions X which is transformed into itself by the
transformation (1.118). Let us assume that
Al <30y, IDA<Zay(Lm)~! on @, |X|<

J

1
This implies
A—H'X|<oy,, |DA—HX)|<ay(/n)~* on &, (L.120)

J

and by the inequality (214) we have
|C’'(A—H'X)| < C5(03+0ag)0ty, (1.121)

where the constant O(1) in (214) [3] was denoted by C5. The transformation
(1.118) maps the set (1.119) of X’s into itself if

1

Chog+ay)o, < or o;+o,S—r.
2( 3 4) 4 = 3 4_2B6C/2

25,

We may admit configurations 4, X with values in the complexified algebra g° and
all the above equations and inequalities are valid also.

We will prove that the mapping (1.118) is a contraction on the set (1.119) for a5,
o, sufficiently small. We have

C(A—HX,)—CU—HX,)= (jl)dt% CA—H(tX,+(1—-1)X,))
- i dt <% C'(—H (X, +(1—0)X,), H(X, —X2)> . (1.122)

where the functional derivative ;%C’(/l) is defined as the linear mapping

é d _,
<EIC(/1),AO>_EC(HMONFO. (1.123)



Gauge Fixing on a Lattice 97

Using the analyticity properties of C'(A), the derivative above can be written as
iC’(/l) A _ L | driC’(/1+rl ) (1.124)
o4 0 T 2mi =, T2 o '
Taking r=(2max {|A,|, |[DAol}) ™ 'a,, we get the estimate

0 ~

Applying it to the expression (1.122) we have
IC(A—H'X,)—C(A—H'X,)| = C; 2B (013 + ) | Xy — X5,

= Gy 2max{|4ol, DAol} (a3 +ty) - (1.125)

hence the mapping (1.118) is contractive if e.g. o5 If the last

S—.
TS BC,
. 1 .
condition is satisfied, then the mapping transforms the set { (X< ﬁ““} into
0

itself and is contractive on this set. Thus by the contraction mapping theorem there
exists exactly one solution of Eq. (1.117). This solution is an analytic function of A
defined on the set of 4 satisfying (1.119). We take D’(4) equal to this solution. From
Eq. (1.116) we can get much better bounds on it:

ID(A)|=|C(A—HD'(A)) < Coors +g) 04 -

They imply in particular that the mapping (1.113) transforms the set {1: || < Ty,
IDA| < $ay(L/n) ™! on ©;} onto a set containing {A’: |1'| < o, |DA| < Fo (/) ! on
Q;} for a3, oy sufficiently small.

F. Removal of the Additional Regularity Assumption

We will prove that the additional regularity assumption (3.35) in (1.33) is a
consequence of the fundamental assumption U,e,({Q;},a,), thus of the
regularity conditions (1.7)~1.9). In fact we will prove a more general, and much
more precise, theorem which will have other important applications in subsequent
papers.

At first let us notice that if oy +a; <c, and

Uoe W ({Q;},00), U —1| <0ty on  A;, j=0,1,....k, (1.126)
then Theorem 2 implies that there exists a gauge transformation u such that
Us "=e", |A], 7" A| < By(oo+ o) [(E) "L (Lp)~2] on Q, j=0,1,....k.
(1.127)

We have to transform U, into a configuration satisfying the axial gauge conditions
(1.15),1.e. we get a configuration belonging to Ax,(B,, 1). It is achieved by applying
a gauge transformation u, satisfying the conditions uy(y)=1 for y € B,, hence the
configuration U%o" satisfies (1.126). Then we apply Theorem 2 to the configu-
rations U%°’, 1 in the place of U'U,, U,, and we get (1.127). The configuration
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identically equal to 1 satisfies, of course, all possible regularity conditions. Let us
notice that the gradient V"4 in (1.127) is the ordinary finite difference gradient. Of
course (1.127) implies the regularity condition (3.35). We will apply this remark to
specially chosen {Q;}.

Now let us take a cube [ C Q, for which we want to prove the condition (3.35).
A size of this cube depends on an index j indicating a scale we are interested in. We
assume that the cube [ is contained in Q;, and not in Q; ;. Further, we assume
that it is a union of cubes of the size R, M, Ly, where R, M, are smallest integers
for which all the theorems of the papers [2, 4] are valid. To prove condition (3.35) it
is enough to take one such cube. Having in view future applications we take a size
of O equal to ML/, where M is a multiple of R, M. Without a loss of generality
we can assume also that j=k, because we can drop out the domains Q;,,j">j, from
our assumptions, and change a scale. Then we have to admit the value k=0. In this
case the reasoning is much simpler and will be covered by our analysis of a general
case, so we can assume that k>1.

