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Abstract. A commuting hierarchy of dispersive water wave equations makes a
three-Hamiltonian system which belongs to a general class of nonstandard
integrable systems whose theory is developed. The modified water wave
hierarchy is a bi-Hamiltonian system; its modification bifurcates. The water
wave hierarchy, and the hierarchies of the Korteweg-de Vries and the modified
Korteweg-de Vries equations, as well as the classical Miura map, are given new
representations through various specializations of nonstandard systems.

1. Introduction

The current theory of integrable systems grew out of the analysis of the Korteweg-
de Vries equation. Another, even more remarkable water wave equation, is the
subject of this paper.

The classical dispersiveless long wave equations

ut + uux + hx = 0, ht + (uh)x = 0, u = u(x,t), h = h(x,t), (1.1)

have a number of dispersive generalizations (see, e.g., review [1]). In this paper we
shall be concerned with the following version

ht = (uh + OLUXX — βhx)x

here α and β are arbitrary constants, and the sign of t is changed to make
forthcoming formulae more natural. The invertible change of variables: u = ΰ,
h = K+yύx9 turns (1.2) into

If μ does not vanish, it can be made into an arbitrary constant, say μ = +1/2, by
rescaling x and t. For α = 1/3, β = 0, the system (1.2) was derived by Broer [1] who
called it "The oldest, simplest and most widely known set of equations...",
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"...which are the Boussinesq equations proper." The same system (1.2), for β = 0
and in terms of the potential φ:u = φx, was derived by Kaup [2] who also found
its multi-soliton solutions and the following scattering problem:
ψxx + (λ2 + λQ + R)ψ = 0, where Q and R are obtained by an invertible change of
variables from u and A. Later Matveev and Yavor [3] found algebro-geometrically
a large class of almost periodic solutions "...of some hydrodynamical equations
derived recently by D. Kaup."

We shall see that the system (1.3) is connected with a large variety of ideas in the
theory of integrable systems, which are important in their own right. Briefly, this
system is the richest integrable system known to date. In this paper we establish the
basic properties of the system (1.3) and the corresponding hierarchy by making use
of the theory of nonstandard integrable systems [Eq. (2.3) below] developed in
Sect. 2; the most important results are:

Theorem 2.0. Consider the hierarchy

% ^ % o ) U L (1.4)
1, (1.5)

PeZ(L), (1.6)

where ξ = d/dx; Z(L) is the centralizer of L in the ring of pseudo-differential

operators C{{ξ~x)) ([4, 5]), C = C1I>Λ = C[M ( 0, A(i)] is the corresponding differential

algebra; " | " stands for the "adjoint"; for an element Q e C((ξ~1)), Q= Σ Qiζ\
i o

we denote ResQ = tf-i, Q>k= Σ &£*, and analogously for Q>k, Q<k, Q<k. Then:

(i) The hierarchy (1.4) has a common infinite set of conservation laws

Hm= — ResLm; (ii) All these flows commute.

Since the centralizer Z(L) of Lis a linear combination of {Π\n e Z}, we can take
P = \L2 in (1.4).

The resulting system is readily found to be

ut = d(u2 + 2h-ux)/2,
Λ ^ i T x /~ ό = o ox. (1.7)

ht = d(2uh + hx)/2, ' v '

that is, (1.3) with μ=-1/2.

Theorem 3.0. The hierarchy (1.4) is a three-Hamίltonian system: (i) for P^U1 it can
be written in the form

ltδH^^lPδH^ΈPδH^y, (1.8)

where δH= I ζrrJζΊ I is the vector of varίational derivatives, and
\dH/dnJ

Id du-dΛ

h (L10)
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/ 2(ud+du) 2(hd+dh)+d(u-d)2 \

\2(hd + dh) + (u + d)2d (μ + d)(hd + dh) + (hd + dh)(ud))' l " ;

(ii) All matrices B\ B11, Bm are Hamiltonian.

Theorem 4.0. (i) The system (1.4) with P = Lm, and for — u instead of u, has also the
following Lax representation

&, = &*<>, &l = ί-P<o,&], (1-12)

where & = £"" and

J? = ξ+Σξ-i~1hQt(u), (1.13)

where

(1.14)

(ii) The conservation laws Hm= — ResLm and J^m= —Resifw coincide.
m m

Theorem 5.0. The Korteweg-de Vries (KdV) hierarchy

can be imbedded into the hierarchy (1.4) when u vanishes and P = L2m+ί. In other
words, set

L=ξ + hξ~1 (1.15)

and take P = L2m+ί. Then: (i) The system Lt = l((P^)^ίy,L] is the mth KdV flow;
(ii) The Hamiltonian structures B1 (1.9) and Bm (1.11) can be properly restricted into
the first and the second Hamiltonian structure, respectively, of the KdV hierarchy.

