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Abstract. A new type of regularized determinant for the ratio of two Dirac
operators is presented. Some of its properties with application to the chiral
anomaly are given.

1. Introduction

The Fredholm determinants have been a tool for formulating quantum field theories
involving fermions since they appeared in the Matthews and Salam formulae which
express the Green's functions of a Yukawa theory [1]. In order to avoid the
divergences of the determinants in those formulae, some regularization procedure is
needed [2-4].

Meanwhile, Fujikawa argued, in the formalism of quantum field theories using the
integration on a Grassman algebra [5], about a certain kind of regularization
necessary to get the chiral anomaly [6] correctly [7].

The purpose of this paper is to present a definition of a new type of regularized
determinant for the ratio of two Dirac operators in which Fujikawa's idea is adopted.
The intuitive idea of definition of our regularized determinant is the following.
Suppose that we get an operator Dγ from another operator Do by performing
successive infinitesimal transformations. Then the determinant of D^Q1 is the
product of the Jacobians of all the infinitesimal transformations. Our regularized
determinant of D^Q1 is obtained by replacing these Jacobians with their
regularized ones introduced in [7,8].

We explain this procedure more explicitly. Let D be a suitable operator-valued
map defined on the interval [0,1] which connects Do and Dί9 i.e. D(l) = D l 5

D(0) = Do. If the operator (dD(s)/ds)D(s)~1 is trace class for every sel, then we can
get for the Fredholm determinant of D^ό * the following expression

(1.1)
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If the right-hand side of (1.1) is not well-defined,

exp | T r } ^ ^ D ( s ) - x Qxp(D(s)2/M2)ds] (1.2)

with M an arbitrary positive constant, may have a meaning, so that (1.2) may be
regarded as a regularized determinant of D^DQ1. A crucial point is that the
regularized determinant defined in this way depends only on Dx and Do but not on
the choice of an operator-valued map D connecting D1 and Do.

In Sect. 2 a precise definition of our regularized determinant is given together
with its properties. The main theorem concerns independence of the choice of an
operator-valued map. The proof is given in Sect. 3. Section 4 gives an application to
derive chiral anomaly by differentiating our regularized determinant. In the course
of this derivation, the connection of our regularized determinant with the discussion
in [7] becomes clear.

2. Definition of the Regularized Determinant

In this section we define a regularized determinant for the ratio of two Dirac
operators and study its properties.

We consider the Hubert space

H = C"(g)C4(χ) L2(U4) (2.1)

with an arbitrary fixed positive integer N, and the Banach spaces J?(H), ^^(H) and
</i(//) S£(H) is the Banach space of bounded linear operators on H with operator
norm || ||. J ^ (H)[<f1(H)~\ is the Banach space of the compact [trace class] operators
on H with operator norm || || [trace norm || || J . We also consider the Hubert
spaces

Hk = CN ® C 4 ® Hk(U% k = 0,1,2,... (2.2)

and the Banach spaces £?{Hk\ k = 0,1,2,..., where Hk(U4) is the fcth Sobolev space
on [R4. Note H = Ho.

By φ we denote the anti-selfadjoint operator

in H with domain Hl9 where γμ, μ = 0,1,2,3, are Hermitian matrices with

Vv + 7v7μ = 2 ^ v . (2.4)

Throughout this paper, we use m as a fixed positive constant called mass.
For each positive integer n, we consider a pair (A, B) of bounded operators on

H satisfying the following condition (Pn):

(PnΛ) $ + m + A and ^ + m + B have bounded inverses;
(Pn.2) \ '
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We note that the closed graph theorem combined with the condition (PnΛ)
and the boundedness of A and B on H implies that A\Hk and B\HkeJ£(Hk)
for fc = 0 , l , . . . , n - l .

Given the pair (A, B), satisfying the condition (PM), we want to find a continuous
and piecewise continuously differentiable map

α:J = [O,l]->J2?(JΪ)

which satisfies the following condition (Qn):

(Qn-1) ^ + m + Φ) has a bounded inverse for every sel;
(Qn.2) α(s)(0 4- m)" 1 is compact and, as a map: J-->«/'00(iί), continuous

and piecewise continuously differentiable;
(<2Π.3) α'(s)(0 + m)"π is trace class and, as a map: I^>JX(H\

piecewise continuous;
(QnΛ) <x(s)Hk c Hk for every s and α( ) \Hk is, as a map: /-• j£?(/ίk),

continuous for k = 0,1,.. ., n — 1.

