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The Thermodynamic Limit for a Crystal
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Abstract. Consider a crystal with nucleii fixed at the lattice points in Ω a IR3,
interacting by Coulomb forces with quantized electrons in Ω. We prove that the
pressure tends to a limit as Ω grows infinitely large.

0. Introduction

A natural model for electrons in a crystal is as follows. We place a nucleus of charge
+ 1 at each lattice point in a box Ω <= R3. The basic Hamiltonian for N quantized
electrons x1,..., xN in Ω is

HN,Ω= ~ΔX+ Σ \x-Xk\-i+ £ I ^ - Λ l ^ - Σ l ^ - Λ l " 1

j<k j<k j,k

with Dirichlet boundary conditions on Ω x x Ω. Here yx... yM are the nucleii,
and //JV β a c t s on antisymmetric wave functions φ(x1...xN). If the electrons have
temperature β~1 and chemical potential μ/β, then up to trivial factors the pressure is
given by

= (Volί2)"1ln YeμNTmcee-βHw
IN J

The purpose of this paper is to prove that F tends to a limit as the volume o f β tends
to infinity. This is called existence of the thermodynamic limit. See Sect. 2 for the
precise statement of our result. The problem of the thermodynamic limit for crystals
was posed by Lebowitz and Lieb, following their basic work [1] on real matter, with
electrons and nucleii all quantized. Since a crystal is not rotationally symmetric,
the method of [1] doesn't work here.

Of course one wants to allow periodic arrangements of nucleii more general than
just charge + 1 at each lattice point; also, we should introduce spin into our wave
functions. These refinements can be easily incorporated into our proof. For that
matter, it is enough to suppose that the placement of nucleii is asymptotically
periodic; and our electrons could be Bosons (or even classical particles provided the
nucleii have hard cores).
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In a later article, we shall apply our technique to show that quantized electrons
and nucleii at suitable temperature and density form an ideal gas of hydrogen atoms
or molecules.

1. Notation

Let Γ= {Ω a R3\Ω bounded, convex, with non-empty interior},

Γo = [DeΓ\dD is smooth and has strictly positive Gaussian curvature at every
point}.

For DeΓ, xeR3, R>0, write D(x, R) for the translate and dilate, {Ry + x\yeD}.
We write Q° for the unit cube in R3.
Set Lχ(Ω) = {square-integrable antisymmetric φ(χί... xN) on ΩN},

If ψeLlfiΩ) and (xx...xN)φΩN, then we interpret i/φq...xN) to be zero.

If K(x) is a function on R3, and we have electrons xt... xN and nucleii yx... yM,

then V{K] = \ Σ κ(xj ~ xJ + i Σ Wj ~ Vύ Σ

Thus, the Coulomb potential is V[_\x\~^,
For ί2 cz K3, define

^ N , β = —^ on L^(ί2) with Dirichlet boundary conditions;

HN,Ω= —Δ + KΠxΓ 1 ] on Ll(Ω) with Dirichlet boundary conditions, where the

nucleii are placed at all the points of Z 3 nΩ.

Define F(μ,j5,Λ) = | O Γ 1 l n Γ Σ eμNτre-βH

I
*,Λ

J
If Ω = D(x, R) for D eΓ, then we write F(μ, β, x, R, D) for F(μ, β, Ω). Observe that F

is invariant under translates of x by vectors in Z 3 , but not by vectors in R3.
When μ, β, D are kept fixed, we shall often write F(x,R) for F(μ, β, x, R, D).

2. Reduction of the Theorem to Two Main Lemmas

The precise statement of our result is as follows.

Theorem. For each β>0, μeR 1 , fief, the limit lim F(μ,β,x,R,Ω) converges
R->ao

uniformly in x. Its value is independent of Ω and has the form φ(β) + μ.
In this section, we shall state two main lemmas, and show how they imply the

theorem. The rest of the paper is devoted to proving the lemmas.

Lemma 1. Let DsΓθ9 ΩeΓ, ε > 0. Suppose we have radii R1<R2<"< RM < # *
with R1 > C ε " 1 0 , R k + 1 > 2Rk, M > C ε " 1 0 , and R* > M10RM. Then for xeR3 we
have

t max [Av y e Q 0 F(μ,fty,^,/))]. (2.1)

The constants C in Lemma 1 depend on μ, β, D, Ω.
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Lemma 2. For ΩeΓ there is a constant C(Ω) with the following property. Let DeΓ0,
0 < ε < 1, D* = D(x',R')9 Ω* = Ω(x,R). Suppose D^Ωφ9 distidD^dΩJ > 10, and

|β*l < (1 + ε 1 0)\D*l τ h e n F(β> & β * ) > F(μ> ft D *) - c ( β ) ε if R'ίs sufficiently large.
Very roughly, Lemma 1 says that F(μ,β,Ω) is monotone decreasing in Ω over

the long run, while Lemma 2 says that a small increase in Ω will not cause a large
drop in F(μ, /?, Ω).

Let us check that Lemmas 1 and 2 imply the theorem. From Lemma 1 we get

Corollary 1. For fixed μ, β, D eΓ0, the quantity F(R) = A VyeQ0F{μ, β, y, R, D) tends to

a limit as R-> oo.

Proof. Let / = lim inf F(R), and take ε > 0. It is trivial to show / φ - oo (see estimate
K->oo _

(3.20) below), so there are arbitrarily large R with F(R) ^ / + ε. So we can pick
successively Ru R2,...,RM to satisfy Rx > C ε " 1 0 , Rk+1>2Rk, M>Cε~ί0, and
F(Rk) ^ / + β Here the constant C is taken from Lemma 1 with Ω = D. Lemma 1
gives F(μ,/?,x,RJ(c,D)^ε + [/ + ε] for all XGJR3, R^>M10RM. Averaging over
xeβ°, we get F(RJ^l + 2ε for R^ large enough, so lim sup F(R) ^ 2ε + / =

/{-•oo

2ε + liminfF(R). Q.E.D.
R->(X)

Now let F(μ,β,D)= lim Av Q0F(μ9 β, y, R, D). Corollary 1 and Lemma 1
R->ao

together show at once

Corollary 2. Given μ, β, DeΓ0, ΩGΓ and ε > 0 , we have F(μ,β,x,R,Ω)<>
ε + F(μ, β, D) if R is large enough.
In particular,

β, x, R, D) ̂  ε + F(μ, β, D) if R is large enough. (2.2)

On the other hand, Lemma 2 shows that for a large constant C we have
F(μ, J8, x, R, Z)) ^ F(μ, β9y,R- C, Z)) - C(D)ε if R is large enough and \x-y\< 50.
Average this estimate over all y in a translate of Q° containing x. The result is
F(μ,β9x,R9D)βlA\yeQoF{μ,β,yiR-C,D)']--C{D)8 for large R. Recalling the
definition of F(μ, β, D\ we conclude that

F(μ, β, x, R9 D) ̂  F(μ, j8, D) - C'(D)ε if R is large enough.

