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Abstract. We illustrate on simple examples a new method to analyze the particle
structure of lattice field theories. We prove that the two-point function in Ising
and rotator models has an Ornstein-Zernike correction at high temperature.
We extend this to Ising models at low temperatures if the lattice dimension
d^3. We prove that the energy-energy correlation function at high tempera-
tures (for Ising or N = 2 rotators) decays according to mean field theory (i.e.
with the square of the Ornstein-Zernike correction) if d ̂  4. We also study some
surface models mimicking the strong-coupling expansion of the glueball
correlation function. In the latter model, besides Ornstein-Zernike decay, we
establish the presence of two nearly degenerate bound states.

I. Introduction

There has recently been some renewed interest in the analysis of the particle
structure of (lattice) field theories, in particular of gauge theories [1-11]. In [11] we
have outlined a new method leading to various results on the particle structure of
scalar and gauge lattice field theories. In this paper, we explain our method in
mathematical detail on the simplest examples and we prove some of the results
claimed in [11].

We ask the following questions: what is the precise long-distance behaviour of
the two-point function, or of higher-order correlation functions in lattice field
theories? What information on the spectrum of the theory can one obtain from this
behaviour? The connection between both questions is provided by the Kallen-
Lehman representation, which, for a continuum Euclidean theory, is:

<ΦoΦx>=U-Λ+a2y\0,x)dρ(a), (1.1)

where dρ is a positive measure. An analogous, slightly weaker, formula holds for a
reflection positive correlation function in a lattice theory. From (1.1) it is clear that,
if we can prove that

e-m\x\

<ΦoΦx> ~ , | ( , - I ) / 2 ~ ( - Λ + M 2 Γ 1 ( 0 , X ) (1.2)
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for some m>0, then dρ(ά) contains a point measure δ(a — m) at the bottom of its
support. Moreover, subleading corrections to (1.2) will give information on bound
states, upper mass gap, etc

Thus we want a detailed analysis of the correlation functions. This will be
possible only when we have a convergent expansion (high-temperature, low-
temperature, etc ). In this situation we can use this expansion in order to convert
the expectation value in the spin system into a sum over random geometrical
objects. For example, a two point function (φoφxy can be rewritten as a sum over
lines (with appropriate weights) joining 0 to x. In lattice gauge theories, sums over
random surfaces enter. Our next step is to decompose, say a random line, into a gas
of excitations as follows: first of all, we observe that the simplest line corresponds
to a straight line joining 0 and x. Then we also see that, in general, a line contains
some straight parts and other parts. It is the latter that we call "excitations." We set
up a one-to-one correspondence between random lines and sets of excitations. Our
sum over lines becomes a partition function for a "gas" of these excitations. A
similar analysis was used by Gallavotti [12] when he studied the phase separation
line in the two dimensional Ising model. Now, it turns out that for the values of the
parameters (such as temperature) that we consider, the gas of excitations is very
dilute and its Mayer expansion converges.

The main results of our analysis going from the correlation function to the gas
of excitations are: the pressure of the gas is related to the "mass gap" [m in (1.2)] of
the original model and the (Gaussian) fluctuations of the gas are closely related to
the power-law correction in (1.2). Moreover, the bound states and the upper gap in
dρ(a) can be analyzed in terms of the rate at which the pressure of the gas in a finite
box approaches its thermodynamic limit. None of the above statements are
obvious but see [11] for a more detailed heuristic discussion.

The results that are proven in this paper with our method are fairly simple and
most of them have been derived elsewhere (with different methods). However we
want to explain our method with all details in the simplest cases. More elaborate
results will be published elsewhere [13]. Our first result concerns the two-point
function for Ising models or O(N) rotators in the high-temperature region. We
prove Ornstein-Zernike decay of the two point function and the presence of an
upper gap roughly equal to 3 m in the distribution ρ(ά) entering the lattice
analogue of (1.1). This kind of result was previously obtained in [14-16, 3],

We consider also low temperatures: for the Ising model and for lattice
dimensions d^ 3, we prove the same results as in the high-temperature situation:
Ornstein-Zernike decay and the existence of an upper gap. This is essentially a
result of Schor [17, see also 4,7]. Moreover, we can understand from our point of
view the anomalous decay in d = 2, see Sect. 7.

We consider also a model of self-avoiding random surfaces [18] in three
dimensions (this restriction is for simplicity but is not essential). The latter can be
viewed as a simplification of the random surface models occurring in the strong-
coupling expansion of lattice gauge theories [19]: The analogue of the plaquette-
plaquette correlation has an Ornstein-Zernike decay and there is an upper gap.
Moreover we can establish the presence of two nearly degenerate bound states
below the continuum threshold. With little extra work, one could extend these
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results to the real gauge models in the strong-coupling regime and also, by duality,
to the 3 dimensional Ising model at low temperatures.

Coming back to the spin models, we also discuss the decay of the energy-energy
correlation function, which is a truncated four-point function. There has been
some debate in the literature [20, 21] as to what is the exact decay of these
correlation functions at high temperatures. The exponential decay is exp( — 2m|x|),
where m comes from (1.2), but what is the power-law correction? Polyakov arrives
at the following conclusion [20]: \x\~2 for d = 2; |x |"2(ln|x|)"2 for d = 3 and
|x |" d + 1 for d^4. However, a different calculation, in [21], leads to the prediction
of an \x\~d correction for all d. The d = 2 result is known exactly for the Ising model
[22]. Here we prove that Polyakov's result is correct for d^4 (for the Ising model
or the N = 2 rotator model); the d = 3 case remains open, but we have some
heuristic arguments supporting Polyakov's result (see Sect. 7). This part of our
paper is somewhat special, because the proof is based on correlation inequalities
rather than on our general method. The inequalities that we use are similar to
those of [23, 24], leading to mean field behaviour at the critical point in d^5.
Indeed, as we explain in more details in Sect. 7, we regard these power law
corrections as quite similar, but simpler, to the power law decay at the critical
point. There is a critical dimension, equal to 3 here, above which mean field theory
is exact: The truncated four-point function decays like the square of the two-point
function. In d = 3 there are logarithmic corrections to this behaviour and, below 3
dimensions, power law corrections. Moreover, these phenomena are related to
intersection properties of random walks, just as the critical phenomena are.