Theorems 2.0-5.0 are proved below in Sects. 2-5 respectively, based on a
theory of nonstandard integrable systems developed in Sect. 2. Details, expla-
nations, and generalizations can be found in the course of the paper. Elementary
facts about differential Lax equations are assumed to be known (see [4, 5]). Here I
explain the method, devised in [6] for discrete Lax equations, used to prove
Theorem 3.0. As an example, let us take the KdV hierarchy ^t = \/9P<0']9 with
S = ξ2 + h, P=(^2)2m+1. Set Hm = m~ι Res(*f1/2)m, (*f1/2)m= Σps{m)ξs. Then the

s

mth KdV equation becomes ht = 2dp-γ(2m +1). On the other hand, recall that the
basic formula of the Residue calculus in modules of differential forms over rings of
pseudo-differential operators [5] is

1 -dResXm+n~-Res(XmdXn)~-Res(dXn'Xm), m,neZ, (1.16)
m + n n n

for any pseudo-differential operator X e C((ξ~1)), where d is the differential, and

a~b means: (a-b)elmd. Taking X = ί112, n = 2,wc obtain - d R e s ( / 1 / 2 ) m + 2

(1.17)
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and substituting this into /zί = 23p_1(2rn+l), we obtain the first Hamiltonian
representation

δH (1.18)= 4 d \
on

To obtain the second Hamiltonian form we need to re-express δp_1(2m+l)
through p_!(2m— 1). For this, we write

and pick out the ξ'1- and £~2-terms from both sides:

(1.19)

(m), (1.20)

(1.21)

(m). (1.22)

Comparing (1.19) with (1.20) we obtain

(1.23)

[recall that rkps(m) = m — s with rkhU)=j + 2]. Similarly, comparing (1.21) with
(1.22), we obtain

1.23)]

(1.24)

Substituting this into (1.19) we get

(1.25)

thus

dH δH2™ + \ (1.26)

and this is the second Hamiltonian form of the KdV hierarchy.

2. Nonstandard Integrable Systems

The strangely looking system (1.4) is a particular case of the following general set-
up. For the rest of the paper, k = 0, 1 or 2. Let

L = Σ ^ (2.1a)
-k

or

L= Σtf, (2.1b)
- oo

with n^ 1 and the normalization conditions

fc = 0 :M B =l,M J I _ 1 = 0; k=l:un=l. (2.2)
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Denote C = CM = C[wp)] the differential algebra generated by w/s (see [5]). The
centralizer Z(L) of L in C((ξ~x)) is generated over C by (L1/M)m, rneZ (where we
assume un = ΰn

n for some fixed ΰn when k = 2). For P e Z(L), consider the following
system,

k ) U ] = [-((J ' t )<*)U]. (2-3)

Since ((Pt)<fc)t *s a n operator of order g fc— 1, the right-hand side of (2.3) has order
f^n + k — 2, which guarantees the preservation of the normalization conditions
(2.2). For k = 0 we recover the standard differential Lax equations, Lt = [P^o> ^]
= [ - P < 0 , L ] ([4, 5]), since only for fc = 0 the projection I M I ^ ^ E C ^ " 1 ) ) ,

and taking the adjoint, X\-^X\ commute. For the case (2.1a) of finite Land k> 0, it
remains to show that the right-hand side of (2.3) belongs to C((ξ~ι))^-k. Set
(P%u = Qξk with some β e C K ] = C((Γ1))^o Then

«=-* J<o

<o L-* J<o
(2.4)

Theorem 2.5. For fixed L, ί/zβ evolution derivations of C given by (2.3) for various
PeZ(L), commute between themselves and have an infinite common set of
conservation laws ( = c.l.'s)

Hm= -Res(L1 / n)w, m e N . (2.6)
m

Proof Let L be as in (2.1b) and denote by Ik the differential ideal in C generated by

^W]i<-k' τ h e n f r o m (2 3) a n d (2 4) w e obtain

so that (Ik)tClk. Therefore, the case (2.1a) is a specialization C/Ik of the universal
infinite case (2.1b), and we now restrict ourselves to this case only. Firstly, suppose
n= 1. Then from (2.3) we get (L"1), = [((P t)^*) t,ίί ι r]> and since Res([ , ])~0, we
obtain an infinity of c.l.'s Hm. From the existence of the Hamiltonian forms of the
system (2.3) (derived below) it follows that all these c.l.'s are in involution; thus, all

_ l _

the flows commute. If now n > 1, we let L=L1/n = Σ wfξ
ι. The map L^L generates

— oo

an invertible differential map (automorphism) Cn = (C[i/P]^CM = C[wp)] with
respect to which Z(L) and Z(L) are "the same" too (isomorphic). Thus, each of Eq.
(2.3) for L and L implies the other. In particular, the derivations of Cu commute
since those of Cu do, as we found above.

Now we compute the (first) Hamiltonian form of the system (2.3). Set

s(m). (2.7)
S

From (1.16) with X = L, we obtain

m+
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and thus

P- ί-i(m)=^^,l^i>-oo, (2.8)
όUi

where we temporarily abandon the normalization conditions (2.2) and treat uί and
u0 as legitimate variables; the advantages of such course of action will be seen later
on in the case fcφO. We consider separately three cases: k = 0, 1, 2.