Comparing with (2.2), we find that F{μ,β,x,R,D)^>F{μ,β9D) as R->oo, for each

Next note that F(μ9β9D) is independent of D. This is immediate from
Corollary 2 with ΩeΓ0. We write F(μ, β) for F{μ,β,D).

Finally, let ΩeΓ, ε > 0 , and pick DεeΓ0 so that Z)ε<= interior Ω9 \Ω\<
(1 +ε l o ) |Z) ε | . Lemma 2 shows that F(μ,β,x,R,Ω) > F(μ9β9x,R9Dε) - C(Ω)ε for R
large enough. Hence F(μ9β9x,R,Ω)> F(μ,β)-2C(Ω)ε for large R. On the other
hand, Corollary 2 with D = Dε gives F{μ9β9x9R9Ω)^F{μ9β) + ε for large R. So
lim F(μ, /?, R, Ω) = F(μ, j8) uniformly in x, for any ΩeΓ. Our theorem is completely

proved, except for the assertion F(μ, β) = μ + 0(/?), which follows trivially from
estimate (3.6) below. Hence, the problem is reduced to proving Lemmas 1 and 2.
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3. Estimates for Coulomb Systems

Consider a Coulomb system with electrons x1...xN and nucleii ωί...ωΉ.. Assume
lωfc~ω*Ί = l f°Γ kφ-k'. We shall compare the potential energy VΛ=
with the energy of a continuous charge distribution:

z \x — y\

φeC%(\x\ ̂

First of all, Vp contains N "self-energy" terms \ \ φ(x — Xj)φ(y — xk)/\x - y\ dx dy
withj = fc, as well as N' similar terms for the nucleii. These terms have no analogues
in K O Γ 1 ] ; they total CN + CAT.

Next, compare the terms in V, Vp arising from repulsion of distinct electrons. We
have

in view of the subharmonicity of the Coulomb potential.1

The terms in F, Vp arising from repulsion of distinct nucleii are exactly equal,
since distinct nucleii are at least distance 1 apart. Finally, the electron-proton
attraction gives rise to terms in F, Vp which compare as follows:

-\xj-ωk\
 1 ̂  - j ' dx dy - \Xj - ωk\ χ]x. _ωk| < 1/2.

Consequently,

0<|Xj -xk |<l/10

- Σ<i2\
χj-ωkΓ1~CN-CN'. (3.1)

For functions φ of three variables, we have an elementary inequality

1 J \Vxψ\2dx^2 j Ix-ωΓVMI'^-C ί \φ(x)\2dx.
|x-ω|<l/2 |x-ω|<l/2 |x-ω|<l/2

This amounts to the stability of a single hydrogen atom. Writing Xj for x, ωk for
ω; integrating against ]Γ[ dx/; and summing over j , k we obtain

iψ ΐ

-\A^2 X \xj-ωk\-1-CN-CNf (3.2)

as operators on φ(xί... xN). Adding (3.1) and (3.2), we get for H = — A + F [ | x | " x ]
the operator inequality

\xj-xu\~1

0<|Xj -Xk|<l/10

+ Σ I s j - ω J ^ + Fp. (3.3)
\xj-ωk\<l/2

1 Here we assume φ(x) ̂  c when |JC| < 1/10
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The terms on the right are all positive, so (3.3) implies //-stability of the system. Note
that we did not need antisymmetric wave functions.

Lemma 3. Let F be a function of compact support on R3, with one distributional
derivative in L2. Then

•(*,)

2
2^ C\\VF||£2 (// + CN + CN') (3.4)

as operators on L (R ).

Corollary. // the system is confined to a ball of radius R, then the net charge N — N'
satisfies

(N - N')2 S CR(H + CN + CN'). (3.5)

In particular, for nucleii at the lattice points of Ω(x, R), we have

H^-$Δ+cδ2R5 (3.6)

if the net charge \N - N'\ > δR3, δ>CR~ι.

Proof of the Corollary. Estimate (3.5) is just the special case of Lemma 3 with
F(x) = 1 for x in a ball of radius 2R, F(x) = 0 outside a ball of radius 3R,
IVFl^CR'1 everywhere. To prove (3.6), note that N'~(VolΩ)R3, so if
\N-N'\>δR3 with δ>CR~x then (3.5) shows that H^cδ2R5 + C1N> while
(3.3) gives H ^ -\A - CXN - CR3. Estimate (3.6) follows by adding the last two
inequalities. •

Proof of Lemma 3. We have ΣΦ*^(ω k)-XΦ*F(x j)= <p,F> = < ( - 4 ) " 1 / 2 ρ ,
k k

(— Δ)ί/2F}. The formal manipulation is justified if FGCQ, which we may assume.
Thus,

= const ||VF\\2VP.

So (3.4) follows from (3.3). •

Next we give an estimate for V[K~\ when K behaves roughly like |x|"x in the
following rather technical sense.

\dΛ

xK{x)\ ^ C\x\-Mα| for |α| ̂  2 and all x. (3.7)

\d*xK(x)\^C\xΓ4 for |α| = 3, (3.8)

unless x belongs to one of the annuli s/k = D(0, Rk + l)\#(0, Rk - 1). Here we assume
DeΓ0 and Rl9 Rl9... are fixed radii satisfying Rx ^ 10, Rk+1 ^ 2Rk.