Outline. We state our results in Sect. 2. Each of the following four sections is
devoted the proof of one of our results: The decay of the two-point function in
O(N) models at high temperatures (3). The one of the energy-energy correlation for
N = 1 or 2 (4). The low temperature Ising model (5). The surface models (6). In
Sect. 7, we discuss some extension of our ideas.

II. The Main Results

In part A below we consider the spin models [Ising model and O(JV)-invariant
rotators] in the high-temperature region. In part B, we analyse the low-
temperature phase of the Ising model. Finally, in Part C, we extend our analysis to
surface models and discuss the applications to lattice gauge theories in the strong-
coupling regime.

A. Spin Models at High Temperatures

At each site x e Έd we have an JV-component spin variable s^eS^"1 of unit length.
The Hamiltonian in a finite box ΛcZd is:

-HΛ= Σ sx sy,

where the sum runs over pairs of nearest-neighbour sites. The Gibbs measure in Λ,
at inverse temperature /?, is

dμΛ(s)=Z^exp(-βHΛ) Π δ(\sx\
2-ί)dsx,

xeΛ



556 J. Bricmont and J. Frόhlich

where ZA is the partition function, lim dμΛ = dμ exists and, for β small, μ is the
d

unique Gibbs state of this model. We are interested in the asymptotic behaviour,
when |x|-κx), of the two-point function:

<s0 Sχ> = ί So * MμOO for β small.

Since we have ferromagnetic nearest-neighbour interactions, this model has a
positive transfer matrix, T, 0 < T ^ l [ 1 7 ] . Using this and the spectral theorem, one
arrives at a spectral representation for the two-point function, which is nothing but
the lattice version of the (Euclidean) Kallen-Lehman representation [17, 11]:

<so W = i ί *V» *dρ(λ,p) for ί^O, (2.1)

where we have written x = (ί, x) choosing the first axis as the "time" direction. Td~ί

is the (d — l)-dimensional torus, and dρ(λ, p) is a positive measure on [0,1] x Td~1.
Summing (2.1) over xeΈd~ι we get

Σ <so-s(t,x))=]λ'dρ(λ), (2.2)
xeZ*"1 0

where we write dρ(λ,O) = dρ(λ). The right-hand side of (2.2) can be written in a
more suggestive form as

]e-mtdμ(m). (2.3)
o

Notation. Let A be a subset of Έd. We write f(x) ~ g(x) for x e A to mean that there
exist two constants c1ή=0, c 2 <oo, such that c1g(x)^f(x)^c2g(x) VxeA.

Theorem 1. For β small enough, we have
a ) . x exp(-moί)

where

mo(β)= -lnβ+lnN-P(β) (2.5)

with P(β) analytic in β around 0.

b) μ(m) = cδ(m - m0) + μ\m),

where c>0, suppμ'cCmi, oo[ and lim^ 1

 / m — 1.
3m(p)

Remarks. 1) This result has already been derived using other methods in [3,14—16].
We shall call m0 the mass gap and m1 the upper gap.

Ixl2

Ixl
2) Statement a) can be extended to <s0 s ( ί x )> provided — remains bounded.
3) Our results can be extended to more general single-spin distributions than

δ(\sx\
2 — l)dsx. Moreover, the Ornstein-Zernike decay (2.4) holds for general two-

spin interactions of exponential decay.
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However, for such general interactions, the transfer matrix need not be
symmetric, or positive, and, therefore, the spectral representation of the two-point
function need not always be valid.

We analyse now the energy-energy correlation function. Since our proof uses
correlation inequalities, we restrict ourselves to JV= 1 or 2.

Theorem 2. Let N= 1 or 2 and d^4. Then, for β small,

e-2m0ΐ

Σ <SO S*;S^O)Λ>~-IΪ=T- f°r ί > 0 > (2 6)

\y-(t, o)| = i

where </; #> = </#>-</> <0> and m0 is equal to (2.5)

Remarks. 1) This results extends to other even correlation functions.
2) For d = 2 and JV=1 the power-law correction is t~2 [22], and for d = 3

Polyakov conjectures a correction (ίlnί)" 2 [20]. We cannot prove this at present
but we discuss this problem in Sect. 7.

B. Ising Model at Low Temperatures

In this section, we analyse the low temperature phase of the Ising model (N = 1) in
d^3 dimensions. For JV^2 and d^3, there is no exponential decay, for large β,
due to the appearance of "Goldstone bosons" [25,26]. For d = 2 and N = 1, there is
an anomalous power-law correction t" 2 to the exponential decay (see Sect. 7); For
N = 2 we have a temperature dependent power-law decay at low temperatures [27]
and, for N^3, the question remains open.

For N = 1 and β large, dρ(λ, p) in (2.1) contains a delta function at λ = 1, p = 0. Its
weight is (m*)2 where m* is the spontaneous magnetization. We are therefore
interested in the decay of <s0 sx) = (sosx) — (m*)2, where <> is the infinite volume
Gibbs state obtained with " + " boundary conditions.

Theorem 3. Let d = 3 and N=l. For β large enough,
a)

^ ^ 0 M t>0, (2.7)

with mo(β) = 4β — P(β) where P(β) is analytic in z = e~2β around z = 0.
b) μ(m) = (m*)2δ(m) + cδ(m — mo)+μ'(m) where c>0, suppμ/C[m1,oo[ and

= 1

Remarks. 1) Closely related results have been derived by other methods in [17, 4,
7].

2) The results extend to all dimensions d^ 3, with appropriate changes of the
numerical constants. For the anomalous law in d = 2, see Sect. 7.

C. Surface Models

In his extension of the Krammers-Wannier duality, Wegner [28] realized that the
3d Ising model is dual to the TL2 lattice gauge theory. Thus the low-temperature
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Ising model is "equivalent" to the strongly coupled Ising gauge model. From this
point of view, it is natural to ask whether our methods give some information on
the spectrum of lattice gauge theories. In the strong coupling regime all the
relevant correlation functions have a convergent "high-temperature" expansion.

