
Communications in
Commun. Math. Phys. 98,435^48 (1985) MathβlTISrtiCal

Physics
© Springer-Verlag 1985

A Note on the Boson-Fermion Correspondence
and Infinite Dimensional Groups

A.L. Carey1 and CA. Hurst2

1 Department of Pure Mathematics and
2 Department of Mathematical Physics, University of Adelaide, G.P.O. Boc 498, Adelaide,
South Australia 5001

Abstract. We show how to construct irreducible projective representations of
the infinite dimensional Lie group Map (S1, T), by embedding it into the group
of Bogoliubov automorphisms of the CAR. Using techniques of G. Segal for
extending certain representations of Map (S1

?SU(2)) we show that our
representations extend to give representations of a certain infinite dimensional
superalgebra. We relate our work to the well known boson-fermion corre-
spondence which exists in 1 +1 dimensions.

1. Introduction

Recently Frenkel and Kac [1] constructed representations of certain infinite
dimensional Lie algebras. While this note was in preparation Frenkel related their
work to current algebras and the boson-fermion correspondence [2]. Now in 1 +1
dimensional field theory one can construct representations of current algebras
using automorphisms of the CAR algebra for the 1 + 1 dimensional Dirac field [3].
We became interested in the connection between [1 and 3] as a result of the work
of Graeme Segal [4] in which he constructs projective representations of some
infinite dimensional Lie groups of which the Frenkel-Kac representations are the
Lie algebra versions.

The resemblance between [3 and 4] is intriguing although the representations
determined by us have more to do with Lie superalgebras than Kac-Moody
algebras. It would be interesting to explore the superalgebra connection further.
However we content ourselves in this note with the problem of making explicit the
connection between [3 and 4], and hence with [1].

We adopt a simplified model of fermions, namely we construct the CAR
algebra over I?(SX

9 <C). In field theoretic terms this amounts to taking the massless
Dirac equation in 1 + 1 dimensions in "light cone coordinates" so that the 2
components of the field can be separately dealt with and then imposing a periodic
box cutoff. We do this simply because all the calculations can then be made
explicit.
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The group MapίS^T) of smooth maps from S1 to the circle group acts on
I?(S*,([!) as unitary multiplication operators. As such it imbeds in the group of
Bogoliubov transformations of the CAR algebra over L2(S*,([!). Representations
of this group of Bogoliubov transormations then determine (projective) represent-
ations of Ma.p(Sx,T). In Sect. 2 we make this explicit for a particular case and
determine the 2-cocycle on Map(S1, TΓ) which so arises. It turns out to be a cocycle
of winding number one in Segal's terminology [4]. In contrast [1, 2, 4] are
concerned with cocycles with winding number two. Our case is of interest because
in principle representations corresponding to a cocycle of winding number n can
be obtained by decomposing a tensor product of n copies of a winding number one
cocycle representation.

In [1] and [4] an "extension theorem" is proved which shows that certain
projective representations of MapίS1,!!) extend canonically to MapfS1, SU(2)).
For our case this result amounts to a special version of the construction employed
by Dell-Antonio, Frishman and Zwanziger [5] (in connection with the massless
Thirring model). There they showed how to take certain boson fields (in fact
currents) and construct fermion fields as functions of them. This is an example of
the boson-fermion correspondence which exists in 1 +1 dimensions (and originally
exploited by Coleman [6]).

Thus our second result is an explicit operator version (for free fields) of this
boson-fermion correspondence. To some extent this settles doubts which have
arisen as to the validity of the boson-fermion correspondence [7, 8].

We conclude with some miscellaneous remarks about the Lie group represent-
ations obtained in this note and about "models which predict their own
superselection sectors."

A different approach to these questions has been taken by Heindenreich et al.
[9] and Frenkel [2] using Lie algebra methods. The former paper obtains similar
results while ignoring points of rigor.

Frenkel [2] on the other hand has examined the boson-fermion corre-
spondence for a different current algebra leading to results analogous to ours for
"QED-like" models in 1 +1 dimensions. It would be useful to understand in more
detail the relationship between our approach and [2], although superficially his
construction is a "tensor product" version of ours.