Lemma 4. // K satisfies {3.7) and {3.8\ then F[K] ^ C{H + CN + CN').

Proof. First we check that (3.7), (3.8), imply a bound for the Fourier transform of K,
namely |£(<J)| ^ C\ξ\~2. In fact, we can write K = Kx + K2 with Kί supported in |x|
<2\ξ\-\ K2 supported in |x| > \ξ\"\ and K1, K2 satisfying (3.7) and (3.8). Then one
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checks that WK^i^QξΓ2 and \\AK2{x)-AK2{x-y)\dx^C for \y\<c\ξ\'\
Consequently | ^ ( ί ) | ^ C\ξ\~\ while |[1 -e^M2K^)\ ^ C for \y\<c\ξ\'\
Taking y = (cβ)ξ\ξ\~2, we get \£2(ξ)\ ^ C\ζ\-\ and so \K{ξ)\ ̂  C\ξ\~2 as claimed.

Now set X# = |x| ~x — cK(x) with 0 < c « 1. We know that K# has positive Fourier
transform, so that §K#(x — y)p(x)p(y)dxdy = K#{p}^0 for continuous charge
distribution p.

We shall prove that

V[K*~] ^-C(H + CN + CN'). (3.9)

If (3.9) holds, then since F[ l/ |x | ]^/ f and VlcK-l/\x\]£C{H + CN+ CN%
we obtain the conclusion of Lemma 4 just by adding. So the problem reduces to
proving (3.9).

Subdivide R3 into a grid {Qv} of cubes of side 10" 3, and let Nv be the number
of particles (xy and ωk) in β v . Evidently

^Σ^v(iVv-l)^ X I*,-**!"1

-̂  v 0<|x,--x k |<10- 2

+ Σ Ixj-ωiΓ^COff + CJV + CΛO
\Xj-ωic\<l/2

by (3.3). Therefore

since ΣNv = N + N'- ( 3 1 0 )

Now we are ready to prove (3.9) by imitating the proof of (3.3). Fix an even
approximate identity ψeC${\x\ < 10"3) with Jxα^(x)dx = δ α 0 , |α | < 10. Then set
p#(x) = Y^ ψ(χ — cok) — j ] ̂ (x — Xj), and compare V[K*~\ with the non-negative

quantity V* = \\K\x — y)ρ#(x)p\y)dxdy. As before, F # contains self-
energy terms which total CN + CN'. The difference between K\y1 - y2) and
the corresponding term J X#(x — y)^/{x — yι)ψ(y — y2) dx dy is ε(yί — y2) with
ε = K#-K#*ψ*ψ. Therefore

Vlκη^V»-CN-CN'- Σ l^-y*)!, (3.11)

where y1...yN+N> is a list of all the particles xί...xN, ωί...(%<.
In view of the moment conditions on ψ, we have the estimates

ε(y)\ ̂  C\y\-χ just from the size of X#, (3.12)

\ε(y)\ ̂  C\y\~3 by Taylor-expanding K* to first order using (3.7), (3.13)

|β(y)| ̂  C|y|"4 outside ( j [Z)(0, Λfc + 2)\D(0,Λfc - 2)], (3.14)

by Taylor-expanding K* to second order using (3.8).

Set ε«2μ )βv) = max{|ε0>-j/)| \yeQμ,y'eQy,\y-y'\> 10"3}.

From (3.13), (3.14) we get

Σ ε(6/.'6v)< C for each ju;Σ«(βμ,δv)< C for each v. (3.15)
μ
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On the other hand (3.11) and (3.12) imply

VLK«l^>-CN-CN'-Σε(Qμ,Qv)NμNv- £ C\yj-yk\~\ (3.16)
μ,v 0<|yj -y k |<10- 2

Now (3.15) shows that £ ε(Qμ, Qv)NμNv ^ C £ N% which we estimate by (3.10). Also
μ,v μ

Σ I^-ΛΓ 1 = Σ l*,--**r + Σ 1 -̂ω*!"1.
0<|y.,-yk|<10-3 0<|x>7 - x k | < 1 0 - 3 |x, - ωk| < 10 ~ 3

which we estimate by (3.3). Hence (3.16) yields V[_K*~\^ - C{H + CN + CN'\
which is the desired estimate (3.9). •

We shall also need estimate on ]Γ £ \Xj-y\~1 for various subsets

J g Z 3 . Imitating the proof of (3.2), we first note that ε2 j \Vxφ\2dx^
\x-y\<l/2

f I x - y Γ 1 ! ^ ! 2 ^ - ^ ) j |ιAI2dx, for functions ψ on Λ3 and ε>0
|x-yj<l/2 |x-y|<l/2

arbitrary. Set x = x/ , integrate against f|dx/, sum over j and sum over yεJ.
ifj

We obtain

- ε2Δ ^ X X
yeJ|xj-y|<l/2

x7 -yΓ1- C(ε) [Number of x, e (J B(y, 1/2)1 (3.17)

as operators on L2(R3N). Setting 91 = {v|βv meets one of the B(y, 1/2), yeJ}, we note
that |5R| S C\J\, while the number of x,e (J β(y, 1/2) is at most

l/2

veil \ v /

Putting this into (3.17), we find that £ £ |Xj. - y\ -1 ̂  _ ε M + ε2 ̂  N2 +
yeJ|x7 -y|<l/2 v

C"(ε)|J|. Hence,

x. - y Γ 1 ^ Cε2(iί + CN + CN') + C(ε)|J|, (3.18)

by virtue of (3.3) and (3.10).
Next we record some trivial estimates on partition functions. Let Ω# = Ω(x, R)

with ΩeΓ, and suppose we place the nucleii at a subset of Z3nΩ^. The
corresponding Λί-electron Hamiltonian satisfies HN^^Hχ Ωic- CN — C |#J by
(3.3). Therefore, we have an upper bound

- ^ l n Σ ^ T r e - ^ C(μ, j?), (3.19)

simply because there is a corresponding upper bound for HJJ. Also, it is obvious that

1 . ^ ..„„ -<*»>-C[μ,PU (3.20)
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simply because there exists N < C\Ω\ and XJ/QEL^Ω^ with (Hψθ9ψo} ^ CN. In
fact, we can write ΨO(XI~'XN) a s a n antisymmetrized product of one-electron wave
functions, each describing a spherically symmetric electron cloud of radius 1/4 about
each nucleus of distance > 1/4 from dΩ^..

