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The Thermodynamic Limit for a Crystal

C. Fefferman*
Department of Mathematics, Princeton University, Princeton, New Jersey 08544, USA

Abstract. Consider a crystal with nucleii fixed at the lattice points in 2 < R3,
interacting by Coulomb forces with quantized electrons in 2. We prove that the
pressure tends to a limit as £ grows infinitely large.

0. Introduction

A natural model for electrons in a crystal is as follows. We place a nucleus of charge
+ 1 at each lattice point in a box 2 < R3. The basic Hamiltonian for N quantized
electrons xq,...,xy in 2 is

Hyo=—4A,+ Y Ixj—x /7' + Y =™t =YIx;—wl *
j<k i<k Jk

with Dirichlet boundary conditions on 2 x -+ x Q. Here y, ...y, are the nucleii,
and Hy ,acts on antisymmetric wave functions y(x;...xy). If the electrons have
temperature ! and chemical potential p/B, then up to trivial factors the pressure is
given by

F=(Vol2) !ln [Z e*N Trace e‘/‘HN.n].
N

The purpose of this paper is to prove that F tends to a limit as the volume of £2 tends
to infinity. This is called existence of the thermodynamic limit. See Sect. 2 for the
precise statement of our result. The problem of the thermodynamic limit for crystals
was posed by Lebowitz and Lieb, following their basic work [1] on real matter, with
electrons and nucleii all quantized. Since a crystal is not rotationally symmetric,
the method of [1] doesn’t work here.

Of course one wants to allow periodic arrangements of nucleii more general than
just charge + 1 at each lattice point; also, we should introduce spin into our wave
functions. These refinements can be easily incorporated into our proof. For that
matter, it is enough to suppose that the placement of nucleii is asymptotically
periodic; and our electrons could be Bosons (or even classical particles provided the
nucleii have hard cores).

*  Supported by NSF Grant No. MCS80-03072



290 C. Fefferman

In a later article, we shall apply our technique to show that quantized electrons
and nucleii at suitable temperature and density form an ideal gas of hydrogen atoms
or molecules.

1. Notation

Let I' = {Q < R*|Q bounded, convex, with non-empty interior},
I'y = {DeI0D is smooth and has strictly positive Gaussian curvature at every
point}.

For Del’, xeR?, R > 0, write D(x, R) for the translate and dilate, {Ry + x|yeD}.
We write Q° for the unit cube in R3.
Set LZ(©2) = {square-integrable antisymmetric y(x,...xy) on 2V},

Li@Q)= ) ®LiQ.
N20

If yeL%(©Q) and (x,...xy)¢Q2", then we interpret y(x;...xy) to be zero.
If K(x) is a function on R3, and we have electrons x; ... xy and nucleii y; ...y,
then V[K] =} Z K(x;—x) +3 Z K(y; =0 = 3 Kx; =y
Jsk

Thus, the Coulomb potentlal 1s VIixl~1].
For 2 c R3, define
HY o= —A on L%(Q) with Dirichlet boundary conditions;

Hy o= —A + V[|x|~'] on L%(£2) with Dirichlet boundary conditions, where the
nucleii are placed at all the points of Z3N£Q.

Define F(y, B,92) = IQI“IH[ )

e*NTre #Hn.a |.
N20

If Q2 = D(x, R) for DeT, then we write F(u, f, x, R, D) for F(u, f,£2). Observe that F
is invariant under translates of x by vectors in Z3, but not by vectors in R3.
When y, f, D are kept fixed, we shall often write F(x, R) for F(y, §, x, R, D).

2. Reduction of the Theorem to Two Main Lemmas

The precise statement of our result is as follows.

Theorem. For each f>0, ueR?, Qerl, the limit lim F(u,p, x,R,Q) converges
R—- o

uniformly in x. Its value is independent of €2 and has the form ¢(f) + pu.
In this section, we shall state two main lemmas, and show how they imply the
theorem. The rest of the paper is devoted to proving the lemmas.

Lemma 1. Let Dely, Q€T £ > 0. Suppose we have radii Ry <R, < - <Ry <R,
with Ry > Ce™'% Ry, > 2R, M > Ce™ ', and R, > M'°R,,. Then for xeR® we
have

Fu, B, x,R,, ) <e+  max [AvyeoF(u, B, y, Ry, D) 1. 21)
ks

The constants C in Lemma 1 depend on y, 8, D, Q.
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Lemma 2. For QeI thereis a constant C(£2) with the following property. Let DeI,,
0<e<1, D, =D(x,R’), 2, =9(x,R). Suppose D, c 2,, dist(dD,,d0Q,) > 10, and
12,/ < (1 +€*°)|D,|. Then F(u, B,92,) > F(u, B, D,) — C(Q)e if R’ is sufficiently large.
Very roughly, Lemma 1 says that F(u, f, £2) is monotone decreasing in 2 over
the long run, while Lemma 2 says that a small increase in £ will not cause a large
drop in F(u, f, 2).
Let us check that Lemmas 1 and 2 imply the theorem. From Lemma 1 we get

Corollary 1. For fixed pu, B, Del',, the quantity F(R) = AV, 50F(1, B, y, R, D) tends to
a limit as R — oo.

Proof. Let!l= liminf F(R), and take & > 0. It is trivial to show [ # — co (see estimate
R—

(3.20) below), so there are arbitrarily large R with F(R) <!+ . So we can pick
successively R;, R,,..., R, to satisfy R, > Ce™*°, R, >2R,, M > Ce™'°, and
F(R,) <1+ . Here the constant C is taken from Lemma 1 with 2 = D. Lemma 1
gives F(u, B, x,R,,D)<e+[l+¢] for all xeR? R, > M'R,,. Averaging over
xeQ’ we get F(R,)<I+2¢ for R, large enough, so ligl supF(R)<2e+1=

2¢ + liminf F(R). Q.E.D.
R—- o0
Now let F(u,p,D)= ’}im Av,0oF(u, B,y,R,D). Corollary 1 and Lemma 1

together show at once

Cortlllary 2. Given p, B, Del'y, Qel' and ¢>0, we have F(u,B,x,R,Q2)<
e+ F(u, B, D) if R is large enough.
In particular,

F(u,B,x,R,D)< ¢+ F(u,B,D) if R is large enough. 2.2)

On the other hand, Lemma 2 shows that for a large constant C we have
F(u,B,x,R,D) Z F(u, B,y,R — C,D) — C(D)e if R is large enough and |x — y| < 50.
Average this estimate over all y in a translate of Q° containing x. The result is
F(u, B, x,R, D) 2 [AV,eqoF(p, B,y, R — C,D)] — C(D )¢ for large R. Recalling the
definition of F(u, $, D), we conclude that

F(u,B,x,R,D) 2 F(u, B, D) — C'(D)e if R is large enough.