This expansion can be expressed as a sum over surfaces ("flux sheets") with
appropriate weights. This holds not only for Z 2 but for general gauge groups [19].
Since all expressions in these theories can be reduced to summing over surfaces, it
is sufficient to consider, for simplicity, a model of surfaces defined directly as such.
We claim that one can extend, with little extra work, the results obtained for
surface models to general (compact) lattice gauge theories.

Such results have already been obtained by different methods (see [1,2,6] for
gauge theories and [7] for some surface models). Our only purpose is to illustrate
our new technique in simple cases. The new results that it allows to prove, in
particular for the gauge-matter systems, are published elsewhere [13].

In the following we focus our attention to a model of self-avoiding random
surfaces [18]. By a self-avoiding surface in Έd we mean a collection of (non-
oriented) plaquettes in TLά constituting a connected set in Rd in such a way that
each link in S is contained in, at most, two plaquettes.

The boundary dS of S is the set of links that are contained in exactly one
plaquette in S. If y = <yiU Uy«> where γl9 ...,yn are n closed non self-intersecting
loops in Έd, we let

Gτ(y)= Σ e" τ | s | ,
S:

dS = γ

where the sums runs over all self-avoiding surfaces with boundary γ and \S\ is the
number of plaquettes in S.

In particular, we are interested in several two-point functions Gτ(y) with γ = γ ί

Όϊ2-
The relation with gauge theories is as follows: if γ = yι[J...{Jyn, Gt(y) is related

to the strong coupling expansion of the connected expectation
(Tr(C/yi); ...;Tr([/yn)>, where the I7y's are Wilson loops. However, the weights
tend to be more complicated and the ensemble of surfaces to be summed over is
larger; the coefficient τ equals |ln/?p|=ln02.

Spectral representations such as (2.2) are not known for the self-avoiding
surface model. However, they hold for various correlation functions, in particular,
the plaquette-plaquette correlation in lattice gauge theories [19]. Therefore our
results concerning the decay of correlations in surface models have a direct
interpretation in terms of the structure of the excitations in gauge theories.

Now we fix the dimension d = 3 and we define
p(t, x): the boundary of a plaquette perpendicular to the time axis whose first

point in lexicographic order is (ί, x).
A rectangle is the boundary of the union of two adjacent plaquettes. If a

rectangle is perpendicular to the t axis, we call it horizontal if it is oriented along
the first spatial axis xl9 and vertical if it is oriented along x2.

rv(t, x): the vertical rectangle perpendicular to the time axis whose first point is
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rh(t, x): the horizontal rectangle perpendicular to the time axis whose first point
is (ί, x).

We look at the following correlation functions:

P(t)= Σ Gτ(p(0),Kί,x)),
xeZ 2

xeZ 2

*„-»(*) = Σ IGJrJlp), rjf, x ) ) - Gt(rv(0), rh(t, x))] .
xeZ 2

Theorem 4. Lei d = 3; For τ large enough,
a) P(O~Cge~W o ί+CίέΓW l ί + 0(e~W2ί) wίthmo/4τ^l as τ->oo, 3mo/2m1-^l as

τ->oo, and 2mo/m2-»l as τ-κx); Cg, C?>0.
b) K 0 + J χ t ) ~ Q + V ^ + C ΐ + V W l t + 0(έΓm2t) wiίΛ m0, m1? m2 as in a).
c) ^ . ^ O - C Γ ^ ' ^ + O ^ " ^ ) , where Imjlm'^l as τ->oo and mι-m\

~$e~2τ as τ->oo.

Remarks. 1) The interpretation in terms of gauge theories is as follows: there is a
stable glueball (one particle state) of mass mo~4τ. Furthermore there are two
nearly degenerate bound states of mass mγ and m\. One bound state appears in the
spectral decomposition of the plaquette-plaquette correlation or of the symmetric
combination of rv and rh. The other one appears only in the antisymmetric Rv-h.

2) By a duality transformation [28], the three dimensional TL2 gauge theory at
strong coupling (i.e. β = l/g2 small) is mapped onto the Ising model at low
temperatures. For example, the truncated plaquette-plaquette correlation
(summed over all orientations of the plaquettes) is equal to the energy-energy
correlation function in the corresponding Ising model. Rv+h and Rv-h are also
equal to sums over (more complicated) correlation functions in the Ising model.
Therefore, the bound state analysis, outlined in Remark 1 above for the gauge
theory, applies to the Ising model at low temperatures.

3) Our methods extend to d = 4 but the results are more complicated because
the excitation spectrum becomes richer. See [6] for an analysis of the d = 4 pure
gauge theories.

III. Proof of Theorem 1

1. The first step consists in reviewing some properties of the small β expansion of
the O(N) models. We follow the presentation in [29, 30] where the proofs of
Lemma 1 and 2 below can be found.

Lemma 1 [29, Theorem 2.1].

a)z,=C(iv/2)MiΣVf)" ί π f " π c ( φ f f l J

M = 0 n ! \ 2 / ω i ωni=l xeΛ

where
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N
- nx(ωl9..., ωn) = n(x, ωx) +. . . + n(x, ωn) + —-, n(x, ω) = number of visits of x

by ω.
- \ω\ = number of steps in ω.
- The sum over ωu...,ωnis over all sequences of (not necessarily distinct) loops

in A.

~ The symbol Σ means

1 =

\(θ\Σ Σ

xeΛ ωCΛ \(θ\ ωCΛ \θ)\
n(x, ω) Φ 0

b) <so sx>=Z;1JV Σ ZΛ(ω), where

ω:0-*x

\2 J n = θn\\lj ωu..,ωn i=\ xeΛWe can transform these formulas in two ways: first of all, one observes that the
value of a term does not depend on the ordering in the sequence (ω1? ...,ωπ).

Define Ω (a "generalized set" or "g set" as in [30]) to be a map from the set of
loops into N. We write:

- W(Ω)= Π0l" '««> Π £^£ with nx(Ω)= ΣΩ(ωK(ω),
ClV/Z)

- zo(Ω) = ί j j , with |Ω| = Σ Ω(ω).