From (3.19), (3.20) and convexity, we get

—F(μ9β,x,R,Ω) SC(μ,β,Ω) for ΩeΓ. (3.21)

The next lemma is a special application of (3.3) and Lemma 3. We fix DeΓ0,
ΩeΓ, and numbers R » 1 , σ « 1. Suppose θ is a function on R3 satisfying θ(x) = 1
in D(0,R- σ), θ(x) = 0 outside D(0,R), |V0| ^ Cσ'1 everywhere. Define a kernel

Place nucleii ωk at the lattice points of Ω^ =

Lemma 5.

if R* > CR.

Proof. One computes that

Then we have

Σ on

(3.22)

(3.23)

Take functions φ0, φu η on R 3 with φo + Φι~ U Φo supported in |x| < 1/4, φγ

supported in |x| > 1/8, J η = 1, η ̂  0, ijeCj?(|x| ^ 10"3). Then write

(3.24)

Estimates (3.22), (3.23) imply

£ max

and

Now

Cσ

while Σ Si(ωv — ωι) = 0. Hence
I'fl

Σ
I'fi

(3.25)

>J) by (3.3),

(3.26)
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Next observe that

S2(xj - ωt) - ^ S2(ωv - ωd =

297

with ¥(y) = Σ(ΦiS)(y — ω λ w e have \V£f\ < Cσ by (3.25), and Sf is supported in

the double of Ω% since R^ > CR. Hence, Lemma 3 yields

^ Cσ2\ΩJ(H +CN +ΣS2(*j-ωι)

and therefore

L hi I'

— Σ ^2(ωV ~ ωl)
I ' f l

- Σ S 2 (ω Γ — ωt) :

2 Ί

(3.27)

Finally, (3.24) shows that Σ |S3(y - ω,)| ^ Cσ for any yeR3, so that trivially,

hi

- ωt) - - ωt) (3.28)

Since S = Si + 5 2 + S 3, Lemma 5 follows from (3.26), (3.27), (3.28).

4. A Swiss Cheese

Fix DEΓ0. TO prove Lemma 1, we shall partition JR3 into D(xka,Rk) and a small

residual part. See Lebowitz-Lieb [1], where such a "Swiss cheese" decomposition

is used to get existence of the thermodynamic limit.

Lemma 6. Let 1 < Rί < R2 < ••• < RM be radii with Rk + 1>2Rk. Then any cube

Q+ of side greater than CMRM may be decomposed into a disjoint union Q+ =
M

(J (J BkΛu (J gα with the following properties.

Each Bka has the form Bka = D(xkΛ,Rk).

Each β α is contained in a cube of side 1.

Σ\Bka\^~\Q + \ far each k.

The number of βα's is at most —\Q + \.
M

(4.1)

(4.2)

(4.3)

(4.4)

Proof. We give an inductive procedure to construct successively the BMa, £ M _ l α ,
BM- 2α> e t c We continue applying the procedure until it is impossible to continue, at
which time we cut the remaining part of Q+ into βα's.

Assuming we have already constructed the Bka for all fc>j, our inductive
procedure is as follows. (Note that for j = M, the inductive hypothesis is fulfilled
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vacuously.) First cut β + into a grid of cubes {βv} of side ~ CxRj. Here Cγ is a
constant chosen so that D(xv, 2Rj) g β when xv = centre of β v . Let J = {v|βv meets
none of the BkaL already constructed}; at the centre of each β v we place Bv = D(xv, Rj).

Case 1. If X \BV\ > 10/M|β + |, then since each Bv has volume < |β + |/M, one can
veJ

pick a subset {Bj<x} g {^v}vej so that

9 10
< w l β + l (4-5)

Note that (4.1), (4.3) hold for k=j if they held for k>j. Our inductive step is
complete.

Case 2. If £ |β v | ^ 10/M|β +1, then we cut up β + into a grid of unit cubes {β°}, and
veJ

define {βα} to consist of the non-empty intersections of the β° with β + \ (J Bk0L. The
fcα

construction of Bka's and βα's is complete.
The first inequality in (4.5) shows that Case 2 must occur for some; ^ 1. When it

does occur, we note that the number of β? which meet a fixed dBka is at most
C\Bka\/Rk. Hence the total number of β? which meet any of the dBka is at

most ΣCR^iY)Bka\)^(C\Q + \/M)ΎjRk

ί ^C/M\Q + \; here we used (4.3).
k \ a ) k

Similarly, for a fixed Bka, the total volume of all the β v that meet dBkΛ is at most
CRj/Rk'\Bka\; hence the total volume of all the β v that meet any dBka is at most

< c i δ 1 V R . / R <CΊQ!±

Also, since we are in Case 2, the total volume of the β v which meet no Bka is at most

C/M|β + |. Consequently; | β + \ [) BJ < C/M\Q+1. So the total number of β? disjoint

from all Bka is at most C/M\Q + \.

Since each β α is of the form β°\ (J Bka with β^ either disjoint from all Bka or
ka

meeting some dBka, property (4.4) is proved. The other properties, (4.1), (4.2), (4.3) are
obvious from the construction. •

Lemma 6 induces a decomposition of all R3 into Bka's and βα's. We just cut R3

into congruent subcubes {βv

+} of side ~2CMRM, and cut each of the βv

+ via
Lemma 6. Thus, JR3 = (J Bkau (J βα. We can assume the decompositions of the

ka

different βv

+ are all translates of one another. Also, we take the {βv

+} to have
their vertices at lattice points.