Comparing with (2.2), we find that F(u, 8, x, R, D)— F(u, B, D) as R — o, for each
Derl’,.

Next note that F(u,f,D) is independent of D. This is immediate from
Corollary 2 with Qel",. We write F(u, f) for F(u, B, D).

Finally, let QeI, ¢>0, and pick D,el’, so that D,< interior 2, |Q|<
(1 +¢'%|D,. Lemma 2 shows that F(u, B, x, R, 2)> F(u, B, x, R, D,) — C(Q)e for R
large enough. Hence F(u, B, x, R, 2) > F(u, f) — 2C(2)e for large R. On the other
hand, Corollary 2 with D =D, gives F(u,B,x,R,2) < F(u,f) + ¢ for large R. So
;i_{lzo F(u, B, R, 2) = F(u, ) uniformly in x, for any QeI". Our theorem is completely

proved, except for the assertion F(u, f) = u + ¢(B), which follows trivially from
estimate (3.6) below. Hence, the problem is reduced to proving Lemmas 1 and 2.
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3. Estimates for Coulomb Systems

Consider a Coulomb system with electrons x;... xy and nucleii ®;...wy.. Assume
|, — | 21 for k+k'. We shall compare the potential energy V = V[|x|™!]
with the energy of a continuous charge distribution:

f I,o(x)p(y) dxdy,  p(x)= ;¢(x — ) — ;qb(x — X))

peCy(IxI =1/4),  [o=1, ¢ =0

First of all, ¥V, contains N “self-energy” terms % | ¢(x — x;)¢p(y — x,)/|x — y| dx dy
with j = k, as well as N’ similar terms for the nucleii. These terms have no analogues
in V[|x|~1]; they total CN + CN".

Next, compare the termsin V, V , arising from repulsion of distinct electrons. We

have
dlx—x j)¢(y — Xy)
Ix —yl

;= xid ™1 2 el — Xid T ;- mg< 110 + dx dy.
in view of the subharmonicity of the Coulomb potential.’

The terms in V, V, arising from repulsion of distinct nucleii are exactly equal,
since distinct nucleii are at least distance 1 apart. Finally, the electron—proton
attraction gives rise to terms in V, ¥, which compare as follows:

P(x — x)Pp(y — @)

[x =yl

—Ix,-—wkl"lé _f dXdy_|xj_wkl_IX|xj—wk|<1/2~

Consequently,

VIxI"'1zV,+c > ;= ™"
0<|xj—xKk|<1/10

- Y x,—@) '—CN-CN. @3.1)

Ixj— oKl <1/2

For functions y of three variables, we have an elementary inequality

VplPdxz2 [  Ix—ol 'WO)Pdx—C [ W) dx
Ix—ow|<1/2

Ix—w|<1/2 Ix—w|<1/2

[N

This amounts to the stability of a single hydrogen atom. Writing x; for x, w, for
o; integrating against [ [ dx;; and summing over j, k we obtain
I#]
3422 Y  |x;—wf '—CN-CN 3.2)
|xj— x| <1/2
as operators on Y(x; ... xy). Adding (3.1) and (3.2), we get for H= — A + V[|x| 1]
the operator inequality

H+CN+CN'z—3A+c Y |x;—x

0<|xj—xkl<1/10

+ Y ol i+, (3.3)

|xj— x| <1/2

1 Here we assume ¢(x) = ¢ when |x| < 1/10
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The terms on the right are all positive, so (3.3) implies H-stability of the system. Note
that we did not need antisymmetric wave functions.

Lemma 3. Let F be a function of compact support on R3, with one distributional
derivative in L2. Then
2

;qﬁ*F(wk) —Y.¢+*F(x)| <C|VF|}:(H+CN +CN) (3.4)

as operators on L*(R3").

Corollary. If the system is confined to a ball of radius R, then the net charge N — N’
satisfies

(N—N')*<CR(H +CN + CN)). (3.5
In particular, for nucleii at the lattice points of €2(x, R), we have

H2 —1A +c6?R5 (3.6)

if the net charge IN — N'| > 6R3, 6> CR™1.
Proof of the Corollary. Estimate (3.5) is just the special case of Lemma 3 with
F(x)=1 for x in a ball of radius 2R, F(x)=0 outside a ball of radius 3R,
|VF|SCR™! everywhere. To prove (3.6), note that N’ ~(Vol2)-R3 so .if
IN—N’'|>6R? with 6> CR™?! then (3.5) shows that H > c6*R® + C,;N, while

(3.3) gives H = —1A — C,N — CR3. Estimate (3.6) follows by adding the last two
inequalities. W

Proof of Lemma 3. We have Ek:d)*F(wk)—ZqS*F(xj): (p,F>={(=A)"2p,

(—A)'?F ). The formal manipulation is justified if FeCg, which we may assume.
Thus,

L*F(w) — ) $*F(x) 2 < (=) | (= A)Y2F|* = I VF[*{(= )" p.p)

= const [ VF |2V,
So (3.4) follows from (3.3). W

Next we give an estimate for V[K] when K behaves roughly like |x|~! in the
following rather technical sense.

|02K(x)| < C|x|"'™™  for |a| £2 and all x. (3.7
|02K(x)| S Clx|™*  for |a] =3, (3.8)

unless x belongs to one of the annuli o7, = D(0, R, + 1)\D(0, R, — 1). Here we assume
Dely and Ry, R,,... are fixed radii satisfying Ry = 10, R, ., = 2R,.