0) fc = 0. Set υi = u-i-u so that

L=ξ+ ΣViζ-*'1, (2.9)

Λ ( m ) = ^ = ± i , i £ 0 . (2.10)

Denote

γδHm+1

Then

and

V=P±o= Σ

ΓΣ ?X*ξ+ Σ vjξ-*'1] =Γ'"1-coef.in

Σ ί X., Σ Vjξ-J-1] = :ΣBt{Xj)9 (2.11)

where B^ is a differential operator depending linearly upon f's. (We do not
compute the matrix elements Btj at the moment since in a little while we will change
our L.) For B = (βf</) to be Hamiltonian, the corresponding algebra, say ©, must be
a Lie algebra [6-8]. To compute multiplication in (5, we notice that, setting

x= Σ ξιXv γ= Σ ξjYpv= Σ Vjξ-J-1,

we obtain

in ([X, υ] Y) = Res([X, υ] Y)

^ [since Res(,) is an invariant form]^Res(t;[7,X])

= I > ; {left ^-coef. in ίY9Xl}=ΣvjίY9X]j9 (2.12)
J

where Σ £ J [ ^ ^ ] . / = [^^Π Thus (5 is the Lie algebra of differential operators,

therefore the matrix B = (By), being the natural Hamiltonian matrix on the dual
space ©*, is indeed Hamiltonian. However, the coordinates we have ended up with
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on © are not convenient, since the differential operators are written in the left form
Σ ζjXj instead of the usual right form. Obviously, the root of the problem is L itself:
as it is clear from the derivation of (2.8), we need to work with L in the left form in
order for P to be naturally represented in the right form. The remedy, then, is clear:
taking adjoint of (2.3) we obtain -L\ = [(P% f c, L

f], with P 1 = (U)m. Thus, we can
discard the form (2.3) and instead use the following form:

Lt = [ P ^ , L ] = [-P < j f c ,L], (2.13)

L=Σξ%, n=\, (2.14)
— oo

with P = Lm, meZ+. Setting H= — ResLm, P = Lm= Σps(m)ξ\ we again obtain
(2.8). m

For fc = O, repeating the derivation of (2.11) and (2.12), with vs = u_s_ί and
uγ = 1, uo = 0, we obtain

Xsξ\ Σ Γ '-STl = Σ Bϊj(X}), (2.15)

and setting X= Σ * . ? , Y= Σ Yt?, v= Σ ξ~J~\ we get
sgO igO jkO

?'β°X= Σ ^β?(XJ ) = Res(y[X,ί;])~Res([y,X]ϋ)= Z o j C ί ^ . (2-16)
Uj J

where Σ [ 7, X]^ J = [ Y, X~\. Thus B° is the natural Hamiltonian matrix on the dual
j

space to the Lie algebra of differential operators. In the proof of Theorem 4.0, we
shall need the explicit form of the matrix elements of the matrix Br = {B\^
associated to the dual space of the Lie algebra (5^r of (right) differential operators
of order

Let X= Σ Xiξi+r, Y= Σ Yjξj+r- Then

so that

and if Aj is the coordinate on (®^r)* dual to <^J'+r, we obtain

| y y ( s ) y ( s | | y

L \ 5 / \ 5 /

Therefore

(l + r ) J J + r ) (2.17)
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1) Now let k= 1, Lbeing given by (2.14), Lm = Σps(m)ξ\ with ps given by (2.8).

We have firstly

thus

and now we can as well put u1 = l. Using (2.8), we obtain

κu.J, \d OJ\β/δu.v

(2.18)

(2.19)

v _ onm+\ . v _ v Vpi+1

δv, ito
Now set vs = U-s-2, 5^0, P>

Then

Όt t = Re&(ξi+1lX,L]) = Res(ξi+1lX9v])= XB,/L),

where Σ ίZ X]jξJ+1 = ίZ X] Thus B = B\ and the (first) Hamiltonian form for

theEq. (2.13) with k=l is
0 d

d 0

0
(2.20)

2) Now let k = 2. Picking out from the equation*!^ = [L, p< 2] the ^-terms for
i ^ — 2, we obtain

where Pi — Pi(m) and u\j) = dj(Ui). Using (2.8) we put (2.21) into the form

0 0 /ί/ î\

δ/δu0

(2.22)

Denote b2 the matrix in the right-hand side of (2.22). This matrix is Hamiltonian iff
the corresponding algebra, say f)2> is a Lie algebra. Computing the commutator in
ί)2 we find Γ i v , , v

-2 \ / 1 - 2

Xo

Xi

A:=(X-2Yi
+(y< 2

2 >x o -x<_ 2

2 y o ).

(2.23)
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A straightforward computation shows that the Jacobi identity is indeed satisfied in
f)2 (See also Remark 2.27 below.) Thus, b2 is Hamiltonian indeed. We now set

v= Σ ξ-s-3vs,x=p±2= Σ Ps(m)ξs= Σ

. = δHm+1/δv,; Y= Σ Ysξ
s+2 Then

Σ Yfl^Xj) = Res(r[X, t,])~ResflΎ, X] ») = Σ IT, JQJVJ ,
j

where ΣίY,X]jξJ+2 = lY,Xl Thus, B = β 2. Therefore, Eqs. (2.13) are Hamil-

tonian for k = 2, with the Hamiltonian structure

(2.24)

This concludes the proof of Theorems 2.5 and 2.1. D

Remark 2.25. For the standard case fc = 0, a purely algebraic proof exists
(bypassing the Hamiltonian formalism) of the commutativity of all the flows (2.3)
[4], which uses the dressing operator K: KLK~ι=unξ

n. A somewhat analogous
proof can be given for the case k = 1, but not (I believe) for k = 2.