Here the piecewise continuously differentiability of α means that there exists
a finite subset N of /, depending on α, such that α is continuously differentiable
on I\N. N is the set of the points of discontinuity of the first kind for the derivative
α' of α.

Now given {A,B) with the property (Pπ), a map α with the property (QJ as
stated above always exists. In fact, the map f:z^>(B +z(A —B))(@+ m)~ί is
an analytic operator-valued function in C such that /(z) is a compact operator
for each zeC. Since

(1 + /(z))" 1 exists at z = 0 and z = 1. The analytic Fredholm theorem [9] shows
that (1 + /(z))" 1 is analytic in C\5 where S is a discrete subset of C, and that
0,1 φS. Therefore we can find a smooth function ζ: I -• C\S with ί(0) = 0, C(l) = 1.
Define a map α:/-^J^(iί) by a(s) = B + ζ(s)(A — B). This map satisfies the
condition (Qn).

Due to the condition on α, it is easy to see that for each fixed sel, the operator
(̂  + m + α(s))2 generates a strongly continuous semigroup exp t{f + m + α(s))2,
£ ̂  0. For further details, we refer to Sect. 3.

To define our regularized determinant we need the following theorem.

Theorem 1. Let oc:I->J£(H) be a continuous and piecewise continuously differenti-
able map with property (Qn) for a pair (A, B) satisfying the condition (Pn). Then

LM(α) = } ds o φ ) ^ + m + <x(s))~' exp [(0 + m + α(s))2/M2] (2.5)

belongs to ^ι(H) for every M > 0. // β: I -»if (H) is another continuous and piecewise
continuously differentiable map with property (Qn) for the same (A,B), then there
exists an integer I independent of M such that

TrLM(α)-TrLM(/?) = 2π/ί. (2.6)
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Remark 1. When fermions are coupled with regularized fields as in gauge theories
or a Yukawa theory, there arises the case that A and B are finite sums of operators
on H of the form T®Γ®f Here T and Γ are N xN and 4 x 4 matrices,
respectively. / is a multiplication operator by a function f(x) in ^((R4), the
Schwartz space of C00 functions of rapid decrease. In this case the pair (A, B) satisfies
(P 5 .2)~(P 5 .4) [10]. Moreover if A and B are anti-selfadjoint, then (P 5 . l) is also
satisfied.

Remark 2. The condition (PnA) and the corresponding condition (Qn.4) are
imposed in order to make the operator {β + m)n($ + m + oc(s))~n + 1(λ — @ — α(s))~ *
bounded on H for every (s,λ)el x Aσε. This is necessary in the proof of
Theorem 1. The proof as well as the definition of ΛσtB are given in Sect. 3.

Now we define our regularized determinant for {$ + m + A){$ + m + B)~ι

by

DM(^ + m + A; f + m + B) = exp Tr LM(α). (2.7)

Here (A, B) is a pair of operators on // satisfying the condition (Pn), and α: /
is a continuous and piecewise continuously differentiable map which satisfies the
condition (Qn) for the pair (A, B).

The above definition makes sense because Theorem 1 guarantees that the right-
hand side of Eq. (2.7) is finite and independent of the choice of α. As stated in the
following Theorem 2, if (A9B) satisfies the condition (PJ, then the right-hand side
of Eq. (2.7) coverges to the Fredholm determinant of [ft + m + A){φ + m + B)~ * as
M-> oo. So we can regard DM(^ + m + A; <j) + m + B) as a regularized determinant,
although it depends, for M fixed, both on $ + m + A and 0 -h m -f B rather than only
on [φ + m + A)(f + m + β ) " *.