Lemma 4. If K satisfies (3.7) and (3.8), then V[K]< C(H + CN + CN").

Proof. First we check that (3.7), (3.8), imply a bound for the Fourier transform of K,
namely |[K(¢)] £ C|¢|™2 In fact, we can write K = K, + K, with K supported in |x|
<2|¢|71, K, supported in |x| > |¢| "%, and K, K, satisfying (3.7) and (3.8). Then one
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checks that ||K, |, < Cl¢|"2 and [|AK,(x) —AK,(x — y)|dx < C for |y| < clel "t
Consequently |K,(¢)| < Cl¢|™2, while |[1—e”¢]|EPR, (&)< C for |yl <clg|™".
Taking y = (¢/2)¢|¢| 2, we get |[K,(&)| £ C'|¢] 72, and so [K(¢)| < C|¢| 2 as claimed.
Now set K* = |x| ™! — cK(x) with 0 < ¢ « 1. Weknow that K* has positive Fourier
transform, so that [K*(x — y)p(x)p(y)dxdy = K*{p} =0 for continuous charge
distribution p.
We shall prove that

V[K*] = — C(H + CN + CN)). (3.9)

If (3.9) holds, then since V[1/|x|]1<H and V[cK —1/|x|]]< C(H + CN + CN’),
we obtain the conclusion of Lemma 4 just by adding. So the problem reduces to
proving (3.9).

Subdivide R? into a grid {Q,} of cubes of side 10™3, and let N, be the number
of particles (x; and w,) in Q,. Evidently

1
EZNv(Nv—l)é Z |-xj_xk|_l

0 <|xj—xK| < 1072
+ S |x;—wl ' SCH+CN+CN)

|xj— K| <1/2
by (3.3). Therefore
YN2<CH+CN+CN’) since Y N=N+N'" (3.10)
Now we are ready to prove (3.9) by imitating the proof of (3.3). Fix an even

approximate identity Y eC(|x| < 1073) with [x)(x)dx = é,,|2| < 10. Then set
pHx) = Y ¥(x —w) — Y. ¢(x — x;), and compare V[K*] with the non-negative
A d

quantity V#= %jK#(;c —»p¥(x)p*(y)dxdy. As before, V¥ contains self-
energy terms which total CN + CN’. The difference between K*(y, —y,) and
the corresponding term [ K*(x — yW(x — y,W(y — y,)dxdy is &y, —y,) with
&= K* — K*xyxy. Therefore

VIKI2 VP —CN—CN' = Y Ie(y;— »l (3.11)

YiF e

where y;...yy4n- is a list of all the particles x;...xy, ®;... oy
In view of the moment conditions on i, we have the estimates

e(y)| £ Cly| ! just from the size of K¥, (3.12)
le(y)| < Cly|~3 by Taylor-expanding K* to first order using (3.7), (3.13)

le)| £ Cly|~* outside O [D(O, R, + 2)\D(0, R, — 2)], (3.14)
k=1

by Taylor-expanding K* to second order using (3.8).

Set &(Q,,0,) =max {ley —y)| [y€Q,,y'€Q,,ly—y|>1073}.
From (3.13), (3.14) we get

Y.&Q,,0,) < C for each pu;Y &Q,,0,) < C for each v. (3.15)

v
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On the other hand (3.11) and (3.12) imply
VIK*]Z —CN—CN'— ) &(Q,,Q,)N,N, — > Cly;—yd™!. (3.16)

v 0<|yj—yk|<10-2

Now (3.15) shows that )" &(Q,, 0, )N,N, < CY NZ, which we estimate by (3.10). Also
R "

. — -1 X;—X _1+ X; — @ _19
0<|Yj_}’k|<10_3|yj ykl 0<|Xj_xzkl<10_3| ! kl |xj—w1;<10‘3| ’ kl
which we estimate by (3.3). Hence (3.16) yields V[K¥]= — C(H + CN + CN"),
which is the desired estimate (3.9). W

We shall also need estimate on ) )  |x;—y/~' for various subsets
yeJ |xj—y/ <1/2
J € Z° Imitating the proof of (3.2), we first note that ¢ [ |V y[*dx2>
=y <1/2
| Ix—yl"'WI*Pdx—C) | Iy|*dx, for functions ¥ on R® and >0
x—y|<1/2 [x—y<1/2
arbitrary. Set x = x;, integrate against []dx,, sum over j and sum over yelJ.

I#j
We obtain
—2A2Y Y x—yTt - C(s)-I:Number of x;e () B(y, 1/2):' (3.17)
yed |xj—y|<1/2 yeJ

as operators on L%(R3Y). Setting i = {v|Q, meets one of the B(y, 1/2), yeJ}, we note
that |R| < C|J|, while the number of x;e () B(y, 1/2) is at most

yelJ

1/2
zm(zm) st zzvz

ve®t

Wiy

= C( )ZNZ +C @M.

Putting this into (3.17), we find that 3 ) |x;— )| 'S -4+ Y N2+
yeJ|xj—yl<1/2 v
C"(¢)|J|. Hence,

Ix; — yI~' < Ce*(H 4+ CN + CN') + C(e)lJ}, (3.18)
yed |xj—y|<1/2
by virtue of (3.3) and (3.10).

Next we record some trivial estimates on partition functions. Let 2, =£(x, R)
with Qel, and suppose we place the nucleii at a subset of Z>n2,. The
corresponding N-electron Hamiltonian satisfies Hy 2$HY o, — CN — C|2,| by
(3.3). Therefore, we have an upper bound

I-Q | ane“”Tre“"””< C(u, p), (3.19)

simply because there is a correspondmg upper bound for HY. Also, it is obvious that

ane“” Tre ##~z — C(u, B), (3.20)
IQ* I
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simply because there exists N < C|Q| and y,eL}(€2,) with {Hyo,Yo> <CN. In
fact, we can write ¥(x, ... xy) as an antisymmetrized product of one-electron wave
functions, each describing a spherically symmetric electron cloud of radius 1/4 about
each nucleus of distance > 1/4 from 002,,.