2. Automorphisms of CAR

We begin with a discussion of the notion of index of a Bogoliubov transformation
developed in [9]. We let Jf be a complex Hubert space and si the C*-algebra of
the CAR over j f generated by {a(h),a*(h)\heJ^} with

If P+ and P_ are orthogonal projections on tf with P++P-=I then an
irreducible representation πP_ of si is defined by the state ωP_ :

(*(K)*<frά *(hM) afoi)) = Km det <ft, P_ A,>*
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We let ^ denote the group of unitary operators U on J f such that P+ UP_ and
P-UP+ are Hilbert-Schmidt. Then % is the group of operators for which the
automorphism of si defined by a(h)^a(Uh) is implemented in πP_ in the sense that
there exists a unitary operator Γ(U) in the Hubert space of πP_ such that

Γ(U)πP_(a(h)) Γ(UΓx = nP_(a(Uh)).

From the relations [/£/* = / and U*U = I we have

P+ UP+ U*P+ + P + UP. U*P+ =P+ =P+ U*P+ UP+ + P + U*P. UP+ ,

so that P+ UP+ is invertible modulo the ideal of compact operators on P + J f and
so is Fredholm. Moreover when P+ and P_ both have infinite dimensional range,
the map ί: C/-> Fredholm index of P+ UP+ has the properties

(i) ί: ty-^TL is a homomorphism;
(ii) ker i is the connected component of the identity of ty in the topology

defined below.
We can consider two topologies on °U determined by saying that a set {°U^ in °U

converges to U if and only if

in Hilbert-Schmidt norm and

P + UaP+ + P _ ί/αP_->P+ [7P+ + P _ C/P_ ,

in eίί/zer the uniform or the strong operator topology. The former topology is
rather more natural from the viewpoint of the Fredholm theory used in [10], while
the latter is more natural if one considers the question of continuity of U->Γ(U) as
a (projective) representation (see [11]). In either topology the connected compo-
nents are the same [11].

We now specialize to the case where Jίf = I}(Sί

9(C) with S1 the unit circle and
P + and P_ chosen to project onto the positive (plus zero) and negative Fourier
components respectively. So if

^ i n s , s G [ 0 , 2 π ) ,
]/2π

then

]/2π n<o

Of course P+Jf? = J f + are the usual Hardy spaces associated with the unit disc
consisting of functions analytic inside (outside) the disc and L2 on the boundary S1.

A particular class of automorphisms of the CAR over Jf7 was considered in [3].
Let y# = Map(S1,T) and observe that Jί acts on L2{S\<E) by multiplication:

(Uφg)(s) = φ(s)g(s), φeJt, ge L^S1, C).

That {Uφ\φeJί} forms a subgroup of °il follows using

trace(P_ U$P+ UφP-)=^ Σχ kφϊΦk

<oo
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for φ smooth and

φ ( s ) = ^
y l π

For this simple case the standard theory of Toeplitz operators [12] gives
t(Uφ)= —w(φ)9 where w(φ) is the winding number of φ. By forming the
representation πP_ of the CAR algebra over L?(S1,(C) we obtain a projective
representation φ-^Γ(Uφ) oίJί. The connected component of the identity of M9 say
Jίθ9 consists of those φ with winding number zero. As in [4], every φ e M can be
written φ = eif with / :R->R satisfying

/(s + 2π)-/(s) = 2τm, neZ

independently of s e S1.
Our aim in the rest of this section is to describe in some detail the projective

representation φ-^Γ(Uφ) of M. Although for each φ e J?,Γ(Uφ) is determined only
up to a phase factor, given any pair φl9 φ2eJt with φ} = expίfj(j =1,2), there is a
real number <τ(/i,/2) such that

Γ(Uφl)Γ(Uφ2) = Qχp-iσ(ϊuf2)Γ(Uφ2)Γ(Uφί), (2.1)

and which clearly does not depend on the choice of phase for Γ{UΦ).
On the other hand if we make a choice of phase for each Γ(UΦ), then we

determine a 2-cocycle on M from the relation

Γ(Uφι)Γ(Uφ2) = exp -iσCΛ.Λ) Γ(UΦίΦJ
with

σσi,/2) = σ(/ 1,/ 2)-σ(/ 2,/ 1).

Now from [13] or [15] one knows that the 2-cocycle identity for the cocycle

φ l 9 ^2
implies that the map φί9 φ2-*™p — iσ(fu f2) ^s a character in each variable
separately and furthermore [13,14] that it determines the cohomology class of σ
completely. Our first task then will be to calculate σ.