Then, if we define 2Λ = ZJc(N/2)M, we can write

where the sum Σ Λ is restricted to those Ω's where Ω(ω) = 0 unless ωCΛ.
Next, we observe that W(Ω) = Wψ^) W(Ω2) if Ω1 nΩ 2 = 0 in the sense that the

support of Ωx is disconnected from the support of Ω2: if Ω^ωj + O and Ω2(ω/)

Decompose Ω into maximally connected g sets called polymers: Ω = Ω\
+ ... + Ω£, where Ωc

inΩc

j = Φ and Ωf\ is connected in the sense that it cannot be
decomposed further. Letting

we have

Ωl M
Define

- 1 otherwise
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Then

ZΛ=Σ Σ Uz(Ωc

k) Π (l+g(Ωc

k,Ω
c

r)), (3.2)
r = 0 {Ω<i,. .,Ωϊ}k=l l^k<k'^r

where {Ω°ί9 ...,Ω
c

r} are (unordered) sets of polymers.
We say that Ω\ is a 0->x polymer if: Ω\(ω) = 1 for one ω: 0->x, the support of

Ω\ is otherwise made of loops and Ωί is connected.
If Ωi is a 0->;c polymer we let

ZΛ(ω) has a representation similar to (3.2) but with the constraint that Ωc

1(ω) = l.
Now we use the polymer formalism (see e.g. [19, 30]) to obtain

Lemma 2 [30, Lemmata 3.1, 3.2, 3.3]. For β small enough,

a ) <βo sx> = ΛΓ Σ ^τφτ(
X!

where the sum runs over all g-sets X of polymers, i.e. over all maps X from the set of
polymers into N with the restriction that X{ΩC) = 1 for exactly one 0->x polymer,

Ωc

ΦT(X)= Σ (-1) L ( G ) , (3.4)
Geg(X)

where the sum runs over all connected subgraphs G of g(X) containing all vertices of
g(X). g(X) is the graph whose vertices are the polymers Ωc such that X(Ωc)φ0 and
whose lines joint Q\ to Ω) whenever Ω?nΩJ Φ0.

b) There exists some c<oo such that, for all X,

x\
with

\X\= Σ JΓ(fl)fl(ω)|ω|. (3.5)
Ω,ω

2. Geometrical Analysis of X

Given a nearest-neighbour bond b and a loop ω, one defines

fl if b belongs to ω

[0 otherwise.

Furthermore, we define Ω(b) = Σ Ω(ω)ω(b), and X(b)= Σ X(Ω)Ω(ω)ω(b).
ω Ω,ω
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Fig.l

o

h(ε3)
—l h(ε2)=0 p

1 1
h(ε,) I I Γ

•: regular parts

•: excitations
ε1.ε2,ε3lεΛ : four compatible excitations allowed in [0,t]

(t.O)

πlεj

We shall decompose X: 0-»(ί, x) into a set of "regular parts" (or "ground-state"
parts) and of "excitations." The regular parts will correspond to the simplest
possible subset of X, namely a straight line parallel to the t axis (see Fig. 1 for the
remainder of this subsection).

Given X:0->(f,x), a bond b is regular if

-bis parallel to the t axis,
- there is no other bond V satisfying X(b") φ 0 and having the same projection

as b on the t axis.
Now one can decompose X = {6|X(6)φO} into maximally connected sets of

regular bonds (called straight lines) and maximally connected irregular ones.
Let ε be the restriction of X to an irregular part of X. An excitation is an

equivalence class (also denoted ε) of such objects, modulo translations by vectors
of Zd~ * in the directions perpendicular to the time axis (these excitations are called
"jumps" in Gallavotti's paper [12]).

This definition is motivated by the fact that, as we shall now see, there is a one-
to-one correspondence between the X's entering the sum in Lemma 2a) and
suitable families of excitations. It is already clear that to each X corresponds a set
of excitations {εl5 ...,εΠ} such that

π(εf)nπ(ε7 ) = 0, if i+j, (3.6)

where π(ε) = projection of ε on the time axis. Indeed, (3.6) holds because different
excitations are separated by regular parts of X. π(ε) is a segment of the time axis
also denoted [ ί~, ί + ] .

If ε is an excitation of X:0->(i,x), then: [ r , ί + ]n[0, ί] Φ0.
Now we define the height of an excitation ε: Let H^Zdl be an hyperplane

perpendicular to the time axis. An excitation ε is, by definition, adjacent to two
straight lines (one to the left, one to the right). The projection of each of those on H
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is a point (noted xz and xr). The vector joining them: h(ε) = xr — xt GH^Ίίd~γ is
the height of ε. Note that this definition does not depend on which representative
we take in the equivalence class ε. Notice also that a height can be zero.

Let the excess length of ε, /(ε), be defined as |ε| — |π(ε)|, where |π(ε)| = t+ — t" and
|ε| is defined the same way as \X\ in (3.5).

We say that an excitation ε is allowed in [0, t] if there exists a n x e ί " 1 and an
X:0->(ί,x) such that ε is an excitation of X. By extension, an excitation ε is
allowed in [0, oo[ if there exists a t0 such that ε is allowed in [0, t] for all t>t0,
similarly for intervals ] — oo, ί], ] — oo, + oo[.

Finally a set E = (εί, ...,εM) of excitations is compatible if π(ε^nπ{ε^ = ^i^j.
To each compatible set of excitations we associate a #-set of polymers X by

adding straight lines between the excitations and by choosing the appropriate
representative in each equivalence class, so that the line to the left of an excitation
has the same projection on H as the one to the right of the preceding excitation.

If each ε e E is allowed in [0, ί], the resulting X will be going from 0 to x = (ί, x),

where x = h(£) = Σ h(εt ). So, in this sense, the X's are equivalent to compatible

sets of (allowed) excitations.

We write X(E) for the reconstructed X and π(£) = U π(εd, KE) = Σ l(βd-We

observe that

\X(E)\ = l(E) + t. (3.7)

We have, from Lemma 2 and the preceding construction,

<s0 s(ί,x)> = N£°'f T^TTΦ\X{E))z{X{E))δ{KE)- x), (3.8)

and the sum runs over all compatible sets of excitations allowed in [0, ί].
Now the geometrical analysis is finished: the two-point function <s0 s(ί x)> is

written in (3.8) as a sum over sets of excitations. In the next paragraph, we shall
study the gas of excitations as such and show that it enjoys the properties of a dilute
gas. Then the conclusions on <s0 s(fx)> will be easy to derive.