Remark 2.26. An analog of the case k = 1 for discrete integrable systems [6, 9]
n

exists with L= Σ wiC> where ζ is an automorphism.
- oo

Remark 2.27. For general n ̂  1, the (first) Hamiltonian structure of the system (2.3)
can easily be shown to be the direct sum of Bk (for the variables fs = w_s_fc_1?s^0)
and the natural Hamiltonian matrix on the dual space to the Lie factor-algebra
®<fc/®<-w-i (for the variables w_fc, ...,w_π) specialized by the normalization
conditions (2.2).

Remark 2.28. Substituting the Poisson bracket {a,b}=aξbx — axbξ instead of the
commutator into the right-hand side of (2.3), we arrive at the dispersiveless
integrable systems which can be considered as the quasiclassical limits of the full
Eq. (2.3). The resulting flows all commute, have an infinity of common c.l.'s, and
are Hamiltonian with the Hamiltonian structures which are the limits of the
corresponding structures for the full equations.

Remark 2.29. It would be interesting to find out whether the second Hamiltonian
form exists for the Eq. (2.3) when k φ 0. For k = 0 it is not very difficult to show that
it does exist (the quasi-classical limit of this structure, written down in [10],
represents the second Hamiltonian form of the two-dimensional, free surface, long
wave Eqs. [11-13]).

Remark 2.30. Any time a new integrable system, or class of systems, is introduced
one has to tackle the (often overlooked) problem of triviality or nontriviality of
flows and conservation laws. For complex systems the only known general avenue
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to analyze this problem is first solving the easier problem for the flows and then
using the Hamiltonian formalism to analyze the conservation laws (see, e.g.,
[17,18]). For the system (2.3) the answer is obvious: ResLm/"^0 for m>0 unless
k = 0 and m e Nn, since the quasiclassical limit of ResLm/π is simply a polynomial in
w/s with positive binomial coefficients, except for k = 0 and (Lm /")< 0 = 0, that is,
when m e N«. The nontriviality of flows follows by similar arguments: all the flows
are nontrivial except for k = 0 and P = Lm/n with m e Nn.

3. Hamiltonian Formalism for Dispersive Long Waves

In this section we prove Theorem 3.0. Retaining the notation L=ξ + u + hξ~ί,
Lm=ΣξsPs(m), Hm = m-1 ResLm, we have by (2.8)

s

po(m) = δHm+1/δh9p.1(τn) = δHm+1/δu. (3.1)

Picking out the ξ°- and ̂ -terms in the equality Lί = [L,((P t )^ 0 ) t ] , we have

so that

ϊm+i), (3-2)
-i(

which yields (1.9).
We now write down the identity (L t)m + 1=(U)mU =

^ s, (3.3)
s

and pick out the <f-terms from it, for i = 0, — 1, —2:

Σ ίhps+1(mψ\ (3.4)

-p_1(m+l)=-p-2(m)-p_1(m)u-p0(m)h, (3.5)

T\ (3.6)

)δft, (3.7)
+ 1 ) . (3.8)

Comparing (3.5) with (3.6) we obtain

p_ι(m)= Σ lhps+M)T, (3-9)

and substituting this into (3.4) we get

po(m+\) = 2p_1(m) + (u-d)po(rn). (3.10)

In particular,

(3.11)
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Subtracting (3.8) from (3.7) we obtain

+ S2 Σ fe+1(m)]^ = [by(3.9)] = 5/ιpo(m) + 52p_1(m). (3.12)

Applying ( — d) to (3.5) and substituting (3.12) into the result, we arrive at

w). (3.13)

Combining (3.11) and (3.13) together, we get

= = ( K-SΛ/p.Λm-m
hj, {p-MV \(u + d)d hd + dh)\po(m-\)J' K }

which proves (1.10). Notice that only <3p_ γ{m — 1) is involved in the right-hand side
of (3.14). We, thus, can iterate the procedure using (3.10) and (3.11):

(3.15a)

M + d) (hd + 5Λ) + (hd + δfc) (i* - 3)] po(m - 2), (3.15b)

which proves (1.11) for m> 1: for m = 1, p_ x(l) and po( — 1) are not the variational
derivatives of Ho which is not defined. To fix this, we define H0 = u/2. Then (3.1)
implies

p _ 1 ( - l ) = l/2,p 0(-l) = 0. (3.16)

Substituting this into (3.15) we obtain

ut = du,ht = dh (3.17)

which agrees with (3.2) for m= 1 since po(l) = u and p_1(l) = Λ.
We now prove that the matrices (1.9}—(1.11) are Hamiltonian.
The matrix β1 (1.9) is skew-symmetric constant-coefficient and is, thus,

Hamiltonian [5].
Let K be a differential algebra with a derivation d; denote D(K) K considered

as a Lie algebra with the commutator [X, 7] = XdY- YdX. D(K) acts on K by
derivations: (X,f)\->Xdf. Denote the corresponding semidirect product Lie
algebra by ϊ):fy = D(K)ΘK. The commutator in ί) is given by

[( A (y\\ (XdY-YdX\



62 B. A. Kupershmidt

Let h and u denote coordinates on ί)* dual to D(K) and K respectively. Then

h(XδY- YdX) + u(Xδg-Ydf)~(f,X) (^ J " ^ (^j, (3.19)

hence the linear part Buι of Bu is the natural Hamiltonian matrix on ί)* [6-8].
Consider now the following skew-symmetric forms on ϊ):

0 , 7 ) ' , ^ = ^ °Y (3.20)

ω 2 ((ί ) ' (y ) ) =xd^-fd2γ=^x^h^γ^^={^2 ~(f) (3 21)

It is easy to see that ω1 and ω2 are generalized two-cocycles on ί), i.e.,
,43) + c.p.~0, Vi4l9 ,42> ^3 e ί ) ? ί = 1,2, where "c.p." stands for "cyclic permu-
tation." Thus [6, 7], the matrix £ I I = £ I Π + fr1+fr2 is Hamiltonian.