Theorem 2. (1) // (4,5) and (£, QsSe(H) x J?(fl) 5«ίi5/> ί/ie condition (Pn), so does
(A, C),

= DM(0 + m + ^ ^ + m + C). (2.8)

(2) // {A,A)e£f{H) x i?(H) saίis/iβs tΛβ condition (Pπ), ίfeen

E>M(^ + w + i4;^ + m + i4) = l. (2.9)

(3) // (A,B)e&(H) x ^f(if) 5aί/s^5 the condition (PJ, 50 does (B,A), and

DM(^ + m + 5;^ + m + ^) = DM(^ + m + ^ ^ + m + B)" 1 . (2.10)

(4) // (Λ, fl)eJSf(JΪ) x J^(fί) saίis/ϊes the condition (Px),

lim DM(^ + m + ^ ; ^ + m + B) = det[(^ + m + Λ)(^ + m + B)" 1 ] . (2.11)
Λί->oo

det denotes the Fredholm determinant [11].
(5) If A(') is a continuously differentiable ££{fi)-valued map on a neighborhood of 0 in
R and (i4(ί),B)eJS?(H) x JSf(ff) saίis/ίβs ί/ie condition (Pn) for every t in the
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neighborhood o/O, then

+ m +

-ΌJf + m + Λ(0); 0 + m + B). (2.12)

3. Proofs of Theorems 1 and 2

3.7. Proo/ of Theorem 1. Let us begin the proof of Theorem 1 with the following
lemma.

Lemma 1. Let a,β:I-*J£(H) be the same as in Theorem 1 with n=ί. Then there
exist positive constants σ and ε such that

is included in the resolvent set p($ + φ)) of <j) + φ) for every sel, and

0 0

belong to ^ι(H) for every λeΛσtE. For each λeΛσt8, there exists an integer I such that

Tr j α'(s)(/l - φ - φ))-1 ds - Tr f β'(s)(λ -f- βis))'1 ds = lull (3.1)

Here /, regarded as a function of λ, is constant on each connected component
of Λa,.

Proof. By assumption the operator 1 +α(s)(^ + m)~1 has the bounded inverse
1 — φ K ^ + m + φ ) ) " 1 for each sel, and φ H ^ + m)" 1 is uniformly continuous
in sel. Hence if we choose ε > 0 sufficiently small, 1 + (α(s) — λ — m)(ίfi + m)~1

has a bounded inverse for each se/ and for each λ with \λ + m| ^ ε. The operator
A —^ —α(s) has the bounded inverse — ($ + m)~1(l -h(α(s) — A — m)(^ -hm)" 1 )" 1

for such s and A. Moreover assume that ε < m. Then

{λeCI μ + m\ g ε} c p(^) = C\iR

and 1 - α(5)(i - ^ ) ~ λ has the bounded inverse 1 + oc(s)(λ -f- φ))'1 for each sel.
By decreasing ε > 0 if necessary, the same argument also applies to β.

Next let σ > sup || α(s) || + sup || β(s) ||. Then for λ with |Re λ\ ^ σ, we have Aep(^)
se/ se/

and ||α(sr)(A —^)~ 1 1 | < 1 for each sel because Uλ-fiΓ1 \\ = IReλΓ 1 . Therefore
1 — (x(s)(λ — QY1 has bounded inverse, and so does λ — <j) — α(s). The same is true for
β. Thus for every λeΛσ>ε and for every 56/, λ-@ — φ), λ — φ, and 1 - φ)(λ — $)~~x

have bounded inverses.
Using the identity

φ)(λ -$)-' = - φ)(t + W)-1 + μ + m)φ){φ + m)~\λ - \ - i
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with the assumption (βi 2), we see that oc()(λ — <fi)~ι is, as a map: I^J
continuous and piece wise continuously differentiable for each λeΛσ>ε.

Similarly, a'(')(λ — ίj))'1 is, as a map: l^Jx{H\ piecewise continuous for each
Λσtε.

Hence

j i _ f _ α ( s ) ) -1 ds = ]a'{s){λ _ fl-i(i _ φ ) ( λ _ 0-1)-1 ds

belongs to Jλ{H\ The same arguments can be applied to β.
If it can be shown for each λeΛσfE that Eq. (3.1) holds with some integer /, then

the statement in Lemma 1 concerning the A-dependence of I is a consequence of the
continuity of the left-hand side of Eq. (3.1) as a function of λ.