3. The Statistical Mechanics of Excitations

Let ε be an excitation of X. This means that the support of ε can be decomposed
into a subset of the polymer Ω\, in suppX, going from 0 to x and possibly some
other closed polymers. In other words ε is nothing but a special type of X, going
from some y to some / ; therefore we can define g(ε) and φτ(ε) just as we did with X
in Lemma 2. We have an important factorization property:

Lemma 3. Let E = (ε1?..., εΠ) be a compatible set of polymers allowed in [0, ί]. Then

Π^Γfe), (3.9)
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where
it+ - r W Π z(Ωc)ε(βc )z(ε) = (N/β)it+ - r W Π z(Ωc)ε

and z(Ωc) is given by (3.1), or by (3.3) for the "open" polymer going from y to y\

Proof Consider the graph g(X(E)). Since different excitations are separated by
straight lines, all the polymers contributing to one excitation do not overlap with
those contributing to another excitation. Therefore, there is no line in g(X(E))
joining a polymer Ω\ with εf(ί2J)Φθ to a polymer ΩCj with ε^Ω^ + O for i+j. This
observation and the formula defining φτ(X) (3.4) proves the factorization (3.9). The
other two formulas of the lemma follow from the definitions and the computation

If we define

C ( β ) = ^ ^ - ^ , (3.10)

and

0 if π(ε)nπ(εθ = 0
— 1 otherwise,

we may rewrite (3.8) as

<s0 s(ί,x)> = (β/NY (ΣOJ Π C(βd Π (1 + 0(β|, ej)) δ(h(E) -x)), (3.11)

where the sum runs over all sets of excitations allowed in (0, t) [compatible or not,
since the compatibility condition is automatically implied by the product over
(l+g(εi9εjm.

If we omit the prefactor (β/NJ in (3.11), which plays the role of a "ground state
energy," the formula for <s0 s(ί x)> looks like the partition function of a gas of
excitations with activities ζ(ε) and hard-core interactions (l+0(ε,εθ). The
^-function is a global constraint which is similar to working in a canonical
ensemble. This constraint is removed by summing over x e Ht. For β small, z(ε) and
thus the gas activities ζ(ε) are small, and we can use a convergent Mayer series for
this gas:

Lemma 4 For β small enough,
a)

,-ik h(£)
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where the integral is over the (d—l) dimensional torus:
- the sum over E's runs now over g-sets of excitations, each of which is allowed in

(0,0-

- φτ(E) and El are as usual, and ζ(E)= Πί(ε) £ < ε )

Proof Given formula (3.11), part b is the standard formula for Mayer series. The
convergence follows from the estimates in Lemma 5 below. For part a, we write

δ(h(E) - x) = — 1 ^ J dk exp(*k (h(£) - x)),

and we define a complex activity ζ(ε) = ζ(s)eik'h(ε\ and then use the Mayer
expansion again.

Lemma 5. There exists a βo>0 and a c<oo such that, for all β<β0,

where

b)

Σ
E:

t~(E) = ί

= inf{r(ε)|£(e)Φ0}

Σ
π(E)D[a,b]

φτ(E)ζ(E)

E\
>2(b-a)

The sums over E runs over all g-sets of excitations allowed in ( — oo, + oo) or in
[0,oo[ or in [0,ί].

Proof We do not give a detailed proof of this lemma, since it follows from the
polymer formalism [19], once we have the following bounds on the activities ζ(ε) of
the excitations: By definition,

By Lemma 2b),

ε! ε!

z(ε)φτ(ε)

ε!

so |̂ CWjS'<ε> or, | C ( e ) | ί j J W ^ >. Now,

(3.12)

because, by connectedness of ε, the number of bonds contained in ε (counting
multiplicities) that have a given bond b as projection on the time axis is odd. So,

(3.13)
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and

The number of excitations ε with \ε\ = n and t~(ε) fixed is bounded by (c7)";
therefore, the proof of a) follows from standard estimates in the polymer
formalism, e.g.

= v~ β

 ?A if E is connected,
EI

= 0 otherwise.

b) follows from a) and the fact that l(E) ^f |£| ^2|π(£)| by (3.12) and (3.13), so that

Since Σ 0 ' ' — is nothing but the pressure of the gas of excitations,
E El

expanded in a Mayer series, we expect that it is the sum of
- a bulk term, proportional to ί, plus
- a boundary term, equal to a constant, since the gas considered here is one-

dimensional, plus
- an exponentially small (in t) correction.
This is precisely the content of the next lemma:

Lemma 6. There exists a (t-independent) constant c such that

^0J
τ(E)ζ(E) =tp+c+0(β2,h ( 3 1 4 )

where

P= Σ φT(E^(E\ (3.15)
t~(E) = O

with the sum over £'s allowed in (— oo, oo).

Proof. We write the left-hand side of (3.14) as

+ ί o + c , + / ( 0 , ( ) , ( 3 , 6 )
s=0 E El

t~(E) = s
where

0 φτ(E)ζ(E)
C°~ \ ~ E ! :

ί"(£)<0
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and Σ 0 = s u m o v e r E's allowed in [0, oo[,

φτ(E)ζ(E) φτ(E)ζ(E)

'~ t E\ t E\ '
teπ(E) teπ(E)

and Σ ί ; £ ' s allowed in ] — oo, ί], Σ : £ ' s allowed in ] — oo, + oo[,

o.« - Σ o _ Σ<
id id idΣ + Σ

in each sum over E: π(E) D [0, ί].
By translation invariance, the sum over s in (3.16) equals ίP, and c0 and ct are

ί-independent constants (c = co + ct). Finally, by Lemma 5b), |/(0,i)\^O{β2t).

Proof of Theorem 1. a) We write

(ΐ E^ h ( £ ) )-
By Lemma 6 we know that

(β/NYexpfΣ°'f ^ Γ ( ^ f ( £ ) ) -exp(-m o t), with m o= -lnjβ + lnJV-P, (3.17)

where P is defined by (3.15).
This proves the claim about the mass mo(β), since P(β) is analytic in β(ζ(E) is a

power of /? and the series over E is convergent by Lemma 5).
All we have so show is that

This is an argument typical of a central limit theorem (see [12]). We split the sum
over E into two parts: the sum over the "unit excitations" E(ε') = δεε, for ε such that
|h(ε)| = 1, /(ε) = 1, and the rest.