For each φ = eif e J?o we have a one parameter group r^eirf = φr in Jίo(r e R).
From [16] we know that we may choose the phase of Γ(Uφr) so that r-+Γ(Uφr) is a
strongly continuous one parameter group and hence Γ(UΦ) = QxpίrJ(f) with /(/)
(unbounded) self adjoint. One also has [16] the fact that vectors of the form

πP_(a*(hί)...a*(hMgm) . a(g1))Ω

are in the domain oϊJ(f) and hence the phase of Γ(Uφr) is completely specified by
requiring that <Ω, J(/)Ω> = 0. We now record

Lemma 2.1 [16]. For φ} = eif^eJί0,j=\, 2,

ί (2.2)/ 1 P + / 2 P_)= τ

zπi
where A
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We omit the proof as it follows directly from the results of [16]. The formula
(2.2) for σ{fuf2) may be rewritten as

Lemma 2.2. Let Vg{s) = eisg(s) and φ = eifeJί0. Then

O, Γ(Uφ)Ω),
]/2π

where the phase of Γ(UΦ) is chosen as in the paragraph preceding Lemma 2.1 and

fo=)f(s)ds.
]/2π o

Proof. Notice that the relation we have to prove does not depend on a choice of
phase for Γ(V), so we may make for the moment some arbitary choice. Then the
vector Γ(V)Ω defines the state ωVP_F_i on si corresponding to the projection

P/_ = F P _ F " 1 . On the other hand, with eo{s) = -7=, seS1, the vector
|/2π

πP_(a*(e0))Ω satisfies

for all 0eL2(S\<C) so that

, πP_(a*(h)a{g))πP_(a*{e0))Ω> =

Hence one may conclude that the vector πP_ (a*(eo))Ω defines the same state on si
as Γ(V)Ω. But πP_ is irreducible and so these two vectors differ by a phase (see also
Ruijsenaars [17] for this fact). But then

<Q, Γ(V)~1 Γ(Uφ)Γ(V)Ω} = (e0, f eo}L*,

from which the result follows.

Now write V—eiv and note that σ(nv, f) = f0 by Lemma 2.2, so that for φί9

' '2%
φ2 having winding numbers nl9 n2 respectively we have exp^/i — n^v) and
expi(/2 — n2v) in JίQ. Using the character property of eιS we have

+ #(fi-n1v9n2v)'].

By (2.2) and Lemma 2.2, the only term on the right-hand side which we have not
determined is e

id{nίV'n2V\ and this is easily seen to be identically one. We now find
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We now develop some consequences of the preceding calculations. Denote by

if the space of smooth functions / from S1 to R such that \ f{s)ds = 0. Notice
o

firstly that (2.1) implies the relation, for /,

>, J(fΊ] - £ iσ(f Π = 7r Σ kfffί. (2.3)
2π fe

Now observe that σ is a non-degenerate skew-symmetric form on Ψ* which is
the imaginary part of the inner product:

</?/
/> = ̂ Σfe/ fe*Λ/. (2.4)

If Ϋ denotes the completion of 'V in the resulting norm then if becomes a complex

Hilbert space where multiplication by j / — ϊ is defined by the complex structure C,

+ 1 fc>0
= iε(k)fk,ε(k) =

Now define

β(f) = W( f) + iJ(Cf)), β(f)* = W(f) ~ U(Cf)).

The general results of [16] when applied to this situation give the relation

<β, J(Λ) J(/2)Ω> = KΛ, / 2 >. (2.5)

One also has

Wfi\β(f2)*l-=KfiJ2> (2.6)

and from (2.5)

2 = O, (2.7)

and hence β(f)Ω = 0 for all / e f Thus β(f) and j8(/)* are annihilation and
creation operators while (2.6) to (2.7) imply by standard arguments that

(Ω, expiJ(f)Ω} = exp - i</, / > . (2.8)

We conclude then that the cyclic representation of Jί0 generated from Ω by the
Γ(UΦ), φeJ?0, is just the Fock representation of the canonical commutation
relations (2.3). That is /->/(/), / e ̂  is a "free bose field."

Theorem 2.3. T/ze projective representation φ-*Γ(Uφ) of Jί is irreducible. On
restriction to Jt0 the Hilbert space decomposes as a direct sum (J) J ffc, where 3tfk all

fceZ

carry the Fock representation of the CCR (2.3) and the scalars y in Jί0 act on 3tfk by
multiplication by γk.