From (3.19), (3.20) and convexity, we get

0 3P Rm’

F(u, B,x, R 9)' <CupR) for Qel. (321

The next lemma is a special apphcatlon of (3.3) and Lemma 3. We fix Del’,
QeT, and numbers R >» 1, ¢ « 1. Suppose 0 is a function on R? satisfying 6(x) =1
in D(0, R — 6), 8(x) = 0 outside D(0, R), |VO| < Co~* everywhere. Define a kernel

|-1

S0 =91 ae 4 3)(600) — .

DO, R)| pé.
Place nucleii w, at the lattice points of 2, = Q(x,, R,). Then we have

Lemma 5. Z;S(xj — ) — Z S(wy — )| £ Co(Hy, o, + CN + C|2,]) on L}£2,),
if R,>CR. ’ v

Proof. One computes that

56 S o o< (3:22)

Co
IVS(x)| = WXI::KCR‘ (3.23)
Take functions ¢, ¢;, n on R® with ¢, + ¢, = 1, ¢, supported in |x| < 1/4, ¢,
supported in |x| >1/8, [ n=1, # 20, neCF(|x| £ 1073). Then write
S=¢oS +n*(¢18) + [1S —n*(¢1S)]=S, + 5, +8;.
Estimates (3.22), (3.23) imply

Co
1S3(x)| < max |V(¢1S)()’)!§_2X1/10<|x1<cm (3.24)
ly—xl< Rix|
and
Co
[V(¢,S)(x)] §'R‘T|2X1/10<|x|<cn~ (3:25)
Now

Z IS1(x; — )| = (Cct/R)I . z|:< 1/4|xj — | ' <(Co/R)(H +CN + C|2,]) by (3.3),

wh11e Z S1(w; — @) = 0. Hence

Co
;S 1(x;— o) — I;I Siwy—w)| = ?(Hu,n* +CN+ClQ2,). (3.26)
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Next observe that
lez(xj —w)— z; Sy(wy — ) =ZVI *F(x;)— ;’1 *S ()
J» J

with #(y) = Y.(¢,S)(y — w)); we have [V&| < Ca by (3.25), and ¥ is supported in
[}
the double of 22, since R, > CR. Hence, Lemma 3 yields

2
< Co?|,|(H + CN + CI22,),

Z SZ(xj —)— Z S (w) — )
T I'F1

and therefore

[

Finally, (3.24) shows that ) |S4(y — )| < Co for any yeR?3, so that trivially,
[]

< ColQ,|+0671Q,1 7"

Z Sz(xj —w) — Z Sy(wy — )
i 171

2
Y S(x;— ) — Y. Sy — w) ] < C'o(H+ C'N + C|2,]). (3.27)
Tl I'F1

Zi Sa(x;— ) — l;l S3(wy — w,)' < Co(N + C|€2,]). (3.28)

Since S =S; + S, + S3, Lemma 5 follows from (3.26), (3.27), (3.28). W

4. A Swiss Cheese

Fix Del,. To prove Lemma 1, we shall partition R® into D(x,,,R,) and a small
residual part. See Lebowitz-Lieb [1], where such a “Swiss cheese” decomposition
is used to get existence of the thermodynamic limit.

Lemma 6. Let 1 <R, <R, < <Ry be radii with R, ,,>2R,. Then any cube
Q" of side greater than CMR,; may be decomposed into a disjoint union Q* =
M

U U B | Q, with the following properties.

k=1 a a
Each B, has the form B,,= D(x,,, R,). 4.1)
Each Q, is contained in a cube of side 1. 4.2)
10
Y Bl < M|Q+| for each k. 4.3)
e 3 C +
The number of Q,’s is at most MlQ |- 4.9

Proof. We give an inductive procedure to construct successively the By, By — 145
By, ,., etc. We continue applying the procedure until it is impossible to continue, at
which time we cut the remaining part of @ into Q,’s.

Assuming we have already constructed the B,, for all k>j, our inductive
procedure is as follows. (Note that for j = M, the inductive hypothesis is fulfilled
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vacuously.) First cut Q™ into a grid of cubes {Q,} of side ~C,R;. Here C, is a
constant chosen so that D(x,,2R;) € Q when x, = centre of Q,. Let J = {v|Q, meets
none of the B,, already constructed}; at the centre of each Q, we place B, = D(x,, R)).

Case 1. If Z |B,| > 10/M|Q ™|, then since each B, has volume < |Q*|/M, one can
pick a subset {B;,} < {B,},es so that

—IQ*I < ZIB,al <9 Q*I 4.5)

Note that (4.1), (4.3) hold for k=j if they held for k >j. Our inductive step is
complete.
Case 2. If )’ |B,| < 10/M|Q ™|, then we cut up Q * into a grid of unit cubes {Q?}, and

veJ

define {Q,} to consist of the non-empty intersections of the Q2 with Q*\ U B,,. The
ka

construction of B,,’s and Q,’s is complete.

The first inequality in (4.5) shows that Case 2 must occur for some j = 1. When it
does occur, we note that the number of Q% which meet a fixed dB,, is at most
C|By,|/R,. Hence the total number of Q% which meet any of the dB,, is at

most ZCR,‘”(ZIBMI) <(CIQ*I/M)Y.R;* < C'/M|Q*|; here we used (4.3).
k ] k

Similarly, for a fixed B,,, the total volume of all the Q, that meet 0B,, is at most
CRj/R,-|B,,; hence the total volume of all the Q, that meet any 0B, is at most

CR; C'|Q+| C'o”|
Z Rk Z'Bka’— M .

k>j a

Z RJ/Rk__

Also, since we are in Case 2, the total volume of the Q, which meet no B,, is at most
C/M|Q"|. Consequently; |Q "\ | ) Byl < C/M|Q7|. So the total number of Q7 disjoint

ka
from all B,, is at most C/M|Q*|.
Since each Q, is of the form Q?\ ( ) B,, with @ either disjoint from all B, or
k

meeting some 0B,,, property (4.4)is proved. The other properties, (4.1), (4.2), (4.3) are
obvious from the construction. W