The Hamiltonian property of the matrix Buι can be checked directly, by a
tedious but straightforward computation, using methods of [13] (see, e.g., [14]).
Alternatively, consider the following matrices over C2 = CU 0 = (C[Uii\υu)']:

'-{1 o)'
(2(Ud+δU) 2vd+du~d2\

\2dv+Ud + d2 vd + dv ) • K '

Let Φ:C1 = Cuj,->C2 be the differential homomorphism of differential algebras
given on generators u, h by the formula

Φ(u)=U,Φ(h) = Uv-v2 + v(1). (3.24)

Let J = J(Φ) be the Frechet Jacobian of Φ:

(3.25)

It is easy to check out that

JBΨ = Φ(Bi+1), i = I, II. (3.26)

In addition, the map Φ (3.24) is obviously injective (this also follows from a more
general injectivity result from [15]). This implies that the matrix Bι+1 is
Hamiltonian provided Bι is (since Bi+ι is just the reduction of Bι on the image
Φ(C1)CC2, see [15]).

The matrix B1 is skew-symmetric constant-coefficient, and thus is Hamiltonian.
It is easy to associate a generalized 2-cocycle and a Lie algebra to the matrix Bu

(3.23). Instead, let us consider two more differential algebras C3 = CφV and
C4 = CWfV>, together with the following matrices b3 and b4 over C3 and C4

respectively:
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Let φ3 :C2-*C3 and φ4 :C2-+C4 be the differential homomorphisms given by

φ3(U) = φ(1) + 2V, φ3(v)=V, (3.29)

φ4(U) = w,φ4(v) = ψ^ + iw. (3.30)

The maps φ39 φ4 are evidently injective. If J, is the Frechet Jacobian of the map φj9

j = 3,4, one can easily check out that

JjbjJ]=φj(Bu). (3.31)

Since b3 is obviously Hamiltonian, it follows that B11 is Hamiltonian too, and, thus,
Bm is Hamiltonian as well. Theorem 3.0 is proved.

The matrices B1, B11, b3, and b4 have the following interpretation. U and v are
the variables of the modified long wave hierarchy

(3.32)

which is, thus, integrable and bi-Hamiltonian. The canonical map Φ is an analog of
the Miura map. In addition, we have two different Hamiltonian modified-modified
systems

-i). (3.33)

This phenomenon is absent in the standard theory of integrable systems (fc = 0);
neither three-Hamiltonian systems are present when k = 0.

It remains to show that b4 is Hamiltonian. Let ί)x be the semidirect product Lie
algebra D(K)ΘK, where D(K) acts now on K via the rule (X9f)\->d(Xj). Thus,
the commutator in ί) 1 is

/v\ /v\Ί /VΛV_ VPV\

(3.34)

Let w and ψ be the corresponding coordinates on ί)f. Then

fwd + dw -ψx\ (Ϋ

. / • ( 3 ' 3 5 )

and hence the linear part b\ of b4 is twice the natural Hamiltonian matrix on I)J.
Consider the following skew-symmetric form on \)1:

This form is clearly seen to be a generalized two-cocycle on ί)v Hence b4 is indeed
Hamiltonian.

Remark 337. Not only matrices B1, Bn, and Bm are individually Hamiltonian, but
in

an arbitrary linear combination Σ λtB
ι is Hamiltonian as well. This follows by the

I



64 B. A. Kupershmidt

same line of reasoning as above, when combined with the obvious formula

Bm(u + λ) = Bm(u) + 2λBIι(u) + λ2B\ 4

Remark 3.38. For arbitrary α and β in (1.2), all the results in this section apply after
a slight change is made in matrices B\ B\ b3, b4 and the maps Φ, φ3, φ4. For
example, for β=—1/2, the corresponding matrix Bιn (1.11) adds on

( ' ^(
a\2d3

Remark 3.39. Under zero-dispersion limit the dispersive system (1.7) goes into the
classical long wave system (1.1), while the limit of the matrices Bι, Bn, and Bm

produces the corresponding three-Hamiltonian form of this system ([16]).

4. Canonical Maps

Suppose Bx and B2 are Hamiltonian matrices over differential rings Cγ and C2

respectively and let Φ:C1->C2 be a differential homomorphism. Φ is called
canonical if ΦXH = XΦHΦ, for any HeC^ here XG is the Hamiltonian evolution
derivation whose Hamiltonian is G. If J = J(Φ) is the Frechet Jacobian of Φ, then
the condition on Φ to be canonical can conveniently be written in the form (see
[6,15])

. (4.1)

We fix reZ+. Let C2 = CU h, and define B2 as

Let Bx =Br be the natural Hamiltonian matrix (2.17) on the dual space (®^ r)* to
the Lie algebra of differential operators of order ^ r . For each ieZ+ define

(4.3)

Theorem 4.4. The map Φ:Cί = CA = (E[A\j)']-+C2 = CUfh given by

Φ(Ad = hQAμ) (4.5)

is canonical between B2(r) (4.2) and Br (2.17).