Proof. We could appeal to Uhlenbrock [18] for this result. Alternatively the proof
of the main result of [3] can be adapted to this situation. We sketch how this goes.
Firstly define vacua Ωk for the boson field f^J(f)9fef by Ωk = Γ(V)kΩ. Then
JfΛ is defined to be the subspace of the Hilbert space J^ say, of πP_, generated from
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Ωk by the action of {Γ(Uφ)\φeJί0}. It is straightforward to verify that <F
decomposes into a direct sum, indexed by Z, of the representations of the constant
subgroup of Jί0. [This is because the generator of the one parameter group
r-^Γ(eir), r eR, is the usual charage operator for the representation πP_ of J/ . ]
The only problem then is to check that the space Jfk exactly coincides with the
space on which the constants γ act by γk since each 2tfk carries the Fock
representation of the CCR (2.3). Now the Γ(Vf intertwine the different spaces so
that it is sufficient to verify that ^f 0 coincides with the space on which the
constants act trivially. In [3] we developed an argument, using this "Hardy space"
picture of the fermion and boson fields, which showed precisely this fact. This
concludes the proof.

Let us now complete this aspect of the discussion of the projective represent-
ation of Jί by giving a phase choice which leads to the 2-cocycle on Ji introduced
in [4]. This cocycle is given by

1 2 π ά f M 1

o{hJ2) ^ I J±1f2(s)ds+ ^(/1(2π)-/1(0))/2(0). (2.9)

An appropriate phase choice leading to (2.9) is given by choosing the phase of
Γ(Uφ), for φ e JiQ as in the discussion preceding Lemma 2.1, choosing that for Γ(V)
so that Γ(V)Ω = πP_(a*(e0))Ω, and then defining

Γ(Vn) = Γ(V)n e x p i φ -1) σ(υ, v)/2,

) = Γ(UφV-n)Γ(Vn)expίσ(f-nv,nv),

where n = winding number oίφeJi. It is then straightforward to check that the
relation

holds for all φi9 φ2 in M.
We turn now to a result which will be important in the next section. Following

[4] one may define an action of a double cover of the circle group T on the central
extension of Ji determined by σ via

) = ( zexp --n(/(α)-/(O)) U I (2.10)

where zeT, αe[0,2π], φ = eifeJi, n is the winding number of φ and
x1). This action is automorphic and furthermore we have

Lemma 2.4. The action (2.10) is implemented on $F by the operator R(oή, where

R(oc)Γ(Vn) jS(/i) ... β(fm)* Ω = e^1 Γ(Vn) β(fj*... β{fmf Ω, with fj e Ϋ
fJ1)U 1\
Proof. The action of R(oc) on ^f 0 is determined by the fact that the map /->/α is
unitary on Ψ' and so is implemented in the Fock representation on Jf0.
Consequently it is sufficient to determine the action of R(oc) on the vectors Γ(Vn)Ω.
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But this is forced by requiring R(oc) to implement (2.10):

R(<x) Γ(Vn) Ω = R(a) Γ(Vn) JR(α)"1Ω

= e~in2al2Γ(einaVn)Ω

= ein2a/2Γ(Vn)Ω.

We conclude this section by introducing some notation.
As we have a representation πP_ of the CAR algebra over L2(S\<C), we may

define "fermion fields" by

φ(Λ) = πP.(α(Λ)), heL2(S\C).

Annihilation and creation operators of "momentum" k e Έ are defined by

ak = ψ(ek), k^0 ("particle" annihilator),

b^ = ψ(e-k), k>0 ("antiparticle" creator),

where ek(s)=-^=eίksseSί.
|/2π

Remark 2.5, We may make contact with the usual field theory formalism by
introducing the quadratic form

(Ί γ>
, seS\ where 0(x)= =Ψ\»j— / - — ^ ^ v ^ V ' 2J"Ί > w \ * 2J"-U> ^ ^ - " 5 " 1 1 V ^ v V Λ / ~ ) Q

As in [3] we can identify J(f), fei^, with the Wick ordered product:

J(f)=i:φ(s)*φ(s):f(s)ds

This is not necessary for the ensuing discussion but is useful for making contact
with results in the physics literature.

3. The Boson-Fermion Correspondence

Physically, the basic idea of the boson-fermion correspondence in 1 +1 dimensions
(cf. Coleman [6]) is that, in certain models, one can write down formal functions of
boson fields having the vacuum expectation values and statistics of fermion fields
and vice versa. The fact that in 1 +1 dimensions massless fermion currents are
boson fields is an example, and of course the analysis of the previous sections is just
another aspect of this. The problem of rigorously defining operator valued
distributions having the basic properties of fermion fields by taking functions of
boson fields is rather more delicate however. In this section we observe that the
construction employed by Segal [4] is another case of that used by Dell-Antonio,
Frishman and Zwanziger in the massless Thirring model.
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Mathematically speaking, what was observed in the previous section is that by
embedding MapίS^ΊΓ) into the group of automorphisms of si we obtained an
irreducible projective representation of Map(S1,!) acting on the Hubert space of
the representation πP_ of si. It is natural then to ask if the procedure can be
reversed, namely is there a simple way of defining the elements of si in terms of the
operators representing M a p ^ T ) .