Lemma 6 induces a decomposition of all R? into B,,’s and Q,’s. We just cut R®
into congruent subcubes {Q;} of side ~2CMR,,, and cut each of the Q; via
Lemma 6. Thus, R3 = U B, U 0,. We can assume the decompositions of the

different Q} are all translates of one another. Also, we take the {Q;} to have
their vertices at lattice points.
Next we introduce a partition of unity 1—29,“+262 corresponding to

the B,, and Q,. More precisely, with ¢ = M ~1/3, we deﬁne functions 6,, 6,,, 6,
on R3 so that

Ora(X) = Ou(x — x;0),  Where By, = D(x;y Ry). (4.6)
0, is constant on 0D(0,r) for each r, and 6, is supported in D(0,R,). (4.7)
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10"0,| < C,o~M. (4.8)
Supp 6, = 0, = {x|dist(x, Q,) < a}. (4.9)
10"0,] < C,07 " (4.10)
;0,%¢+203=1. @.11)

It is easy to define these; first construct 6, so that (4.7), (4.8) hold and (1 — 67)*/2
satisfies estimates analogous to (4.8); next define 6,, by (4.6); and finally construct
the 6,.

Note that 0,,(x) =1 for xe By, dist(x,0B,,) > 0.

For a vector teR3 we can obviously translate the B, Q, 0, 0, by .
Later on, it will be important to do this and then average our estimates over all
teQ* =one of the fundamental cubes {Q,}. In particular, we shall need the
following identities.

AViegs Y. 0ax — 105X — 7) = Y 407 * ) (x — X), (4.12)
B, k

AVzeQ+ BZ Ofa(x - T)Xﬂ,m(y, —1)= ;&(93 *¥pe0,R) (X — ¥), (4.13)
ka
Av,g+ BZ XB,“,(,V - T)XB,“(J" —7)= ;lk(XD(O,Rk) *ZD(O,Rk))(y =), (4.14)
ka
where

A =1Q*|"*-[Number of x,,€Q"], (4.15)

and f(x) = 6(— x) for any function 6 on R>.

To prove (4.12), (4.13), (4.14), let B be the set of x,,in Q*, and fix a lattice A * in
R? so that the fundamental cubes Q' are precisely the translates of @ * by vectors in
A*. Note that each x,, can be written uniquely as x,, = X, + » with x,,,€B° and
weA*. Now we can write

AV, o+ Y O2(x — D)X — 1)
By,
=lg*|I™! [ 2000 — 7= X )08(x — T — xp,)de

Q" ka

=277 Y Y | Bx—t— 0 — X)X — T — 0 — X,)dt

X, €80 0e AT 1eQ +

=071 X | Gix—Ofix - 9de

x,,€#° &R
(write & = x,, + T+ @ with teQ*, we A ™). This proves (4.12). The proofs of (4.13)

and (4.14) are similar.
Finally, with

Ze=A4ID(O,R,)|, we obtain, 4.16)
10
<I <—
O = Ik = M’ (4'17)
M C
1z ) hzl-, by@3) (44, @15, (4.18)
k=1



300 C. Fefferman
In terms of the 1, identities (4.12), (4.13), (4.14) become

0%+ 02
AV.Ke + ozax— aza - = k‘_k
o PO~ 00 =) = T A

01% *ZD(O,Rk)(x )
IDIR? ’

(x —x), 4.19)

AVieg+ BZ X8, (X = g, (X' —1) = ;Ik (4.20)
ka

AVeag: Y 15,0 — tp, (v — 1) = Y T Jp0R* 00V V) 45
B, k |D le

5. An Exploded System

Fix a cube Q* = one of the Q; from the last section, and let 2, = Q(x,, R,) with
QeI and R, =CM?R,,. Let B={B=B,, or 0,|B+1 meets £2, for some
1eQ*}. To each Be# we can associate a vector {zeZ> so that the translates
B + &5 (BeB) are pairwise disjoint. The ¢ may grow large, but we do not care.

Now for each fixed teQ* we define a simplified statistical mechanics problem,
in which Coulomb interactions between the translates B + t (Be4%) are turned
off. More precisely, set B=B+ (g +1 for Be®, and define the exploded set
Q.. = |J B. Define

Be#
Ko (7)= (ly —z|~! if y,zeB,, for some B,,@.QZ)
e 0 otherwise.

In particular, K.,(y,z) =0 if y and z belong to different components of £2.,, or if
y,z both belong to B with B={,.

Next we place nucleii in Q... In each B,, < Q,, we place a nucleus at each
lattice point weB;, N (2, + &g, ). In the J, we place no nucleii. Note that
B,, has a nucleus at each lattice point, unless B,, + 7 intersects the complement
of 2,. Let §;... 9y, be the nucleii in 2,,.

Now for N electrons x;...xye€,, we define a Hamiltonian H§* on L3(,,)
by setting

?\;‘ = _Ax+ ZkKex(xj’ xk)+ 'Zk Kex(ﬁj’ﬁk)_jZkKex(xjsyk)
i< i< s

with Dirichlet boundary conditions. Note that the above constructions are not
isomorphic for different 7, because nucleii were placed at lattice points of

Bka + é By, +T.
Since the different components of ., act independently in HY', we have for
the partition functions

;e“” Tre AV =[] (;e“” Tr e"‘"’N-H) (5.1)

Be#®

for suitable Hamiltonians hy 5 acting on L2(B). If B=B,,e# and (& + 1)n

‘Q2,=0, then hyp is isomorphic to Hyp., so that In{ Y e*"Tre ~#tws | =
N
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|Biol F(it, B, X4y + T, Ry, D),  since  B,,=D(x,,,R,). If B=B,,e%, but
(B+1)N°Q2,#0, then in any event ‘ln (Z eNTre ‘ﬁ”~,3> <C|B,] by
N

(3.19), (3.20). Note also that [F(u, B, x, + 1, Ry, D) < C, again by (3.19), (3.20).
Finally, if B=0,, then hy , is the Hamiltonian for N free particles in B. Since

B is contained in a cube of side 2, we have ln(Ze"N Tre s )< C for B=0,,
N

since the partition function is monotone in the domain. Putting these remarks
into (5.1), we find that