Set

then we have K^ϊ) = K2(l) and K^O) = K2(0). Thus for the proof of Eq. (3.1), it is
sufficient to prove

det[(l + X(l))(l + K(O))"1] = expTrf X'(s)(l + K(s))~1ds, (3.2)

for K = Ku K2.
In fact, by the assumptions for α and β we may assume that K:1->JJ{H) is a

continuous and piecewise continuously differentiate map, that K/:/->«/1(H) is a
piecewise continuous map, and that 1 + K(s) has bounded inverse for each sel. Let
K be continuously differentiable on the open intervals (s7 _ ί9 Sj)J = 1,2,..., J, where
0 = s0 < sx < - - - < Sj = 1. By virtue of the fundamental property of determinants
[3,11]

det[(l

we need only to show Eq. (3.2) in the case where K is continuously differentiable on
the open interval (0,1). Let A be a partition of /: 0 = ξ0 < ξί < < ξL = 1. Then

det[(l

(3.3)

We may assume that
| | 4 | | = max \ξi — ξl^1\ is small enough to satisfy max ||(X({,) — X(6_ t ))

lϊj^L J lϊjύL

(1 + Kiξj.jy1^ < 1, since K is uniformly continuous on / so that (1 + £(•))"^
is uniformly bounded on /. Then the right-hand side of Eq. (3.3) is equal to

exp Tr £ log[l + (K(ξj) - K{ξ}_ t))(l + K(ξj.,))'1], (3.4)
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where log(l 4- X) = £ ( ( - 1)*~x/k)Xk. As L-» oo and \\Δ || -•(), (3.4) converges to

expTr JX'fcXl+AXs))" 1^ because K is continuously differentiable. On the

other hand the left-hand side of Eq. (3.3) does not depend on the partition A. •
Using the Hille-Yosida-Phillips theorem it is now obvious that (^ + m + cc(s))2

generates a strongly continuous semigroup. However we describe the operator
exp[(^ + m + α(s))2/M2] using the Dunford functional calculus [12]. With
0e(π/4, π/2) fixed, we define the three contours Γσl9 Γσt2, Γε as follows. Γσί is the
union of the half line — m + ρ(σ + 2m) (1 — i tan θ) with p running from — oo to — 1,
the interval — m — (σ + 2m) (1 + ip tan θ) with p running from — 1 to 1, and the half
line — m — ρ(σ + 2m)(l + i tan θ) with p running from 1 to + oo. Γσ2 is the union of
the half line — m — p(σ + 2m)(l — ΐtan0) with p running from — oo to — 1, the
interval — m + (σ + 2m) (1 + ip tan θ) with p running from — 1 to 1, and the half
line - m + p(σ + 2m)(l + itan0) with p running from 1 to +oo. Γε is the circle
{λ\\λ + m\=ε/2} directed clockwise. Set Γff = Γ f f ι l u Γ f f i 2 and Γff)£ = Γ f f u Γ ε .
Note Γσε a ΛσtE. Let σ and ε be those in Lemma 1. Then we have

exp[0 + m + α(5))2/M2] = (2πί)'' j dλexp[(A + m)2/M2-](λ-φ-α(s))"\
(3.5)

where the integration on the right-hand side of Eq. (3.5) is norm convergent in i f (if).
Cauchy's integral theorem and the resolvent equation yield

0 + m + α(s)Γ 1 exp[(0 + m + α(s))2/M2]

= (2πι)"1 J ^ μ + m J - ^ x p C μ H - m ^ / M ^ μ - ^ - α ί s ) ) - 1 . (3.6)

For α:/->i?(//) with property (g^,

(s, λ) -> (A + m)" 1 exp [ μ + m)2/M2]αXs)μ - ^ - α(s))"x (3.7)

can be considered as a map: / x Γσε-^Jί

1(H). This map is piecewise continuous in
sel and continuous in λeΓσfE. In the estimate

|| (λ + m)" 1 exp[(A + m)2/M2]a'(s)(A - ^ - α(s))

^ \(λ + m)" λ exp[(λ + m) 2/M 2] | ||α'(s)(^ + m

m)~1exp[(λ + m)2/M2']\ decreases rapidly in the neighborhood of infinity

on Γσε.

| |αφ)(0 + m + α(s))"x || x and || - 1 + (A + m){λ -$- φ))~1 \\

is bounded uniformly in (s,λ)el x Γσε.
Therefore the integration over / x Γσε of the map (3.7) times (2πi)~1 is

convergent in J^^H) and is equal to LM(α) in (2.5). Equation (2.6) in Theorem 1 with
n = 1 is a direct consequence of Lemma 1 and the following two lemmas.