By explicit computation the first sum gives (there are d—ί unit excitations):

α = l

For the rest, we write

for some 0, 0 < θ < 1. The linear term, jk h(£), vanishes when we sum over E, by
symmetry. The quadratic term is of order O(β2)t\k\2. The β2 comes from the fact
that the smallest excitations in this sum have at least l(ε) ^ 2. The sum is of order t
by an estimate similar to Lemma 5a): we have to include |h(£)|2 in the sum, but
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, and since we have an exponentially decreasing factor, βm

in £(22), the extension is straightforward.
The final result is that the first term dominates for small β, since cosfeα—1

2
^ 2 k«> f°r W^ π » a n 4 if we integrate,

-1))<*k~ ^ J ^ , (3.18)

since the dominant contribution comes from small |k|.
b) Using (2.3) and Lemma 4b, we have

0

By Lemma 6, we can write this last expression,

with m0 given in (3.17). Therefore we have
00

lim J e~ijn~mΌ)tdμ(m) = ec,
ί->oo 0

which proves the presence of a point measure in μ at m = m0 with coefficient ec. If we
write

μ = ecδ(m — m0) + μ!,

we have by (3.19)

] e-mtdμ'(t)~β2te-mQt,
o

which proves that swppμ'C[mu oo[ with m1(j8)~3|ln/?|, i.e.

mθ(βyml(β)~*l/3 &S β—>0.

IV Proof of Theorem 2

We write the proof for N=l; when JV = 2 it follows from similar correlation
inequalities. Our proof is based on Lebowitz' [31] and Aizenman's inequalities
[23, 24] that yield upper and lower bounds on the truncated energy-energy
correlation function in terms of sums of products of two-point functions. Then we
use Theorem 1 to prove that, for d^4, these upper and lower bounds have indeed
the same decay, namely

exp(-2moί)
1—, (4.1)

with c independent of β.
Let |x| = l, y = ί + x, where we write t for (ί, 0), and consider (sosx;stsy}.

This is bounded from above, using Lebowitz' inequality [31] by
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syy + (sosy}(sxst}, which indeed behaves like (4.1), by Theorem 1.
The β dependence of the proportionality constant in Theorem 1 is made explicit
here. It can be found by looking at (3.18).

For the lower bound, we use Frδhlich's version [24] of Aizenman's inequality:

<sosx; stsy} ^ <5oSί> (sxsyy + (sosyy <S j A> - β 2 R , -βR2, (4.2)

where Rί is a finite sum of terms of the form

Σ (sosvy (swsxy (sysuy (svsty,
U, V, W

\v-w\ = ί
\v-u\ = l

and R2 is a sum of terms of the form:

Σ / c c \ /c A / c c \
\ύ0ύu/ X ĵĉ ί/ \ύtύy/

u:
\u-t\ = l

"Of the form" means that we have to sum over some permutations of indices. Now
we show that there exists a β independent constant c such that

< £exp(-2m o ί )

and

exp(-2moO

since, in (4.2) β2 multiplies R1 and β multiplies R2, we have a lower bound of the
same form, (4.1), as the upper bound, and having a positive coefficient for β small.

For simplicity we consider, of all the terms contributing to Rx, the one where
w = M = f + x, and we take x perpendicular to the t axis; thus we have, by
translation invariance,

Σ <sosvy(sxsv+xy(sv+xsyy(svsty= Σ (s0svy
2 (svsty

2.
veZd veZd

All the other terms are similar; we write

+ 00 ί/2

Σ •••= Σ Σ . . . = 2 Σ Σ ..., (4.4)
veZd s=-ao v: s= - oo v:

V\ = S Vι =S

where vt = (vl9 0) is the projection of v on the t axis and the last equality follows
from symmetry.

The following inequalities follow from reflection positivity (see e.g. [32] and
references therein): Let vί <v\ <ί,

. (4.5)

Moreover, if v1^t/2, we have, by Theorem 1,

( ; ^ » ) ) ( 4 . 6 )
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In (4.6), d—c(]/l)d~ \ and we made explicit the β dependence, using (3.18), i.e., c is
independent of β.

Now the sum over s e ] — oo, 0] can be handled easily: by (4.5), (4.6), if vt ^0,

^C (βt\d-ί

and

Therefore, we have (4.3) for that part of the sum (even without the β * factor).
ί/2

Now we consider the sum Σ i n (4.4): we bound (svst}
2 by (sVίst}

2, and we use

(4.6). So,
ί/2 c' ί/2

Σ Σ {s0sυy
2 (sυst)

2 £Ξ (R\d-1 Σ exp( —2mo(ί—s)) Σ (s0sv}
2. (4.7)

s = 1 v: \βt) s = 1 v:
Vι =S Vι=S

We use the method of proof of Theorem 1 to bound Σ (s0sv}
2. Write

v = (vu\) and consider: υ " L s

Σ <s<>Su><sosΌyδ(μ-v)
uί = vι=s

Σ <S0Stt> (SoS,
Uι=S

The second factor is bounded, using Theorem 1, by

cexp(-2mos), (4.9)

where c is independent of β. The first factor is <<5(u — v)>, where the expectation
value is taken in an ensemble of pairs of #-sets of polymers going from 0 to the
hyperplane Hs passing through s. It is easy to see, by going through the proof of
Theorem 1, that this constraint plays exactly the same role as the delta function
δ(h — x) in an ensemble made of single g-sets of polymers. Therefore, we obtain as
in (3.18),

l = τ f exp(-φ|k|2)rfk,< ό ( o γ ) > ^

where c is ^-independent. Inserting this bound and (4.8), (4.9) into the sum (4.7) we
get

c

f

c π t/2

( 2 t ) J Σ exp(-φ|k|2))dk.
-πs=l
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The last integral is bounded by

1

Aa-exp(-c/?|k|2r~ = ~V/V'
i f d - 1 ^ 3 .