In <Z e*N Tr e""ﬁ‘f) = Y |BulF(, B, Xss + 7, Ry, D)
N

kaE‘@

+ D {ln <Ze“NTre"‘~,B>
By B (B, + N 2y #0 N

- IBkaIF(lua ﬁ’ Xka +71, Rk,D)}

+ Y ln<2e"NTre"ﬂ"N.B)
N

B= Qkaeg

é Z lBkal'F(:us ﬁa xka+T’ Rk9D)

Bye%B
+C Y |Bil+ C-[Number of §,e4],
By ®

where &' = {B,,e%8|(B, + 1) N2, # 0}. (5.2)

Now each B,,e# is contained in E={x|dist(x+1,00Q,)<2diamQ*},
since B,,Ssome Q) so that diam B,,<diamQ, . Since diamQ* ~ CMR,,,
while Q, =Q(x,,R,) with R,>CM?R,,, it follows that E has volume
<(C/M)|22,]. Hence, Y |B,,l<(C/M)|L2,|. Also, the number of

By e %
0,c% is at most (C/M)]!f*] by virtue of (4.4). Hence we can rewrite (5.2)
in the form

ln (ZeﬂN Tre—ﬁHﬁ‘> é Z |Bka|F(ﬂ’ )B9 Xka + T, Rks D) + %lg*l (53)
N

By B

Recall that the left-hand side depends on 7.

6. An Injection of Hilbert Spaces

We hope to exploit (5.3) by comparing the partition functions for HY and Hy q.
Since these Hamiltonians live on different Hilbert spaces, it is natural to inject
L2(2,) into L2(£2,,) by an isometry i and then quote the following remark.

Lemma 7. Let i: E; > E, be an isometric injection of Hilbert spaces, and let H,
be a self-adjoint operator on E,. Define H,=i*H,i on E, Then Tre #H: <
Tre #H2,
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The proof is immediate by minimax.

Note that L%(£2,) would be isomorphic to L%(£2,,), were it not for the slight
overlaps of the §J,e# with the B,,c# and one another. This section is just
a careful discussion of the technicalities arising from the overlaps.

To prepare for the definition of i, we introduce more notation, namely

GB=<0“ ifB=Bka>-

9, ifB=0,
Thus, 05 is supported in B, and ) 03(x—1)=1 for xef,. Now let
Be®

Y(x,...xy)eL%(2,). We shall define iy as a function in L}(£2,,). To do so,
we must specify the value of iy at a point (y,...yy)eRY. Each y, belongs to
a single B,, so we can write y, = x, + ¢, with x,€B, + 1. We define

N
W)y Y0 = (kU1 Op, (X, — T))'lﬂ(xl S Xp)-

Here one interprets y/(x; ... xy) =0 if any of x, ... xy lic outside of Q.

One checks easily that iy injects L3(£2,) isometrically into L%(€2.,). In
particular, iy is antisymmetric if y is antisymmetric. Also if § has one derivative
in L*(2%) and vanishes on 9(€2Y), then iyy will have one derivative in L*(Q%,
and vanish on 9(2Y). This is because of the factors 0,eCZ(B) in iy. So iy
preserves Dirichlet boundary conditions. Define i as the direct sum of the iy, N = 0.

Lemma 7 and (5.3) now yield

ln (Ze“NTr e_ﬂh"’">§ Z IBkaI'F(M,ﬂ’xka-i_T: Rk’D)+—AC7iQ*l (61)

N By .e®

for an auxiliary Hamiltonian hy , = i} Hy'iy defined on L3(Q,).

7. Calculation of the Auxiliary Hamiltonian
First we recall the definition of HY. We have

5= hyp, where hy g acting on ¢(y;...yy) (7.1)

Be®

is given by

s = = T as0nAy + 3 5= 1l ™ a0 sd

+ 2 195= 90" 101500

= 2= 90T 15000, B=Bioe®, (7.2)
hyp=— ;Xs(yk)Ayk, B=0,4. (13)

Recall that p, ... yy, are the nucleii in 2,,. The hy 5 of (7.2), (7.3) are essentially
the same as hy p in (5.1).
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By (7.1), we have
Chydho¥> = CHRi by = 3 CHE W D20, cny

= Y s i, sy (7.4)

B,B,..Bye®

On B, x:-xBy we apply (72), (73) to ¢(y;...y0)=i(y;...y8) =
N

(]_[ Op,(x;—1) J'¥(x;...xy) with y,=x,+ . To evaluate the characteristic
=1

g,,(x, 9 :)ftgerwlize) for (y,...yn)€B; x -+ x By.
Also, the y,eB are precisely the points w+ ¢y for weZ*nQ,N(B+1),
if B= B,,e%. There are j, B if B= Q,eA.

Consequently, the result of putting ¢ = iy in (7.2), (7.3) and then substituting
into (7.4) is as follows

functions, note that y4(y) =

2

<hN,td” ll/> = 2

Bi...BNER

N 1
+ Y ¥ f]—110,2,,(x,—1:)5.;’|xj—le_l

B=B,, B;...BNeg 1=

V[kl[i Op, (X, — ) Y(x; ... xN)]

LZ(RSN)

X XB,-=BXB,-'=B|¢(X1 o xy)[Pdxy e dxy

- X X X IHHB,(xz—r)

B=B, Bi1...BNe® we 0N+nZ3

‘lej —o|” XB,-=BXB+:((U)||/’(X1 coxy)Pdxy . dxy
J

YT [MBE-y L le-ol

B=B, B;...Bne€. I=1 wFo
ke D1 BNCS ww'eZ3n N«

A+ D)L g+ {@)WOxy ... x0) | dxy .. dxy
ET+ Vl—V2+V3 (7'5)

Mercifully, the expressions on the right can be greatly simplified. Let us start
with the V’s.