Lemma 2. Let OLJ:I-+&(H) have the property ( β j . Then TrLM(α) - TrLM(j?) is
independent of M > 0.
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Proof. This follows from the equation

TrLM(α)-TrLM(j8) = (2πO"1 J dΛμ + m)" * exp [ μ + m)2/M2]
σ,ε

• Tr } ds [oφ)μ - $ - φ ) Γ 1 - β'(s)(λ - $

= t ί ^ μ + m)-1exp[(λ + m)2/M2]/j

+ J <Uμ + m)" * exp [(A + m)2/M2]/3

In the first equality above we have used Eq. (3.6) and the dominated convergence
theorem. The second equality follows from Lemma 1, where lj9j = 1, 2, 3, are some
integers. The third equality follows from an explicit calculation using Cauchy's
integral formula. •

Lemma 3. Let α have property (Q^. Then

1

lim Tr J ds ocf(s)(β + m + α(s)) ~1 exp [(^ + m + φ ) ) 2 / M 2 ]
M-»oo 0

= Tr J ds α'(s)(0 + m + α(s))"x.
o

Proof. By Eq. (3.5) and by Cauchy's integral formula,

= (2m)-1 J dλ(exp [(λ + m)2/M2] - l)[(λ - $ - φ))-1 - (λ + m - f)~x]
a

+ (2πi)~J J dλexp [(A + m)2/M2](A + m - 0 ) " 1 - 1

= (2πO ~x J" ί/A exp [(λ + m)2/M2] (λ - 0 - φ))' \m + φ))(λ + m-@Γ1

σ

+ (exp(4/M 2 )-l),

where Δ is the Laplacian. The first term of the above equation converges to 0 in
as M -» oo by the dominated convergence theorem, since

1, λeΓσ.

It is easy to see that the second term converges strongly to 0. Thus

s-lim exp [(0 + m + α(s))2/M2] = 1.
MM-oo

Lemma 3 follows then from this fact and the following result of Grϋmm [3,13]: for
An9 Ae<Sf(H) which satisfy s-lim An = A and for BeJ^H), we have

l im I
n~* oo
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Therefore lim Tr AnB = Tr AB by the continuity of the trace in the || || x norm. Note

Tr AB = TR BA for Ae&{H\ BeJ^H). •
Now, we are in a position to prove Theorem 1 with n > 1. Let α: / -» &(H) have

the property (Qn) with n > 1. Then we can find positive constants σ and ε such that for
every λeΛσtE and for every sel, λ — f — φ), λ — <β, and 1 — α(s)(λ — 0 ) " 1 have
bounded inverses as in the proof of Lemma 1.

In the identity

for (s,λ)el xΛσε, (λ — @)~1:H-+Hί is a bounded linear operator and 1 +<φ)
(λ — @ — α(s))"1 belongs to J£(H). Then (λ — $ — oι(s))~1:H^>H1 is a bounded
linear operator, and (λ — fi — oι(s))~1\Hί belongs to i f (#i) . Applying similar
arguments successively with (βΛ 4), we get that (λ — @ — α(s))"1 :Hk^Hk+1 is
bounded and (λ — φ — α(s))"1 \Hk + 1 belongs to if(i/fc + 1) for fe = 0, l , . . . , n — 1 .
Since —msAσ^

(# + m)Λ(^ + m + α(s))"n + x μ - # - α(s))~x belongs to Jίf(/ί)

for λeΛ σ ε . Using this fact and (Qn 3) with the Cauchy's integral theorem, and noting
that (λ — 0 — α(s))~x is bounded uniformly in (5,λ)sl x / i σ ε , we get that

LM(α)=}ds(2π0"1 j

(3-8)

belongs to
Define the map α κ :/->if(i ί) by ακ( ) = α( )(l + κ($ + m))-n + 1 for /c>0.