Let us take a sequence of cubes U, [y, ..., Oy -, Uy, U, such that 0 ;0 0,
and a distance between boundaries of these cubes is equal to R;M /5. Thus a
distance of the boundary of J, to [J is equal to

k
> R,M,Iy< —1—_~1R1M1 <2RM,.
=0 1-L

We cover [, by a smallest family of cubes of the size R; M. A sum of these cubes is
a cube which we denote by (. A distance of its boundary to [J is equal to 2R, M.
We assume that RM is bigger than R; M ,, for example L™ 'RM >2dR, M ,, thus we
have [ CQ, _,. Of course we assume also that these constructions are compatible
with the block structure of the lattice T, i.e. for every j the cube [J;is a sum of the
big blocks of the lattice T} - ;.

Let us consider the configuration U, on the cube [J. By the assumptions
(1.7)«1.9) and Proposition 2 from [3] we have

|UL(0p)— 1| <2ao[X(Ly)?, pcO9, j=0,1,...,k. (1.128)

We apply a gauge transformation to U,, such that the gauge transformed
configuration Uy, satisfies the axial gauge conditions (1.15), and U{ satisfies the
global axial gauge conditions on [J® of the type introduced in the proof of
Proposition 1 in [3],i.e. U§(T;, ) =1for x e [J®, where yis a center of [1®. These
last conditions imply

|U&(x, x)— 1] < |x — y|2L%0o < (M + 4R, M ,)dI*0, {x, x> CO® . (1.129)

We assume that o is so small that the number on the right-hand side above is still
small and all the theorems on averaging operations are valid. In particular this
means o, < O(1) M~ ', where O(1) has to be a small number. If we are proving the
condition (3.35), then M =R, M, and the restriction is ¢, <O(1)(R;M,)"!. R,
M are absolute constants, hence the last restriction is of the same kind as the other
restrictions on «,. Applying Lemma 1 many times, as in the proof of (1.65), (1.66),
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we get
|Ug(x, x)— 1| <8dPLH(L 2"V + L2+ 1)a
+(M +4R,M,)dL?0, < 11d* Loy + 5dL* Moty < 6dL* Maig, <x, X"y C 19
(1.130)
The sequence of cubes {[1;} is an admissible family of subsets satisfying (1.3),
(1.4), O, C_y, T;CQ, j<k. Let us define
A=000%,,j=1,...k—=1,4,=0P, 4;=T\O,,

B (1.131)
(Skz U A; ’
j=0
and let us define a configuration U}, as equal to Ug on [, and equal to 1 outside [J.
It satisfies the conditions

U e W({O}, Pag)nAx (€, 1), (1.132)
[T —1|<6d*Ma, on 09, j=0,1,...k, (1.133)

by the construction of Ug, and the inequality (1.130). If 7d[*Mo, <c,, then the
assumptions of Theorem 4 are satisfied for the pair of configurations 1, Ug, thus
there exists a gauge transformation u such that U, = Ug*" ' satisfies the conditions
(1.36)(1.39). Especially we have for M =R, M|,

U,=e", |A|, |V"A|<7d[*B,R,M,0, on OI. (1.134)

The configuration U, in a neighborhood of OJ is obtained from U, by a gauge
transformation, hence for «, sufficiently small we have proved the regularity
condition (3.35).
This implies that we can drop out this condition from the assumption (1.33).
We formulate the more general result in

Proposition 6. Let U, Up, O, (l beas describgd above, and let TdL* Moy < c,. There
exists a gauge transformation u defined on Ul and such, that

Us'=U,=e" on 0O, (1.135)
Lin|Al, (Ln)* V" Al, (L'n)*|0™0" Al, (L'n)*|4"A| < Td[*B; Moy on U,
(1.136)
—_ 1 —
0.(nA)= %log Uyt on 0O®, ;log Uok(x, x)| <|x—yldog <2dMoi,
for <(x,x»CcO®, yisa center of O, (1.137)
RO"™ A =0, the operator R is determined by {1} . (1.138)

The functions and derivatives above are defined without any external gauge field
configuration (or the configuration is equal to 1).
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G. An Inverse Theorem to Theorem 2

In this section we will prove a theorem which is, in a certain sense, inverse to
Theorem 2. We assume that we are given a gauge field configuration U,

Uoe U ({2;}, o), (1.139)
and a Lie algebra valued configuration A satisfying
Lin|Al, (En)* V3, Al, (Ln)* ID§:Dy, Al <, on Q. (1.140)

We consider the configuration U,U,, U, =¢"*. We would like to prove bounds
(1.7)+1.9), i.e. to find spaces U, ({€2;}, «) to which this configuration belongs.