Taking the sum over j,j’ to the outside in the definition of V,, we can
carry out the inner sum over all the B;...By except Bj,B;. Recalling that

Y 63(x — 1) =1 for xeQ,, we obtain
Be®

=3 T % 08— 005,65, — b, —

1+1 B %

PWxy. .. xp)| 2 dxy. .. dxy

_ <%; K;e(xj,xj,)¢,¢>, with (1.6
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Keo(x,x)= Y Ofx — D0, (x' —7)Ix — x| 7. (7.7)
By.e®
Similarly, in the definition of V,, we can take the sum on j and w to the outside,
and then perform the inner sum over all the B, ... By except B;. The result is

V2=Z Z j z eﬁka(xi_T)XB,m(w—"E)|xj—(u|‘1

j weZ’n Qv By eB

JPeg. .. xy) |2 dxy .. dxy

= <Z Z K, (xj, o), ¥ > with (7.8)
J weZ>n Q2+«
Kep(x, ) = BZQ 02:(x — T)xp, (@ —7)|x — | . (7.9)

The term V; is the simplest of all, since we can immediately carry out the sum
over all the B,... By to obtain

1
V= <§ ) K;,,(w,w')w,w>, with (7.10)
w,w%;f;\ 0%
Kopl,0) = 3 (@ = s, (@ =)o — |71, (7.11)
ka

Next we simplify 7, using the elementary identity |V(0y)||>=||0Vy |2 —
(040, y> for functions YeC'(R3), 0eCZ(R3), 0 real. The identity follows
trivially from integration by parts. Substituting it into the definition of T yields

2

n XBk(xk — 1) V(x; ... xy)

T=
B;...BNneg || k=1 L2(R3N)
-3, 5 (150900 2005, ).
k By..Bne® \lFk

In the first term on the right, we can sum over all the B ... By, while in the second
term, we can sum over the B, for I+ k. The result is

T=|Vy|* - <ZG(xk—r)¢,l//>, with (7.12)
k
G= Y 0,40, (7.13)
Be#
Now we can substitute (7.6), (7.8), (7.10), (7.12) into (7.5) to obtain
hy.=—A4+Vy,., with (7.14)

la o, I,
VN,: = Ej;kK“(xi’ xk) + _Z—j;k Kpp(wja wk)
- jZ,;K;p(x > W) — Zi:G(x =) (7.15)

Here the w, denote the lattice points in 2,, and K}, K;,, K;,, G are given
by (7.7), (7.9), (7.11), (7.13). Note that the sums in these formulas can be extended
from Be# to all B= B,, in the Swiss cheese; for, the new terms all vanish. The
operator (7.14) acts on L3(£2,) with Dirichlet boundary conditions.
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8. Averaging over Translates

So far, we know estimate (6.1) for a Hamiltonian hy ., which somewhat resembles
the desired Hy o, by virtue of (7.14), (7.15). We can improve the resemblance by
averaging over teQ*. Since'InTre ¥ is a convex function of a self-adjoint
operator H, (6.1) implies

C
ln}zv:euN Tre_ﬂhN é AV\:&Q+ Z |Bka|F(ﬂ9 ﬁ’ Xka +7, Rks D) + Mlg*la (81)

By e

where hy = Av, o+ hy .. Since x— F(u, B, x, R, D) is periodic with period lattice
Z*, while Q" is a large cube with its vertices at lattice points, the right-hand side
of (8.1) may be rewritten as

C
Y. |Bid AVegoF(1t, B, X, R, D) + —|2,], Q° = unit cube. (8.2)
B % M
From the definition of 4 we have

Y, IByl < vol{xeR?|dist(x,,) < diam Q0 *} < (1 + £)I.()*l,

BB M
since diamQ* ~ CMR,, while Q, =Q(x,,R,) with R, >CM?R,,. Hence, ex-
pression (8.2) is dominated by [2,]-(1 + C/M)~lrsnkanM[AveroF(,u, B, x, Ry, D)]+
C/M|Q,|. Since we already know that F(u,f,x R,D)<C by (3.19), it
follows that
C

12,/ ' InY e*" Tre #~ < max [Av,eoF(i, B, X, R, D)] +—. (8.3)
N 1SksM M
Now
hN = - A + VN, Whel‘e VN = AVIEQ+ VN,‘( (8.4)

with Vy . given by (7.15). To compute the t-averages of the various terms in
(7.15), we use (7.7) and (4.19), (7.9) and (4.20); and (7.11) and (4.21). The result is

1 ~ 1 - _
VN =3 z Kee(xj_xk)+_ Z Kpp(wj_wk) —“ZKep(xj_wk)_zG(xj)’ (85)
2 7 2 {F x 7

where the w, are the lattice points in £,, and
M 02 %02 (x)

K =|x|"? Ay 8.6
ee(x) le kzl k RE |D| ( )
" Mo 02«5 (x)
— 1yl k * XD(0,Ry)
Kep()/c)\ le kgl Ik R‘? IDI ’ (87)
M *y X
K,,,,(xf = x| Z T AD(0,Ry) 3XD(0,Rk)( ), 8.8)
k=1 R;|D|
G(x)=AV,p. Y. O A05(x — 7). 8.9)

Be®
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Note that (4.19), (4.20), (4.21) apply here because the restriction to Be# in (7.7),
(7.9), (7.11) is irrelevant. G is a constant, but we won’t need to check that. Instead
it is enough to note that

|65 A05(x)| < CJ—ZXdist(x,aB)<a if B = By,,
|05 AOK(x)) éCo'ZXQa if B=Q,.

These estimates are immediate from (4.6)—(4.11) and the remarks immediately
following. Integrating, we get

M Co
05 AOg(x —7)|dt < Co™ 2 Y — |B,,|
re;jznéel s A63(x—7) kz"l R, s ~Zon20
-2|n+
+Co™2 Y 10l gw by Lemma 6.