Next we introduce a partition of unity 1 = £ θka + £ 0£ corresponding to

the Bka and βα. More precisely, with σ = M~ 1 / 3, we define functions θk9 θka, θa

on R3 so that

θkΛ(x) = θk(x-xka\ where Bfcα = D(xfcα, Rfc). (4.6)

is constant on 3D(0, r) for each r, and 0fc is supported in Z)(0, Λfc). (4.7)
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\d%\ S Cyσ~lyl. (4.8)

Supp θa £ β α = {x I dist(x, βα) < σ}. (4.9)

|dy0«l ^ C,σ- |α|. (4.10)

It is easy to define these; first construct θk so that (4.7), (4.8) hold and (1 - θξ)112

satisfies estimates analogous to (4.8); next define θka by (4.6); and finally construct
the 0α.

Note that θka(x) = 1 for xeBka, dist(x,&Bfcα) > σ.
For a vector τeR3, we can obviously translate the Bka9 βα, θka9 θa by τ.

Later on, it will be important to do this and then average our estimates over all
τeQ+ =one of the fundamental cubes {βv

+}. In particular, we shall need the
following identities.

AvτeQ+ Σ θl(* - iflUL* ~ τ) = Σh{θl*βΐ){x - x% (4.12)

AvτeQ+ Σ 0L(χ - τ)χBka(yf ~τ) = Σ Uθ2

k*χD(o,Rk))(χ - y\ (4.13)

A v τ e Q + Σ Xβjy - τ)χBka(yf - τ) = Σλk(xD(o,Rk)*XD(o,Rk))(y - y'\ (4.14)
h* k

where

4 = lβ + l " 1 [Number of xkaeQ+l (4.15)

and S(x) = θ(—x) for any function θ on R3.
To prove (4.12), (4.13), (4.14), let B° be the set of xka in β \ and fix a lattice / I + in

R3 so that the fundamental cubes βv

+ are precisely the translates of β + by vectors in
A + . Note that each xka can be written uniquely as xka = xka, + ω with xktx>eB° and

+ . Now we can write

= \Q+ Γ x ί + Σ

= lβ+Γ1 Σ Σ ί Θ2

k(x-τ-ω-xka,)θ2

k(x'-τ-ω-xka.)dτ

= \Q+Γ1 Σ ί θl(x-ξ)θl(x'-ξ)dξ
fi ξ R 3

(write ξ = xka, + τ + ω with τ e β + , ωsA + ) . This proves (4.12). The proofs of (4.13)
and (4.14) are similar.

Finally, with
lk = χk |D(0, Rk) I, we obtain, (4.16)

10
0 ^ X f c ^ , (4.17)

^ Σ ^ 1 - ^ b y ( 4 3)> ( 4 4)> ( 4 1 5 ) ( 4 1 8 )



300 C. Fefferman

In terms of the Xfc, identities (4.12), (4.13), (4.14) become

Avτ6Q+ Σ Θ2

ka(x - τ)θl{x> - τ) = X X k ^ | ( x - x% (4.19)

ΣχBJx - τ)XBJx' - τ) = Σ ^ ' ^ ί g i ' " ^ , (4-20)

Σ XBt.(y - τ)χBjy - τ) = Σ χ/m**)* W , ^ - /) ( 4 2 1 )

5. An Exploded System

Fix a cube Q+ = one of the Q* from the last section, and let Ω# = Ω(x^9 R^) with
ΩeΓ and . R ^ ^ C M 2 ^ M . Let ^ = {5 = 5 ^ or ζ>a\B + τ meets ^ for some
τ e β + } . To each B e ^ we can associate a vector ξBeZ3 so that the translates
B + ξB (Beβfi) are pairwise disjoint. The ξB may grow large, but we do not care.

Now for each fixed τeQ+ we define a simplified statistical mechanics problem,
in which Coulomb interactions between the translates B + τ (Be@) are turned
off. More precisely, set β = B + £B + τ for U e ^ , and define the exploded set
β e x = (J 5. Define

i fy .*e£ t e for some

otherwise.

In particular, KexO^ z) = 0 if y and z belong to different components of ί2ex, or if
y,z both belong to B with B = Qa.

Next we place nucleii in β e x . In each £ k α c β e x we place a nucleus at each
lattice point ωeβkan(Ω^ + ξBkJ. In the Qa we place no nucleii. Note that
Bka has a nucleus at each lattice point, unless Bk(X + τ intersects the complement
of β*. Let j>!... j)N, be the nucleii in ί2ex.

Now for N electrons x1...xNeΩex we define a Hamiltonian iί^x on L^(Ωex)
by setting

H^ X = -Δx+

with Dirichlet boundary conditions. Note that the above constructions are not
isomorphic for different τ, because nucleii were placed at lattice points of
Bka + ξBkΛ + τ.

Since the different components of Ωex act independently in H™, we have for
the partition functions

Σy*Tre-*H"= π f e ^ T ™ " ^ ) (5.1)

for suitable Hamiltonians hNB acting on L^φ). If B = Bkae& and (β + τ)c\

cΩ^ = φ, then /2NjB is isomorphic to HNB+V so that lnί £V N Trέ? "^VB J
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\BJ-F(μ,β,xkCί + τ,Rk,D), since Bkx = D(xkx, Rk). If B = BkΛe<%, but

τ)n CΩ^ ± 0, then in any event ίQBk\ by

(3.19), (3.20). Note also that |F(μ,jS,xkα + τ,jRk,D)| ^ C, again by (3.19), (3.20).
Finally, if 5 = βα, then hN B is the Hamiltonian for N free particles in B. Since

β is contained in a cube of side 2, we have ln( V β ^ T r β " ^ . * ) ̂  C for β = Qα,

since the partition function is monotone in the domain. Putting these remarks
into (5.1), we find that

\BJF(μ,β,xka + τ,Rk,D)

| B J + C [Number of

where Λ' = {Bkae@\{Bka + τ j n ^ ^ 0}. (5.2)

Now each β^eJ" is contained in E = {x\dist(x-\-τ,dΩ^)<2dmmQ + },
since 2?fcα<=some Qv

+ so that diam Bfcα ^ diam Qv

+. Since d i a m β + ~CMRM,
while β # = Ω(x^R^) with R^>CM2RM, it follows that £ has volume
< (C/M)|βj . Hence, ^ |Bkα | <(C/M)|β ] | t | . Also, the number of

βα£jf is at most (C/M^ΩJ by virtue of (4.4). Hence we can rewrite (5.2)
in the form

In ( Σ e * Ί τ e - ' * ^ ^ ΣjBJFQi,β,xka + τ,Rk,D) + ̂ \ΩJ. (5.3)

Recall that the left-hand side depends on τ.