Let us start with estimates of 0U,U,— 1. The identity (1.21), the bound (1.47)
and the assumptions (1.139), (1.140) imply

I(U1Uy) (0p) = 1| =|Uo(0p) — 1| +1*[(DF,4) (p) + 31*(0141(p))
<(ao+20,+823)L"* on Q. (1.141)
The basic estimate (1.54) and the assumptions imply
IDF 50U Ul < (oo + 0ty + 36d03 + 50da3 + 10dager,) (Lin) 30, (1.142)

To simplify formulations we assume that «y, o, are so small that o+ 20, + 83
Sag+ 30y, 0o + oy +36da3 + 50da3 + 10doge, <o + 20, The Proposition 4 from
[3] gives also

10,(Uq,nA)| <20, on QF. (1.143)

Let us take a gauge transformation u satisfying the conditions (1.29) and such that
the configuration U’=(U,U,)"* U, * satisfies the axial gauge conditions (1.19). This
gauge transformation is determined uniquely. The above bounds imply the
following

Proposition 7. If the configurations U, A satisfy (1.139), (1.140), then for oy, o,
sufficiently small we have

UUp=(U Up)* e W ({2}, 0tg + 302)n Ax(By, U) (1.144)
TToy — Uh|=|expiQ(Uo,nd)—1|<2a, on QV. (1.145)

This theorem complements Theorem 2. The gauge transformations con-
structed there establish not only a mapping of the space (1.33)(1.35) into the space
(1.36)<1.39), but a kind of isomorphism also, in the sense that the inverse mapping
transforms the second space, defined by some constant «, instead of B, (cq + o),
into the first one with properly chosen oy, o;.

H. Generalizations of the Main Results

Let us describe two possible generalizations. The first is connected with the
fundamental gauge fixing condition (1.38) in the formulations of Theorems 2, 4. It
is written with 0 on the right-hand side, but nothing prevents us to consider a more



Gauge Fixing on a Lattice 101

general condition of the form
R(Uo) D A=, (1.146)

where f is a function from the space R(U,), i.e. a Lie algebra valued function
defined on Q, and satisfying R(U,) f = f. Of course we have to assume that fisina
sufficiently small neighborhood of 0, for example it is enough to assume that
[f1(-2)<y(2+ay) with a positive, not too big, constant y, e.g. y = 1. Inspecting the
proofs of the theorems and propositions we can see easily that they work in this
more general situation almost without any changes, only some constants change
their numerical values. Thus we have the following generalization of Theorem 2.

Theorem 8. There exist constants By, B,(B,), ¢, such that for arbitrary U,, U'U,
satisfying (1.33)—(1.35) with ag+ o, <c,, and for an arbitrary function f from the
space R(U,) satisfying the bound | f'| _ ) <7y(ao+ ), there exists exactly one gauge
transformation u satisfying (1.29) and such, that the conditions (1.36), (1.37), (1.39),
and (1.146) hold for the configuration U, =U""". The constants B,, B,(B,) are as in
Theorems 2, 4, the constant ¢, depends on d, L and .

At one point in the next paper we will use this theorem.

A second generalization is connected with the second regularity condition (1.9).
It is a strong assumption, and although it is a natural one because it is satisfied by
solutions of the variational problem described in [1], it would be desirable to have
a more general condition, and a more general result on Landau gauges. In fact it is
possible to have such a generalization. Instead of condition (1.9), we assume the
following, weaker Holder regularity condition,

1

x—x]P IR(U(I, 1)) U(8p,(x)) — U (@p, (X)) <atoL™ /(L) =P

for
x,X'€Q;,(Un)~'x—x|=1,1spu<v=d, j=0,1,..,k, (1.147)

and for some positive f,, 0 <, < 1. With these conditions we can prove again an
analog of Theorem 2, the only difference is that the configuration U, or rather

1
A= ElogUl, satisfies conditions (1.36)(1.38), with < pf,, but of course not

condition (1.39). Unfortunately a proof of this result is rather unelementary, and
although it follows the main line of arguments of this paper, it makes use of
operators, e.g. G*(U,), and their properties. It would be necessary to extend in an
essential way our theory of Green’s functions in [4], to include necessary results.
We will not need the above generalization, so let us stop the discussion mentioning
only the possibility of such results.
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