We begin as in [4] with an approximate step function

defined as a sum q-a+fa*χ+fa~χ by

Γl α'>α

As λ-> 1, faλ-+2πθa, where θa{(x!) = <{ 1/2 α'=α. Our representation of M satisfies

10 α'<α
(see Lemma 2.4) all the requirements of Proposition 4.1 of [4] (except that the
cocycle is different) so that the existence of the following limits may be established
in the same way. For simplicity of notation we will write in this section Γ(UΦ) as
Γ(φ) for φeJl. Let 7α,λ = expϊ/α,λ and fΛfλ=?a,λ-q-a, then

[To see this, use the definition (2.9) of σ]
The limit

exists just as in [4].

We sketch the arguments for the reader's convenience. With en = en + e_n, let

β* = β(en)*, and βn = β(en), n>0.

Then χn

«>o w
with a similar expression for β(fa>λ). By expanding the exponentials in terms of
and βn, one obtains

™ Dn,
n

where Cn maps the eigenspace, of the generator of the rotation group of S1, in #",
corresponding to eigenvalue q, say J^, into J ^ + π and Dn takes <Fq to # g _ Λ with
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3Fq _ n = (0) if q < n by Lemma 2.4 (which implies that the generator of rotations is a
positive operator). So on Jffc:

Ba= Σ e^-m-k)aΓ
0

This expression is not in fact an operator from J^k to J^k+l9 but note that when
acting on 3Fq the sum over n is actually finite. The sum over m is made finite by
letting g: S 1 ->C be a trigonometric polynomial and setting

= -±= \g{a)Bada9

V2π J
or more precisely, writing Ba λ for the expression on the right-hand side of (3.1) and
noting that ,

exists for all ζ in the subspace of J^k consisting of finite linear combinations of
eigenvectors of the rotation group. In fact this subspace is invariant under the
action of B(g). This observation means that the manipulations in Lemma 3.1 below
are easily justified. Before stating this result note that the adjoint B* oίBa is defined
via

and

We remark that the factor e'* in Bx is replaced by — i in B* because

Γ(e*«- Γ 1 = - i e f a Γ ( e i ί - ) .
On Jfλ, B* has the form

B*= Σ e-i(m-"-k+1)*Γ(eiq°y1CmDn,

where Cm, Dn are defined similarly to Cm and DΠ, and take J ^ to J ^ + m and J ^ to
J%_Π respectively.

Now we have

Lemma 3.1. For / e TT and #, ft e L2(SS C), we
(i)

(iii)
(iv) [Bto), B(fc)] + = 0 = [B{g)\

Proo/. We follow Proposition 4.2 of [4].

(i) U(fl BJ _ = lim [/(/), Ba J _ and £α> A differs from Γ(yΛι λ) by a constant so
Λ->-l

that using the definition of σ there is a function /A(α) with

and fλ(θί)^f((x) as Λ->1. Hence (i) follows with (ii) similarly.
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(iii) We calculate [#«,#*]+ = lim [ β α λ , β*>A] + .On the right-hand side we
obtain A " 1

Γ ^-° , ! 1

The factor in brackets converges to 2πδ(a — a").
(iv) A calculation similar to (iii) gives the analogous factor in brackets as

-ίeia'(ί-λ2eίia-a'))-ieia(ί-λ2e-ί{a-aΊ),

which converges to zero as λ->l.
Note that the anticommutation relations in (iii) and (iv) allow us to extend from

trignometric polynomials to arbitrary elements of I}(Sί

9 <C) as smearing functions
for the Ba.

In [4] the corresponding limiting operators B(g) were found to satisfy the
commutation relations for a projective representation of Map(S1,su(2))
(su(2) = Lie algebra of SU(2)), the Lie algebra of Map (S1, SU(2)). However we have
"fermion" operators due to the different cocycle on M.

Lemma 3.2. // gj = 09j^0, then B(g)Ω = 0, while if gj = 0J<0, then B(g)*Ω = 0.