Remark 4.6. Let φ:C2-+C1 be the following rational map: φ(h) = Aθ9

φ(u) = A1/A0. Then Φφ = id. Thus <p is an epimorphism. Since Br is Hamiltonian,
from Theorem 4.4 it would follow that B2(r) is Hamiltonian too.

Before proving Theorem 4.4, we record a few properties of the polynomials Qt

(4.3). Notice, that by (4.3),

Lemma 4.8. For meZ,

( m W m ~ α . (4.9)
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Proof. We use induction on \m\. Let first m ̂  0. For m = 0 (4.9) is obviously true. If it
is true for O^m^M, then

= Σ

and the induction step is made.

Now let m= - 1 . Since ( ) = ( - l)α, (4.9) becomes
\ α /

- i r Q Γ"- 1 . (4.10)

To check (4.10) we apply ξ + u to the right-hand side of (4.10):

which proves (4.10). Now suppose (4.9) is true for 0 > m ^ — M, and let

^-M-^ (4.11)

with some Fa. To prove that Fa = Qa, we apply ξ + u to (4.11) and get

(ξ + t/)"M= Σ f M 1 ) [ ( δ + w)(F α )Γ M - 1 " α + i 7

α Γ M - α ] . (4.12)

But

(ί + «)- M = Σ ( ~ M ) β α Γ M - α (4.13)

by induction assumption. Equating ξ~M~a-terms in (4.12) and (4.13) we obtain
F0 = Q0 and

' - M - A
(4.14)

\ α -h i / \ i -t- α/ \ oc /

Since

'-M-l\ /-M-l\_/-M

α / \α-F

the induction on α for (4.14) shows that Fa = Qa. D

Corollary 4.15.

(ξ-uY'= Σ Γ'-'βi (4.16)

Proo/. Take adjoint of (4.10). D



66 B. A. Kupershmidt

Lemma 4.17. For m, r e Έ+,

Σ ( m W , - β £ β = Σ ( m ) &•,-.£"&. (4.18)

Proof. We use induction on m. For m = 0, (4.18) is obviously true. Assume it is true
for O^mrgM. Noticing that the right-hand side of (4.18) can be written as
{ξ + u)mQr by (4.9), we have

= (ξ + u)M(Qr+1 + Qrξ) = [by (4.18) with m = M]

ς
α

M\ + ( MX\0 £*-γ(M+ι

which finishes the induction step. D

Denote D(Qm) = Du(Qm) = Σ ~w~^ ζι Λ e Frechet derivative of Qm with respect
to u. i=° du

Lemma 4.19.

(4.20)

Proof. Use induction on m, (4.20) being true for m = 0. Suppose (4.20) is true for
O ^ m ^ M . Recall that the operator D is a derivation: D(AB) = AD(B) + BD(A).
Applying D to (4.7), we obtain

therefore

(

= [by induction assumption]

r . Ώ

Proof of Theorem 4.4. From (4.5) we get, denoting φί = Φ(Ai):

Taking (iy)-entry of the left-hand side of (4.1) we obtain, using (4.2) and (2.17)

= [by (4.20) and its adjoint]

u)r+iQj-Qi(u-ξ)r+jh = lby (4.18) and its adjoint]

? vr n(
i + r + j-aζ — L{ — ζ) I

α \ α

= [by (2.17), (4.5)] = Φ ( 5 y . D
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Proof of Theorem 4.0. The change of u into — u amounts to considering
(ξ + u + hξ~y instead oϊξ + u + hξ'1. Thus, put L=ξ + u + ξ~1h. Notice that for
any pseudo-differential operator X = Σ aίζ\ aiE some C, and any υeC,
ResX = Res Σ at(ξ -vj. Thus,

= Res(ξ+ Σξ~ί~1Qih)m = ΦRes(ξ+ Σ Γ 1 " 1 ^ " , (4.21)

which proves (ii).
Now notice that the change u->—u does not change the matrix I?1 (1.9). By

Theorem 4.4 with r = 0, the map Φ\Φ(Ai) = hQi is canonical between the
Hamiltonian structure B1 (1.9) of Eqs. (1.4) and the matrix B° (2.16) representing
the Hamiltonian structure of Eq. (2.13) with fc = 0. Therefore, the corresponding
Hamiltonian derivations in CUth and CA are compatible for Φ-connected Hamil-
tonians, and (4.21) shows that the Hamiltonians are compatible indeed. This
proves (i). D

5. Specializations

In this section we prove Theorem 5.0 and place it into a general context of
specializations of the system (2.3).

Using the notation of Sect. 3, we rewrite (3.15a) using (3.2):

-d)2]po(m-2). (5.1)

Corollary 5.2. If u = 0, that is,

L=ξ + hξ-1, (5.3)

then
po(2m+l) = 0, meZ+. (5.4)

Proof Since po(l) = 0, induction on m with the help of (5.1) yields
{po(2m-l) = 0 => 3po(2m+l) = 0} which implies po(2m+l) = 0, since
rkps(m) = m-s with rkhij) =j + 2, rkfC = 0. D

Corollary 5.5. The equation

Lt = mP%i)\L],P = L2n+1,L=ξ + hξ-1, (5.6)

is meaningful, that is, it preserves the subring ChdCuh.