When κ->0, ακ(s)(^ + m)" 1 -α(s)(^ + m ) - 1 ->0 in if(iί) and uniformly in sel.
So we can choose κ0 > 0 so small that ακ satisfies the condition (Qi'l) as well as
( β 1 2 ) - ( β 1 4) for every TCG(0,K:O). Therefore to prove (2.6) for the case n> 1 we
need only to show

limTrLM(αJ = TrLM(α). (3.9)
κ-»0

When we rewrite LM(ακ) — LM(α) using the representation of Eq. (3.8) and
the definition of ακ, we meet the operator

α'(s)(0 + m)"M[(l + id® + m)Yn

- (̂  + m)"(^ + m + φ ) Γ w + 2(/l - ^ - α(s))"1]. (3.10)

By assumption, sup H α ^ ^ + m)""!^ < 00. The operator in the bracket [ ]
l
p

sel

of (3.10) is a bounded operator on H which is bounded uniformly in (s,λ,κ)e
I x Γσε x (0, κ0), and converges strongly to 0 as κ->0. Hence Eq. (3.9) is proved
by the argument similar to the proof of Lemma 3. This completes the proof of
Theorem 1.

3.2. Proof of Theorem 2. Theorem 2(4) follows from Lemma 3 and Eq. (3.2) in the
proof of Lemma 1. The other parts of Theorem 2 are obvious.
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4. Chiral Anomaly

In this section, we study the change of our regularized determinant under the
infinitesimal local chiral transformation of the Dirac operator with gauge fields, i.e.
chiral anomaly. We shall get essentially the same expression as in [7], thus providing
an aposteriori justification for the algebraic manipulations performed there.

Set
A=-iΣTa®γμ®Aμ

a=-ifi and £ = 0,

where Aμ

a is the multiplication operator by the function Aμ

a(x) in ^(IR4; U) for
each a and μ, and {Ta} is a set of Hermitian matrices which are the ΛΓ-dimensional
representation of the generators of a certain compact Lie group. Note that A is
anti-selfadjoint and of the form discussed in Remark 1.

Under the infinitesimal local chiral transformation, the Dirac operator 0 +
3

m — iJjί changes into </)+ m — i/^ — iε £ ΊsΊμiβμΦ) + 2ίεmγ5φ. Here we have
0

used the following conventions: yμ,φ, and (dμφ) are shorthands of l ® y μ ® l ,
1 ® 1 ® φ, and 1 ® 1 ® (dμφ) respectively with y5 = yoyιy2y3iφ and (dμφ) are the
multiplication operators by the function φ(x) in ^(1R4 IR) and its partial derivative
dφ(x)/dxμ respectively.

By Theorem 2(5), we get

— DM( φ + m-i^-iεΣy5yμ(dμφ) + 2iεmy5φ; f + m I
aε \ μ j ε = 0

= T r { ( " iΣWμίfyp) + limΊ& V + m -

+ m - i^)2/M2] >DM(^ + m - ψj + m). (4.1)

The first factor on the right-hand side of Eq. (4.1) can be rewritten as follows.

T r {( - i Σ y s Λ φ ) + 2ίmy5φX$ + m - i^)"1 exp 1(9 + m - #)2/M2]

exp [(0 + m - /^-Λ
. ( ? + m - ft)-1 exp[(0 + m - il

= Tr {exp W + m- ί^)2/2M2^ tf + m- i#)iysφ

+ iy5φ($ + m - iftW + m - i^)" 1 exp [(? + m - i^)2/2M2]}

= 2i Tr {y5φ exp [(^ + m - f^)2/M2] }. (4.2)

We have used the equality

exp [(0 + m - #)2/Λf2] = exp [(? + m - i^)2/2M2] exp [(^ + m - ί^)2/2M2]

and the cyclic property of the trace in the first and third equalities. Apart from the
appearance of m in the exponent this agrees with a result obtained in [7].
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This shows that Fujikawa's idea of regularizing the Jacobian of the infinitesimal
chiral transformations is incorporated into our regularized determinants. The
appearance of m in Eq. (4.2) comes from the following requirement: The regularized
determinant should be independent of the choice of the operator-valued map which
connects two operators A and B.