This finishes the proof of the bound (4.3) on Rίm The bound on R2 is easier: we
sum a finite number of terms, each of which is bounded by

exp( — 2mot)

V. Proof of Theorem 3

The proof of Theorem 3, as well as the one of Theorem 4, will be a variation on the
theme of the proof of Theorem 1. Therefore, we shall not repeat all the details.

The main new step of the proof of Theorem 3 consists in rewriting (sosx)
— (m*)2 in a suitable form; for this we use a representation due to Kunz and
Souillard [33], and based on the low temperature expansion of Minlos and Sinai
[34]:

Lemma 7. For β large enough,

Γ4 Σ ^[W|- l ) , (5-1)
O,xeintΓ J /

where the sum is over all functions Γ: {closed contours y} ->N, φτ(Γ), Γ\ are defined

as in Lemma 2. z(Γ)= Y\z(y)Γ{y) and z(y) = exp( — 2βJ\y\), |y| = number of broken
y

bonds in y. Since y is closed, it has an interior, denoted Inty. We define IntΓ as
follows:

L e t ()-(~ι & x e l n t y
SχJ \ + l if xφlntγ,

and

Then x e IntΓ, by definition, if sx(Γ) = -1.

Proof First of all, if β is large, we can work with the < > + state obtained with +
boundary conditions instead of the < > state (they coincide in the thermodynamic
limit on even correlation functions). Then,

ΓCΛ y,y'eΓ

where c{A) is a Λ-dependent constant. The sum runs over maps satisfying Γ! = 1;

Σ φ(Γ)z(Γ)sΛ(Γ)

Σ Φ{Γ)z{Γ)
ΓCΛ
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with

Φ(Γ)= Π (1+ίKy,/)),
y.y'eΓ

- 1 if yny'Φ0

0 otherwise,

xeA

If one uses the multiplicative form of sA(γ), (5.2), one gets:

and since

sosx(Γ)-so(Γ)-sx(Γ)+l=(so(Γ)-l)(sx(n-l)

is non-zero only if 0,xelntΓ, we have proven (5.1).

Remark. This lemma holds also for d = 2.

Proof of Theorem 3. Since 0 < m* < 1 for β large, and since expy — 1 ~ y if y->0, it is
enough to show that

Σ -y|-z(Γ)^ t(d_ί)/2 .
O,(ί,O)eIntΓ

Since this formula is similar to the one of Lemma 2, the proof will follow the
same pattern. However, the contours are not made of lines and we have to perform
a slightly different geometrical analysis. A contour in d = 3 is a connected set of
plaquettes (elementary squares) crossing the broken bonds of the configuration. If
p is such a plaquette we write

, fl if pey
Ύ(P)=\O if

and

A plaquette is regular if
-Γ(p) = l
- p is parallel to the t axis
- there are only 4 plaquettes (including p) having the same projection on the t

axis.
A connected set of regular plaquettes is a regular tube. In order to motivate

such definitions, consider the smallest contour γ such that IntyaO, (ί,0).
Let us decompose Γ = {p\Γ(p)^l} into maximally connected regular tubes

and maximally connected sets of irregular plaquettes. The latter are called
excitations. From now on, the proof simply repeats the one of Theorem 1.
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In order to estimate the size of the upper gap, we must find the excitations ε
such that ί~(ε) <0 and ί+(ε) ̂  t with the lowest possible energy; these are given by
long tubes whose intersection with each plane Έ2 perpendicular to the time axis,
between 0 and ί, is a rectangle made of two adjacent plaquettes. The weight of such
an excitation is: ζ(ε)~O(e~(6β~4'β)t). Therefore the sum over these excitations
[corresponding to /(0, ί) in Lemma 6] is O(e~2βt). So mo~4β and m1

= 6β, which justifies (2.8).

VI. Proof of Theorem 4

a) The analysis of P(t) is quite similar to the one of the sum over contours in the
preceding section:

P(t)= Σ Gτ(p(0),p(ί,x))= Σ Σ e- τ | s |

x e Z d ~ 1 x e Z * " 1 S:
dS = p(O)(jp(t,x)

We decompose each surface into regular tubes and excitations as in Sect. 5.
Since we sum over x, the sum over excitations is unconstrained and we have

By an argument similar to the proof of Lemma 6,

Σ

where P is the pressure of the gas of excitations, c is the boundary term and /(0, t) is
a sum over excitations such that π(£)D[0, t] [see (3.14)]. Of course,

(6.2)

and |/(0, ί)| ̂  O(e~2tτ), as in the Ising case. However, we can do better than just
bound /(0, t). We shall decompose the £'s entering the sum in /(0, t) into new
"regular parts" and new "excitations" and then use our previous expansion
another time to show that

/(0,ί) = Ci<Γmiί + O(e-m2ί), (6.3)

which, inserted in (6.1) together with suitable estimates on m1 and m2, proves a).
As we mentioned in the proof of Theorem 3, the excitations with lowest energy

having the property that π(E)D[0, ί] consist of rectangular tubes; we define a
plaquette to be regular, in the new sense of the word, if it is parallel to the time axis
and if there are only six plaquettes (including itself) having the same projection on
the time axis. Then one has new excitations defined as connected sets of irregular
plaquettes.

Given these definitions, we can apply our expansion to /(0, t); it is completely
similar to our previous.proofs and it leads to (6.3).

b) We can just repeat for Rv+h(t) the analysis made for P(t). The regular pieces
are tubes of 4 plaquettes parallel to the time axis. Physically, one could say that the
state corresponding to rv or rh jumps into a lower energy state represented by p.
However, this is not possible for Rv_h(t):
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c) In Rv-h(t) we have a "superselection rule" that eliminates all regular tubes
made of four plaquettes parallel to the time axis. Indeed, consider a surface S
containing such a tube. Construct the surface S' which is identical to S to the left of
that tube and including it, but where everything to the right of that tube is rotated
by f. Then, if S contributes to the sum defining Gτ(rυ(0), rv(t, x)), S' contributes to
Gτ(rv(O), rh(t, x)) and vice-versa, so they cancel each other in Rv-h. Thus we are left
with surfaces with no regular piece in the sense of a 4 plaquettes tube.