Proof By (3.2), ut = dpo(2m +1) for the full system (1.4), and we have just seen that
= 0. D

For the variable h, we use (3.2) and (3.15b):

(5.7)

On the other hand, 2p_1(2m-l) = p0(2m) by (3.10), and po(2m) = δH2m+1/δh by
(3.1), since letting u vanish does not interfere with taking the variational derivative
with respect to h. Thus,

ht = Ίo———=\±dό + hd + dh\———, (5.8)
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which proves the (ii) part of Theorem 5.0. Notice that H2m~0 by (3.1), since
po(2m — 1) = 0 by (5.4). On the other hand, H2m+ 1rh09 since the quasiclassical limit

of H2m+1 is —*—(2m + l j hm+1*0. Now, H3~h\ so (5.8) yields

(5.9)

which is the KdV equation. Comparing (5.7) with (1.25) we see that each of Eqs.
(5.6) differs by a constant multiple from the corresponding member of the KdV
hierarchy. This proves the (i) part of Theorem 5.0.

The possibility of the specialization u = 0 for the operator ξ + u + hξ'1 is a
particular instance of the following general picture.

Theorem 5.10. Let L be given as

(5.11)

Then the equations

Lt = [_P^L\P = Lm'n (5.12)

preserve the relation

U = (-lfξkLξ-k (5.13)

for

m = 2M+l, M e Z + (5.14)

(recall that k = 0,1 or 2).

Proof. Since (5.13) is equivalent to &=-ξk&ξ-k for if = L1/Π, we can restrict
ourselves to the case n = 1 only.

Lemma 5.15. Suppose

L=Σξiui\P = Lm=Σps{m)ξ\ mθZ+; (5.16)
s

U=-ξrLξ-r, reZ. (5.17)

Then

y = (-l)m+rPξ-\ (5.18)

Proof P f = (Lmy = (Lψ = [by (5.17)] = ( - l)mξrLmξ-r = ( - l)mξrPξ-r, hence

form

^ ^ ξ - Ί , (5.20)

and picking out the differential part of (5.20) yields (5.19). D

We have to show that the relations U = — ξkLξ~k and Lt = [P^fc, L] result in

L\=-ξkLtξ-k. (5.21)
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The left-hand side of (5.21) is ([P^ fc,L]) t = [L t,(P^k)
t] = [by (5.19) with r = /c]

= l-ξkLξ~\ -ξkP^ξ-k-] = ξklL~P±k-\ξ-k=-ξklP^L\ξ-\ which is the
right-hand side of 5.21. D

Remark 5.22. The KdV hierarchy is associated with the Lax operator L=ξ2 + h.
This operator can be viewed as a member of two different series: 1) general scalar

n

Lax operators L= Σ u£\ un=l, wM_1=0; 2) specialized Lax operators
n i = 0

L= Σ u£\ un=l, wM_1 = 0, satisfying the condition U = ( — X)nL. The second
i = 0

point of view, which we took in Theorem 5.10, leads to a rather nontrivial theory in
the standard case fc = 0 ([19, 20]).
Remark 5.23. The flows (5.12)—(5.14) are all nontrivial except when fe = 0 and
m e Nn, which can be seen by going to the quasiclassical limit and changing the
commutator in the right-hand side (5.12) into the Poisson bracket. The same type
of reasoning shows that the c.l.'s H2M+i remain nontrivial after specialization
(5.13) is imposed. It seems very likely that the c.l.'s H2M become trivial but I
couldn't prove this in general.

We conclude this section by discussing other specializations of the general
operator n

L=Yu£ (5.24)
-k

for k= 1,2. Firstly, since

Lf = [((P% f c)t,L], (5.25)

it follows that 5 ί(L<0) = [((Pt)^/c)t

? ^<o]<o> a n d hence

(5.26)

is an invariant submanifold (speaking geometrically) of (5.25). Now assume that we
have already reduced (5.24) on (5.26) and let us write the resulting Lin the left form:

L= Σ £ V (5.27)
i = 0

t= Σ ζ Psj Σ ζvt (5.28)

It follows that (5.28) has the invariant submanifold Jk

r: = {vt = 0|0 ^ / ̂  r} for each
r</c. Thus, we have three possibilities:

j i = {ί;o = 0}, fc=l, (5.29)

Jg = {ϋo = 0},fc = 2, (5.30)

^i = {ί;o = ί;i::zi0}5 fc = 2. (5.31)

Consider for example the first nontrivial case: n = 2 on JQ (5.29). Here

L=ξ2 + ξυ, (5.32)
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and for P = ξ we obtain vt = dv. The next nontrivial flow is provided by P = L3 / 2:
since Lll2 = ξ + %υ + aξ~1 + bξ~2 + ..., where a = %vx -^v2, b= -%(d + Ό)(a), we
have (((L 3 / 2)%o) t ==-& + ••• Hence Lt = ξvt = lξ2 + ξυ, ~b + ...] =

(α), so that

»f = a(ϋ«/4-ϋ 3/8) = (2i;X3HC-3ϋ2i?x)/8, (5.33)

which is just the modified KdV (m-KdV) equation.