Proof. Using the definition of B(g) and the fact that Ω is in the zero eigenspace of the
generator of rotations, we have

B(g)Ω= Σ gm-nΓ(e^)CmDnΩ

whenever #/ = 0,7^0. But then DnΩ = 0 for every n in the sum, and so B(g)Ω = 0.
The argument for B(g)* is identical.

From the preceding lemma one may compute

and by a standard argument also compute that the state, on the CAR algebra
generated by {B(g),B(g)*\geI}(S1,(C)}9 determined by the cyclic vector Ω, is
exactly the state ωP_ of the introduction. In other words the representation of the
CAR afforded by these operators is equivalent to the original one, but in fact we
have more:

Proposition 3.3. For each gell'(SSC), ψ(g)* = B(g).

Proof We will show that the matrix elements of ψ{g)* and B(g) between states of
t h e f 0 Γ m J{fγ)...J{fn)Γ{VYΩ (3.2)

are equal. By Theorem 2.3 such states form a total set in J^, and hence this will
prove that ψ(g)* and B(g) are equal. We break the proof into two assertions.

We claim that for each φeMap(S\Ί) and geI}{SιX\

~Γ{φ)B{g)Γ{φ)-'=B{φg). (3.3)

To see this note that if φ has winding number n then φV~n has winding number
zero and so lies in Jί0. Now Lemma 3.1, together with a simple calculation
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in the case of the constant functions in JίQ, shows that
Γ(φV-")B{g)Γ(φV-*)-1=B(φV-*g). Thus (3.3) will follow provided we can show
Γ{V)B(g)Γ(V)~1 = B(eivg). But this last relation is a consequence of
Γ{V)BaΛΓ{V)Γ^e^B^. As Baλ differs from Γ{eih>λ) by a scalar this requires
only that we prove exp — iσ(v,fa A) = expiα, which is true by a simple calculation
using the definition of σ.

Now by (3.3), in calculating matrix elements between states of the form (3.2) we
may move B(g) through until it hits the vacuum Ω. Consequently if we show
B(g)Ω = ψ(g)*Ω for gel3(S\<£) then we are through.

Now to prove that the matrix element of B(g):

M = < JC/i)... J(fn)Γ(V)mΩ, B(g)Ω)

is equal to the corresponding matrix element of ψ(g)* we use induction on n.
As Γ(V) and J(/) ) commute, we have

M = (Γ(Vr βif.Y... β(fn)* Ω, B(g)Ω} = (β(f2)*... /?(/„)* Γ(V)m Ω,

as β(fi)Ω = 0. Hence, using the relations in Lemma 3.1, we conclude that induction
on n establishes the result once we have shown

, B(g)Ω} = <Γ(VrΩ, ψ(g)*Ω).

But from Theorem 2.3 both sides of this relation are zero unless m= 1. Now

(Γ(V)Ω, B(g)Ω) = lim dag(a) <Γ(V)Ω,

where

But

Cn 2 =

, Γ(yatλ)Ω> = i ) ) Ω > expiσ(t;,/α> λ)

Thus

On the other hand

so that

<Γ(F)Ω, ψ*(g)Ω)

completing the proof.

|/2π o

= ψ*(eo)Ω,

0, g) = -±= f*
|/2π o
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Remark 3.4. We thank the referee for help with the preceding proof.

As is noted in [4], a double cover of Diff S1 acts on the central extension of M
determined by eίσ. Just as in [4] one obtains therefore a representation of Diff S1 on
3F which leaves each ̂ f k invariant. It is not difficult to see that, as Diff S1 embeds in
the symplectic group of Ψ* in exactly the same way as in [4], the representation of
Diff S1 on HQ arises via the metaplectic representation of the symplectic group of
Ψ\ It seems, however, that our analysis adds nothing new to the representation
theory of Diff S1.

One could also consider more general Bogoliubov transformations of s/, say
those determined by the real orthogonal operators obtained by multiplication by
smooth functions from S1 to 0(2) on Il(S\ <C) (^ I?(S\ R2) as a real Hubert space).
However these are only implemented when they take values in SO(2)^U(1) and
hence lie in Ji.

Finally we note that this reconstruction of the fermions from the bosons is just
exhibiting another model which "predicts its own superselection rules." See
Streater [19] and references therein for this viewpoint.

Remark 3.5. Since this paper was first submitted new developments have taken
place. With the exception of Proposition 3.3 the results of this paper were obtained
independently and earlier by G. Segal and will appear in a forthcoming book on
loop groups co-authored with A.N. Pressley. Work in progress by one of us
(A.L. Carey) with S.N.M. Ruijsenaars has vastly extended the discussion in this
paper.
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