6. An Injection of Hubert Spaces

We hope to exploit (5.3) by comparing the partition functions for H™ and HN Ω.
Since these Hamiltonians live on different Hubert spaces, it is natural to inject
14 ( β j into L^(βe x) by an isometry i and then quote the following remark.

Lemma 7. Let ί:E1^E2 be an isometric injection of Hubert spaces, and let H2

be a self-adjoint operator on E2. Define H1 = ί*H2i on Et. Then



302 C. Fefferman

The proof is immediate by minimax.
Note that L%(Ω^) would be isomorphic to L#(ί2ex), were it not for the slight

overlaps of the Qae& with the Bkae$ and one another. This section is just
a careful discussion of the technicalities arising from the overlaps.

To prepare for the definition of ί, we introduce more notation, namely

θka if B = Bfcα

Thus, ΘB is supported in B, and Yjθl(x — τ)=l for xeΩ^. Now let

). We shall define iφ as a function in L^(Ωex). To do so,
we must specify the value of iφ at a point (yi...yN)ei2%x. Each yk belongs to
a single Bk, so we can write yk = xk + ξBk with xkeBk + τ. We define

/ N

M0(j>i •••)>*) = ( Π 0nk(** - τ)
\k=l

Here one interprets φ(xx... xN) = 0 if any of x x . . . xN lie outside of ί2.
One checks easily that ίN injects L^(ΩJ isometrically into Lχ(Ωex). In

particular, ίNφ is antisymmetric if φ is antisymmetric. Also if φ has one derivative
in L2(Ωζ) and vanishes on d(Ω%), then Ϊ ^ will have one derivative in L2(Ω^X)
and vanish on d(Ω^x). This is because of the factors ΘBGCQ(B) in ίNφ. So /#
preserves Dirichlet boundary conditions. Define i as the direct sum of the iN, N^O.

Lemma 7 and (5.3) now yield

(6.1)

for an auxiliary Hamiltonian hNτ = i%HeχiN defined on L^(Ω^).

7. Calculation of the Auxiliary Hamiltonian

First we recall the definition of #^ x . We have

H*N = Σ hN,B> where hNfB acting on φ(y1 ...yN) (7.1)

is given by

hN,β = - Σ u(yk)Δy. + Σ \yj -yuΓ
k κ j<k

B = Bkae@, (7.2)

hNtB=-ΣXβ(yk)Δyk, B = Qae<%. (7.3)

Recall that yx... j)N, are the nucleii in Ωex. The hNyB of (7.2), (7.3) are essentially
the same as hNB in (5.1).
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By (7.1), we have

303

On

(Λ
% we apply (7.2), (7.3) to

(7.4)

...yN) = iψ(y1 ...yN) =

θβι(xι~τ) }'Ψ(XI- XN)

functions, note that

y, = x, + £Bl. To evaluate the characteristic

:,-τ) ifβ = ΰ/ \
for (y,... x BN.

Also, the ykeB are precisely the points ω + ξB for ωGZ 3 πί2 J j c n( J β + τ),
if B = Bkae@t. There are ykeB if B = Qae&.

Consequently, the result of putting φ = ίNφ in (7.2), (7.3) and then substituting
into (7.4) is as follows

= Σ Π
2

L2(R3N)

B = BkaBi...BNe<% 1=1 ίjff

x XBJ=BXBJ=B\Φ(XI - * j v ) l 2 dxχ ' dxN

- Σ Σ Σ 3ίft<£.(*!-*)
B = BkaBι...BNe&ωeΩ*nZ3 Z = l

x...dxN

+ Σ Σ ίΠ^,(x,-τ)4 Σ
5 = 5, Bι...BNe& 1 = 1 ^ ωfω'

ωω'eZ3nfl*

• Z β + τ M χ β + τ ( ω ' ) | ^ i * N ) I 2 d x x . . . d x N

= T+V1-V2+V3. (7.5)

Mercifully, the expressions on the right can be greatly simplified. Let us start
with the Vs.

Taking the sum over jj to the outside in the definition of Vl9 we can
carry out the inner sum over all the B1...BN except BpBf. Recalling that
Σ ΘB(X — τ) = 1 for xεΩ^ we obtain

θ2

BJxj-τ)θ2

BJxj,-τ)\xj-xj, Γ1

•\ψ(x1...xN)\2dx1...dxN

= (^Σκie(xj,xr)ψ,ψ), with
\2jtr /

(7.6)
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Kτ

ee(x,x')=

C. Fefferman

(7.7)

Similarly, in the definition of V2, we can take the sum on j and ω to the outside,
and then perform the inner sum over all the Bγ... BN except B}. The result is

ι - i= ΣωJnJΣ/BJχj-τ)χB

•\\l/(x1...xN)\2dx1...dxN

= (X J ^ a

 κlP(
xj><*#,Ψ)> with

-τ)\xj-

Kτ

ep(x,ω)=

(7.8)

(7.9)

The term F 3 is the simplest of all, since we can immediately carry out the sum
over all the Bx... BN to obtain

Σ K*pp(ωfaηψ,Ψ), with
ωψω

to,ω'eZ3nί2*

Kτ

pp(ω,ω')= Σ XBΛω-τ)χB(ω'~τ) \ω~ω'\-1.