The limit M -• oo of Eq. (4.2) exists and has a simple form, a fact already noticed
in [7]. We show this by calculating the limit in a mathematically rigorous manner.
Using the cyclic property of the trace, and y5($ - i/fs) = — (f — iJjί)y5, we get

1\ Tr {y5φ exp [(0 + m - ^ ) 2 / M 2 ] }

= 2iTri(2πiΓ1 f

2/ Tr I (2πO " 1 j dλγsφ exp [(/I + m)2/M2']

2 ~ Σ (̂  - i\f A t σ^
L μ = o <£μ,v=o

where

Aμ=ΣTa®l® Λβ

a

9 σμv = lγμ9 yv]/2ί,

and

^ v = (δ,A)

with

We introduce the following shorthand notations:

Σ (δ» - i A f = ( d ~ iA)2> Σ Λ,2 = ^2> a n d

μ=0 μ=0
3

Σ σμv^μv = o-F and so on.
μ,v = O

By expanding the resolvent, the operator in the brace { } on the third member of
Eq. (4.3) is equal to

Γ1 J
+ (λ2 -(δ- ίA)2y^σ'F(λ2 -(d- i

+ (2πiy' \dλy5φexpl(λ + m)2/M2

a

• λί(λ2 - (d - iA)2)-4σ F]2(A2 - ( 5

+ (2πiy1 j
σ

•{l2~{d-iA)2-{a-F)-K (4.4)
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The last two terms of the operator (4.4) are trace class operators because φ(ip + m)~5

is a trace class operator and because

(0 + m)5λ[(λ2 - (<5 - iA)2)- ^ σ F]2(A2 - (5 - L4)2)~ *

is a bounded operator on H and bounded uniformly in λeΓσ. Now the whole
expression in (4.4) is trace class. Therefore the first term in (4.4) is trace class.

Notice that Tr γ5 = Tr γ5σμv = 0 on C 4 and we see that the trace of the first term
of (4.4) is 0.

We make a change of the integration variable λ' = M~ U, and then replace the
contour M~ 1Γσ by the contour Γσ in the last term of (4.4). This is possible because
the operators - (d - iA)2 and - (d - iA)2 -\σ F = {$- ifi)* (0 - ifc) are positive.
Then this term is equal to

'2'{M2λ'2-{d-iA)2~\σ'F)-\

Here

y5φMλ'[(M2λ'2 - (<9 - L4)2)' ̂ σ F ] 3

has bounded trace norm uniformly in Mλ\ and

\\M{M2λ'2~{d-iA)2-^σ'Fy1\\ =M~1λ'~2.

Thus this term converges to 0 in <fi(H) as M -+ GO by the dominated convergence
theorem.

Now we consider the second term of (4.4). Let us substitute the following
equalities into this term:

and

and so on. Then the second term is equal to

{2niyl J dλy5φQxp[(λ + m)2/M2^σ F)2λ(λ2 -Δ)~3

σ

'-Δ)-*-ii(σ F)2A dλ(λ2-ΔΓ4] + R(M), (4.5)

where R(M) is a sum of terms which converge to 0 in J^^H) as M ̂  oo as in the case
of third of (4.4). For the trace of the operator (4.5), we use the following formulae.

= J dx(kernel of A)(x,x)

for a trace class operator A on L2(1R4) whose kernel is a continuous function, and
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for the trace on C 4, where εμv<xβ is totally anti-symmetric in its indices with εOi23 = l
Notice that

(kernel of dμ(λ2 -Δy4)(x,x) = 0,

1
(kernel of (λ2-A)~3)(x,x) =

~32π2λ2'

Then we get

liTr {y5φ exp [(0 + m - # ) 2 / M 2 ] } -> - ~^-2 £ εμvaβ J rfx φ(x) Tr FJx)Faβ(x)

as M-> oo. Here the trace on the right-hand side is taken as a matrix in CN.
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