Remark 5.34. The Lax representation {ξ2 + ξv)t = [K, ξ2 + ξυ] with K = ξ3

the m-KdV Eq. (5.33) was found by Knόrrer [21].
Let us show that the higher flows

Lt = l((P%iy,Ll L = ξ2 + ξv,P = Lm'2,m^l(mod2) (5.35)

are exactly the higher m-KdV equations (for even m, P = ((P t )^ 1 ) t and
Lt = l((Pί)^ί)

f,L] is a trivial equation). First, the quasiclassical arguments
2

show that Eqs. (5.35) are all nontrivial, and c.l.'s H2m+1 = ResL ( 2 m + 1 ) / 2 are

nontrivial as well. They are also homogeneous (of weight 2m+ 2) in the grading
rkvU)=j+l. Now, for L w / 2 = ΣξsPs(™) we have

= ξ2dpo(2m+:

so that

vt = 2dpQ(2rn+l). (5.36)

Also, since dHm= - dResLml2 ~Res(dLo I±m-2)l2) = ReslξdvΣ <fps(m-2)]

~Rεs[dvΣξsps(m — 2)ξ]== dv[p_2(
m — 2) — dp_ 1(m — 2)'] by (1.16), we obtain

p_2(m) —δp_i(m)= —^-^-. (5.37)
ov

It's not exactly what we need, which is p o (^), as (5.36) shows. We continue as
follows. From the double identity

sps(m + 2) = (ξ2 + ξv) Σ ξsps(m) = Σ ξsps(rn) (ξ2 + ξυ), (5.38)

we find
(1)p_1(m) (5.39)

)z;-ί;5p_1(m), (5.40)

). (5.41)

Comparing (5.39) and (5.40) we find

vv-M)= -2p_ 2(m) + δp_1(m), (5.42)

and substituting this into (5.41) we obtain

m). (5.43)



Mathematics of Dispersive Water Waves 71

Together with (5.37) this results in

p o ( m ) = _ _ J ? L j (5.44)

and (5.36) finally yields

which is the standard Hamiltonian form of the m-KdV hierarchy. Since
rkH2m+i =2m + 2 and H2m+ι ô O, the uniqueness of the conservation laws of the
m-KdV equation [22] implies that H2m+i, up to a constant multiple, is equivalent
to the standard c.l. # ( 2 m + l ) of the m-KdV hierarchy. Since the Hamiltonian
form of this hierarchy is the same as (5.45), the flows too differ at most by a constant
multiple.

In most theories of integrable systems the centerpiece is a (generalized) Miura
map. Since we have realized the classical modified KdV hierarchy inside the k = 1-
case of the general system (2.3), the reader will undoubtedly wonder about the
realization of the classical Miura map in our general context. Here is the answer.

For k=ί and L=ίξ% P = L^n=Σpsξ\ with Lt = \_P^uL] = i-P^L\ we
s

have wπ _ i, ί = ndp0. Therefore, if we introduce a new variable w:dw= un _ l 5 we

can lift the system Lt = \P^uL~] from the ring C1 = CMn_1>Mn_2> into the ring
C 2 = CWfl l f i_2i !... Now consider the following conjugation:

JS? = e ~ w L e w , 0> = e~ wPew = J5?w / M. (5.46)

Then

o. Since ,
we see that J Γ = ̂ >

< 0, J f = ̂ 0 , and we arrive at the standard fc = 0-case

&t = [ ^ 09£Γ\ = E - ^< o, &] (5.47)

The map L^>J£ = e~wLew is the desired Miura map. Since
. / 1 V

e wξιew = (ξ + w{1))ι= I ξ — un^.1\, we see that the Miura map amounts to

changing ξ into ξ — wM_x:

[l1

SJui,Un=lUn.ί = O,un = l. (5.48)

In particular, for L=ξ2 + ξv (5.32), ξ2 + u = (ξ-±v)2 + (ξ-±v)υ = ξ2 + ±vx-ϊv2,
v v

hence u = -ξ — —, and this is the usual Miura map. For n = 1, we have from (5.48):
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Σ (ξ-uoyu(=ξ-
— oo t ^ 0

= [by the adjoint of (4.9)]

= ξ+ Σ Σ <Γ|-"1~β(-i)β

so that

Suppose now, that L = ξ + u + ξ~1h. Then

J? = ξ + (ξ-u)-1h = [by (4Λ6)-] = ξ+ Σξ~i~ίQi(u)h = ξ+ Σ Γ ' " 1 ^ ,

(5.50)

and Theorem 4.4 (for r = 0) says that the Miura map (5.50) is canonical, as it should
be in general. It is very likely that the full Miura map (5.49) is also canonical
between the Hamiltonian structures B° (2.17) of the fc = 0-case and (2.20) of the
k= 1-case respectively; the quasi-classical limit of this map is indeed canonical
between the quasiclassical limits of the corresponding Hamiltonian structures (this
is another generalization, different from the r = 0-case of Theorem 4.4, of the
compatibility Theorem 0.7 in [5]).

Remark 5.48. In physical language, the interpretation of the Miura map as a
conjugation was proposed by J. Gibbons [23].
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