(7.10)

(7.11)

Next we simplify T, using the elementary identity ||V(0ι/O||2 = \\ΘVφ\\2 -
((ΘΔΘ)ψ,ψy for functions φeC(R3\ θeC£(R3), θ real. The identity follows
trivially from integration by parts. Substituting it into the definition of T yields

τ= Σ
Bi...BN

Π

- Σ Σ
In the first term on the right, we can sum over all the Bt...BN, while in the second
term, we can sum over the B, for / φ k. The result is

, with

Now we can substitute (7.6), (7.8), (7.10), (7.12) into (7.5) to obtain

hN>τ =-Δ + V
N,τ9

with

(7.12)

(7.13)

(7.14)

(7.15)

Here the ωk denote the lattice points in Ω+, and Kτ

ee, Kτ

ep, Kτ

pp9 G are given
by (7.7), (7.9), (7.11), (7.13). Note that the sums in these formulas can be extended
from Be& to all B = Bka in the Swiss cheese; for, the new terms all vanish. The
operator (7.14) acts on L^{Ω^ with Dirichlet boundary conditions.

pωk)
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8. Averaging over Translates

So far, we know estimate (6.1) for a Hamiltonian hNτ which somewhat resembles
the desired HNΩk by virtue of (7.14), (7.15). We can improve the resemblance by
averaging over τ e β + . Since" InTrβ~^H is a convex function of a self-adjoint
operator H, (6.1) implies

- |βj, (8.1)

where hN = AvτeQ+hN>τ. Since x->F(μ9β,x,Rk9D) is periodic with period lattice
Z 3 , while β + is a large cube with its vertices at lattice points, the right-hand side
of (8.1) may be rewritten as

Q
X \BkJt AvxeQoF(μ, β9 x, Rk9 D) + T T ^ I , β° = unit cube. (8.2)

Bkae® M

From the definition of $ we have

,)<diamβ+}^l+-£

since d i a m β + ~CMRM while β,,, = βfo,,, R J with R^ > CM 2 R M . Hence, ex-
pression (8.2) is dominated by | β j ( l + C/Λf) max [Avxe(2oF(μ, j5, x, Rk, /))] +

l. Since we already know that F(μJ,x,Rk,D)^C by (3.19), it
follows that

^ max [AvxeQoF(μ,j8,x,Jίfc,D)] + £ . (8.3)
M

Now

Λw = - A + KN, where VN = AvτeQ+ KN,τ (8.4)

with VNtτ given by (7.15). To compute the τ-averages of the various terms in
(7.15), we use (7.7) and (4.19), (7.9) and (4.20); and (7.11) and (4.21). The result is

V* = \Σk Zee(Xj - xk) + \Σk KPP(ωj - ωk) - g Kep(Xj -ωk)~Σ G(xj), (8.5)

where the ωk are the lattice points in β^, and

^ } (8-6)

= \x\-1 Σ l / D ( 0 -%^gp f c ) ( x ) , (8.8)

(8.9)
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Note that (4.19), (4.20), (4.21) apply here because the restriction to Be@ in (7.7),
(7.9), (7.11) is irrelevant. G is a constant, but we won't need to check that. Instead
it is enough to note that

\θBΔΘB(x)\ S Cσ-2χdist{XfdB)<σ HB = Bka,

These estimates are immediate from (4.6)-(4.11) and the remarks immediately
following. Integrating, we get

J Σ^ΔΘ^x-τydτ^Cσ-i'Σ^ Σ WJ
τeQ+βe^ fc=l Kk Bkan(x-Q + )f9

+ Cσ'2 Σ \Q*\^Cσ 2Q+l by Lemma 6.

Since we took σ = M~ 1 / 3 , we have

\G(x)^CM~1/3 forallxeK3. (8.10)

9. Proof of Lemma 1

The idea is to prove

hN ύ (1 + Cε)HN^ + CεN + Cε\ΩJ (9.1)

if Rx... RM and R^ are as in the statement of Lemma 1. Once we have this, (8.3)
yields

max [AV^QO F(μ, β, x, Rk, D)] + —

= _ c'βε + F(μ - Cβε, β{l + Cε), x#, R*, Ω). (9.2)

The right hand side is ^F(μ,β,x^R^Ω)-Cfs by (3.21). Here, C"
depends on μ, /?, ί2, D but not on x+, R^ Rx... RM or ε. Thus (9.2) implies

max lA\xeQor(μ9β9x,Kk,

Since M > Cε 1 0 , Lemma 1 follows easily. So our problem is to prove (9.1).
Formulas (8.4), (8.5), (8.10) reduce (9.1) to the estimate

W1 ^ CεHNfΩit + CεN + C'ε|ί2J, (9.3)

with

Wx = \ Σ Kee(*j ~ X*) + \ Σ KppK - ^ ) - Σ ̂ i " COk), (9.4)
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? (9-5)

Kep(x) = - W - 1 + |χ|-1 f χk%*Xκo*;ύ(x)t {96)

Kpp(x) = - |χ| ~ i + |χ|" i f l / D ( 0 -^* 3 ^° '^ ( x ) . (9.7)

To prove (9.3), we first correct W1 so that electron-electron, electron-proton, and
proton-proton all interact with the same potential. We write

W1 = W2 + W3 + W4r with (9.8)

l (9.9)

- KeP)(Xj - < * > * ) - £ (Kee - Kep)(cDj - ω j , (9.10)
jfk

Now

Σ ^ee + τKPP ~ Kep)(ωj - ωk). (9.1
fk

- Kep)(x) = |xΓ 1 Σ ^ ( ^ *
k=ί

Since γik ^ 1, we can prove that

N^ + CN + C |βJ), (9.12)

simply by quoting Lemma 5 with θ = θl, R = Rk and summing against Σk.
Also,

A i

""XP(O,Jtfc)]. |γι-i

+ [Odd function of x].

The odd function cancels when substituted into £ (i^ee +
Jfk

(cθj — ωk). One checks that

~ Xp(0,Rk)J * \βk ~ Xp(0, Cσ2

Rl\D\

(Just use \8i-χD(O,Rk)\^χDφ,Rk)\D(o,Rk-<,) ) Multiplying this by Ik/\x\,
setting x = ω, - ωv, and summing over all k = 1,..., M and all / φ I', we obtain

\W4\^Cσ2\ΩJ. (9.13)

Recalling that σ = M" 1 / 3 and M > C ε " 1 0 , we see that (9.8), (9.9), (9.12) and
(9.13) reduce (9.3) to

VίKee] ^ CεHNrΩt + CεN + C'ε\ΩJ. (9.14)
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Let φkeCQ(\x\^Rk/10) be a radially symmetric approximate identity of
total integral 1, satisfying natural estimates. Then with p(x) = Yjφk(x — ωι) —