Now we define a new regular part as a tube of 6 plaquettes (just like in the
expansion giving the bound state in P(t) above). However, we still have to keep
track of the minus sign in the definition of Rv _ h. In order to achieve this we assign a
+ or — sign to each excitation as follows:

By definition, there is a regular tube to the left and one to the right of each
excitation. If they have the same orientation (both horizontal or both vertical) we
assign a + sign to the excitation. If they have different orientations, we put a minus
sign. Making the product over the excitations gives the correct sign since there
must be an even number of changes of orientation in Gτ(rr(0), rv(t, x)) and an odd
number in Gτ(rv(0), rh(t, x)). From then on we can simply use our method to finish
the proof of c).

The estimate on the difference m1 — m'1 between the two bound state masses
follows from a simple calculation to first order in perturbation theory:

The mass mx and m\ are both given, to leading order, by 6τ. The corresponding
pressures P, P' have a convergent Mayer expansion in e~τ. Let us compute the first
term in both expansions. They come from the smallest excitations: Remembering
that the regular tubes here consist of 6 plaquettes, we see that the smallest
excitations consist of 2 plaquettes connecting two tubes; one being rotated by § or
translated upward or downward by one unit with respect to the other. However,
the difference between P and Pf comes from the - sign that is given to a rotation
off.

Doing the arithmetic (there are 6 such excitations, two translation and 4
rotations) gives

And, therefore, to leading order in e~\ \m1—
o~2τ

VII. Concluding Remarks

1) In the two dimensional Ising model at low temperatures, it is well known that
the Ornstein-Zernike decay fails. The power-law correction is t~2 and not ί"1/2.
This is fairly easy to understand from the point of view of our method. In the
contour expansion (5.1), all contributions come from contours containing 0 and x.
In two dimensions, such a contour is approximately given by two lines joining 0
and x. The two lines fluctuate independently except for the fact that they cannot
cross each other. Imposing the constraint that one line (or rather its projection on
the vertical line perpendicular to the t axis) comes back to the origin after a "time" t
induces a decay like t~1/2, just like in the high-temperature situation. Now, if we
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look at the random process given by the difference between both lines, it feels the
constraint of coming back to the origin for the first time after time t (because the
two lines cannot cross each other): This produces a decay factor t~3/2. The product
of both factors (the two conditions are essentially independent) gives t ~ 2. It is easy
to understand that the addition of a next nearest neighbour coupling or of an
external field restores the Ornstein-Zernike decay: in this situation the two lines
become bound together and fluctuate as one single random line, thus producing a
ί~1/2 correction to the exponential decay (see also [35, 11]).

2) The first remark can be extended to the analysis of the energy-energy
correlation function for β small in all dimensions. Using the high-temperature
expansion, one sees that the dominant contributions come from two non-
intersecting random lines joining 0 and t. In two dimensions, this should, for the
reasons explained in Remark 1, produce a Γ 2 decay. This is the exact behaviour
[22] (the relation between this decay and the low temperature one for the two-
point function was analyzed in [36] using duality).

However, the only interaction between the lines is a repulsive one and
moreover, it is a kind of point-like interaction. Therefore we expect that this
interaction plays no role in dimensions d greater than 3 and the two lines fluctuate
as if they were independent: we have to consider d— 1 dimensional random walks
obtained by projecting the random lines on the "space" hyperplane perpendicular
to the "time" axis. In quantum mechanics a repulsive point interaction plays no
role in dimensions greater than or equal to two [37] (i.e. here d— 1 ̂ 2). Therefore
we expect a decay of the energy-energy correlation function just like the square of
the two-point function when d ̂  4 (this is the content of Theorem 2) and possibly
logarithmic corrections in the "critical" dimension 3 (since we are on a lattice).

This is in agreement with Polyakov's calculation predicting at~d+1 power law
for d^4 and a ί~2(lnί)~2 decay for d — 3. Another way to understand this result is
simply to count a t~{d~1)/2 decay because one walk has to come back to the origin
at time ί, and to multiply it by the appropriate decay factor due to the fact that the
difference of the two walks comes back to the origin for the first time at time t: this
event has a probability of order ί~(d~1)/2 for d— 1 ̂  3 because the walk is transient
and the constraint that a return be the first return plays no role asymptotically.
However, for d = 3 we get a decay ί ' ^ l n ί ) " 2 for this first return. This, multiplied
by t~ι again leads to Polyakov's result. However, in this case, we have no proof.

There is a striking similarity between these power-law corrections and the
power-law decay at the critical point in at least two respects: there is a critical
dimension, equal to three here, above which mean field theory is correct and which
is characterized by logarithmic corrections to mean field theory. Moreover, the
above discussion shows the relevance of intersection properties of random walks, a
typical feature of critical point theory. However, here we deal with intersections of
two walks at the same time, while it appears that the intersection of the paths is the
relevant quantity for critical phenomena [23, 24].

Although one is dealing with a high-temperature situation where the theory is
massive and non-critical, the similarity with critical phenomena is as follows: the
high-temperature lines joining 0 and x have a weight that is exponentially
decreasing with their length, and this produces the mass. However, the power-law
corrections, as our analyses have demonstrated, have their origin in the transverse
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fluctuations of the random line. These are not massive in any sense, and the
question of their Gaussian or non-Gaussian nature is equivalent to the Ornstein-
Zernike (or mean field) decay or to violations of this decay.

3) In this remark, of a more technical character, we relate our method to the
one of Gallavotti [12]. Instead of using a complete expansion, as we did in
Lemma 2, we could resum part of the expansion and write:

<so sx>= Σ 3(ω)
ω:O->x

(see [11]) where

3(ω) ̂  0, 3(ω) = exp( - c(β) \ω\ + U(ω)),

with c(jS) = |lnj?|, and U(ω) can be written, using the high-temperature expansion
and the Mόbius inversion formula, as a sum of many-body potentials representing
the interactions in the gas of excitations. These potentials are nicely decaying and
small for β small. The factor exp(—c(β) \ω\) gives a small activity to the excitations,
and thus we obtain a convergent Mayer expansion for this gas. This is closer
technically to Gallavotti's paper [12].
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