Σ - * j λ we have

(TOTAL NUMBER OF ELECTRONS AND NUCLEII)

since the double integral is positive. Setting mk = (θk*8k(Q))/Rk

i\D\, and
recalling that Rt > C ε " 1 0 , we conclude that

L

= CεN + Cε\ΩJ + ( | lkmk -

Now (4.18) and the obvious estimate 1 ^ m k ^ 1 - Cσ/Rk show that - ε <
M \
Ϋ I k m k - 1 < 0 , while Lemma 4 shows that V\_- M " 1 ] ^ Ci f N > β ,+
=l /

. So (9.15) yields

V[Kee] S Cε(HN^ + CW + CΊΛJ) 4- F Γ f IkHk\ (9.16)

with

^ ^ m l k | x r 1 . (9.17)

Elementary computation shows that

\dΛHk(x)\S^^ if | α | ^ 2 , or if |α| = 3

and

CΛfc-σ)]. (9.18)

Here Z>* is the convex set {x — y\x,yeD}eΓ0. Also,

Hλ(x) = 0 outside D*(09Rk). (9.19)

Since 0 ^ I k ^ C / M , we see from (9.18), (9.19) that K = M- £ Xfc#k satisfies
k=l

the hypotheses of Lemma 4, with /)* in place of D. Hence, Lemma 4 yields
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fcΣ **» *] ^ ^(HN.Ω* + CAT + C|fl J).

Recalling that M > C ε " 1 0 and substituting (9.20) into (9.16), we obtain the
desired estimate (9.14). The proof of Lemma 1 was already reduced to (9.14). •

10. Proof of Lemma 2

In this section, C denotes a constant independent of D, Ω; C(Ω) denotes a constant
independent of D; and C(Ω, D) denotes a constant depending on both D and Ω.

Let ώx...ώL be the lattice points in A * W We P ^ P°i n t s PI~ 9L
according to the following procedure.

(a) If dist(ώ ι ,δβj< 1 ^, then pick yteΩ^ to satisfy IΛ-ώJ<-^,
dist(yhdΩJ>c(Ω). We can easily construct such a β by taking a convex
combination of ώz with a point y°eΩWί of maximal distance to 3-Ω .̂

(b) If dist(ώhdDJ<-&9 then pick &ei2*\Z>* to satisfy I Λ - ώ , | > ^
dist(j)ί,βDHί)>^. This is easily done when R' is sufficiently large, because
then dD^ will look almost flat around ώt.

(c) If dist(ώz,θDί|t) and distίώ^δΛ*)^y^, then set j>, = ώ,.

Note that the cases (a), (b), (c) are disjoint since distfdβ^dβJ^lO. In all
cases we have p^Ω^D^ IΛ-ώil<ifc> dist 0>,, 5DJ > ^ ,
dist(j)I,δβ1|t)>c(β). Since balls of radius c(/2) about the yι are pairwise disjoint
and contained in Ω^D^, the number L of d), is at most C(fl)εlo|ί2J.
Now fix a spherically symmetric ΦOECQ(\X\^C{Ω)) with ||Φ0IIL2 = 1 and
II VΦOWL* < C(Ω). Form an L-electron wave function

1 L

φo{x1... xL) = — = X (sgn π) Π 0o(^π(o ~ Λλ (10.1)
X/L! π 1=1

where π runs over permutations of 1... L. We check easily that

Now define an isometric injection iN'L^

(iNφ)(xί... xN+L) =

where π runs over permutations of 1... N + L.
For ll̂ ll = 1, one compute that

(10.2)
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where ωk runs over the lattice points of D^, and

1=1

The proof of (10.2) uses the mean-value property of |x|~\ radial symmetry
of φθ9 and the fact that φo{x - yt) is supported away from D^.

Now with φ as in (3.18), we have

^ CR25 + CR-25 Wη lφ*F])\\b'(HNtDt + CN + C(β) | β J ) (10.4)

by Lemma 3. Here we are using C(β) | β J as an upper bound on the number
of nucleii in D* and we take η(x) = 1 if dist (x, β j ^ R, η(x) = 0 if dist (x, ΩJ ^ 2R,
and |Vyy| ^ C ( β ) K - 1 everywhere. We introduced ^ because Lemma 3 applies to
functions of compact support.

The obvious estimates

for dist(x

and

show that

So (10.4) yields

for all x,

^ C(Ω,

if Λ is large enough. On the other hand,

CN

(10.5)

*/)

= {ώt of distance < 1/20 from dDj. (10.6)

To see (10.6), note that the ωk have distance at least 1 to the ώι and hence also
distance at least 9/10 to the j),, while the pt have distance at least 1/20 to the
D^ and hence also to the Xj. So if z = Xj or ωk and z' = fo or ώh then
|z —z 'Γ 1 = (φHcφ^lxl" 1^ - z ' ) unless z = xp z' = ώ f.
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Now estimate (3.8) gives an upper bound Cε2{HNDi! + CN + C(fl)|βJ) +
C(ε)C(D)R2 for the last term on the right-hand side of (10.6). For R large enough,
C(ε) C(D)R2<ε2\ΩJ, so that (10.5) and (10.6) yield

Ύ ~"

Therefore, by (10.2) and our estimate for the energy of φθ9 we know

ΪNHN+I^ΩJN ^ (1 + C(Ω)ε2)HNyDir + C(Ω)ε2N + C(Ω)ε2\ΩJ. (10.7)

Using Lemma 7 and (10.7), we can assert

^ eμL-C'(Ω)εiβ\Ω*γe(iι-C'(Ω)ε2β)Njτe-β(l+C(Ω)ei)HN,N. / J Q gx

iV

Pick μ, JJ so that ^(1 + C(Ω)ε2) = β and μ-C\Ω)ε2β= μ. Thus, |0-j5|,
|μ - μ| ^ C'r(β)ε2, and (10.8) yields

βJ. (10.9)

Estimates (3.21) give \F(μ,β,ΩJ-FfafrΩ^ ^ C(Ω)ε2, and |DJ < | β j <J
(l+ε10)!/),,!. Therefore (10.9) implies F(μ,β,ΩJ^F(μJ,D*)-C(Ω)ε2, which is
stronger than the conclusion of Lemma 2. •
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