Gunx—0 ") #9 M

Since we took 0 = M ~1/3, we have
|G(x) < CM ™13 for all xeR>. (8.10)

9. Proof of Lemma 1
The idea is to prove

hy <(1+ Ce)Hy .+ C'eN + C'2|Q,| ©.1)

if Ry...Ry, and R, are as in the statement of Lemma 1. Once we have this, (8.3)
yields

C
max [Avsto F(.u’ ﬂ: X, Rk> D)] + M

1<ksN
> |.Q*| -1 ln[e—crﬁalﬂ,l Z W= C'BON Tp o~ BUL +C£)HN"Q‘jl
N

= - C,B8 + F(l‘l - C,ﬁ&', ﬂ(l + CS), X s R*, Q) (92)
The right hand side is =F(u,B,x,,R,,2)—C"¢ by (3.21). Here, C”
depends on g, f, 2, D but not on x,, R,, R;... Ry, or & Thus (9.2) implies

C
max [Av,.goF(u, B, x, Ry, D)] + (— + C”8> 2 F(u, B, x4, Ry, Q).
1SksM M

Since M > Ce™ 1%, Lemma 1 follows easily. So our problem is to prove (9.1).
Formulas (8.4), (8.5), (8.10) reduce (9.1) to the estimate
W, £CeHy g, + CeN + C'e|Q,]|, 9.3)

with

1 1
VVl =5 Z Kee(xf - xk) +3 Z KPP(wJ' - wk) - Z Kep Xj— wk)’ (94)
2 fF 2 5 i
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02 %02 (x)

9.5
RZD| (9.5)

Kee(x) - lxl 1 + l I 1 kzl I

_ 1 1 ok * ¥ D0, Rig (X)
Kop(x)=—|x|™" +|x|~ Z A RID] 9-6)

M .
K= —Ix"t+x"t ¥ [kw, 9.7)
R;|D|

To prove (9.3), we first correct W, so that electron—electron, electron—proton, and
proton—proton all interact with the same potential. We write

W,=W,+W,+W, with 9.8)

W, =V[K], ©.9)

W3 = Zk(Kee - Kep)(xj - wk) - .;k(Kee - Kep)(wj - wk)’ (910)
Js J

W, = .;k(%Kee+%Kpp—Kep)(wj—wk). 9.11)
J

Now
(Kee — ep)(x) [~ ! kzl Ik(glf * [gl% - ZD(O,R;()] (x)/RI:: (D).

Since Y 7, < 1, we can prove that
k

W3 < Co(Hy, o, + CN + C|92,]), (9.12)
simply by quoting Lemma 5 with 6 =67, R=R, and summing against 7,.
Also,

1M (67 — xoo.rol* [0k — Toora] | -
(%Kee-'-%Kpp_Kep)(x):E Z Ik k D(ORI)D|R‘%I¢ D(0,Rx) |x| 1

+ [Odd function of x].
The odd function cancels when substituted into Y (K. +3K,,—K,,)
iFk
(w; — ). One checks that

[0 — XD(O,Rk)]*[g — ¥po,R ] < Co?

RZID| = Ry <R

(Just use |07 — Fpo.ryl < 7D, R\DO,Re-0)) Multiplying this by 4/|x|,
setting x = w; — w;, and summing over all k=1,...,M and all [ # I, we obtain

(W, < Ca?|2,]. 9.13)

Recalling that 0 =M~'% and M > Ce %, we see that (9.8), (9.9), (9.12) and
(9.13) reduce (9.3) to

VIK.]=CeHy o, + CeN + C'e|Q2,]. (6.14)
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Let ¢,eCy(|x|=R,/10) be a radially symmetric approximate identity of
total integral 1, satisfying natural estimates. Then with p(x)=) ¢,(x — @) —
[}

Z ¢u(x — x;), we have

VIgerderlxl ™11 = zf”(")"(y) [her dexlx|0)]
‘(TOTAL NUMBER OF ELECTRONS AND NUCLEII)
C
2 - (N+12,)

since the double integral is positive. Setting m, = (62*820))/R3|D|, and
recalling that R, > Ce™!°, we conclude that

M
VIK,] = CeN + CelQ,| + V|:Kee + 2 Ikmk¢k*¢k*|x[_l:l
k=1

= CeN + C8| ( Z Ikmk_ 1>V[|X| 1]

M 9’2
+ V|: Z Ik{mk¢k*¢k*|x|_l + ||~ 1 3 mk|xl_1}:|~ (9.15)
=1 R;|D|

Now (4.18) and the obvious estimate 1=m; =1— Co/R, show that —e<
M
Y Zm,—1)<0, while Lemma 4 shows that V[—I|x|"']<CHpy,qo.+
k=1

C'N + C'|2,]. So (9.15) yields

M
VIK. ]S Ce(Hy o, + C'N+C"|Q,]) + Vl: Y l—ka:|, ©.16)
K=1

with
07 %07

Hy(x) = mdix ¢ x|x| "1+ |x| ! RID|

— x| ©9.17)

Elementary computation shows that

c . .
[0°H(x)| £ ——— Rix R if |a|<2, orif |of=
and
x¢[D*(0, R)\D*(0, R, — 0)]. (9.18)
Here D* is the convex set {x — y|x,yeD}el,. Also,
H,(x)=0 outside D*0,R,). (9.19)

M
Since 01, <C/M, we see from (9.18), (9.19) that K=M- ) I, H, satisfies
k=1
the hypotheses of Lemma 4, with D* in place of D. Hence, Lemma 4 yields
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M Cc
V[ 5. Ika} <57 Hy.a.+ CN +C12,)
k=1

Recalling that M > Ce™'° and substituting (9.20) into (9.16), we obtain the
desired estimate (9.14). The proof of Lemma 1 was already reduced to (9.14). W

10. Proof of Lemma 2

In this section, C denotes a constant independent of D, 2; C(£2) denotes a constant

independent of D; and C(£, D) denotes a constant depending on both D and £.
Let &,...&, be the lattice points in 2,\D,. We pick points $,...9,

according to the following procedure.

(@) If dist(d,002,) <75 then pick e, to satisfy [)—d|<7
dist (9;, 092,) > c(£2). We can easily construct such a §, by taking a convex
combination of &, with a point y°e£2, of maximal distance to 092,.

(b) If dist(d,,0D,) <15 then pick $eR,\D, to satisfy [§—d)l>7
dist(,,0D,) > 5. This is easily done when R’ is sufficiently large, because
then 0D, will look almost flat around d&,.

(c) If dist(cd;,0D,) and dist (&, 0Q2,) = 7o, then set §; =,

Note that the cases (a), (b), (c) are disjoint since dist(aD*,&Q*); 10. In all
cases we have 9,€Q\D,, 19, — &l < 15> dist(9,,0D,) > 35,
dlst(ﬁ,,ﬁ.(z*)>c(.()) Since balls of radius c(£2) about the y, are pairwise disjoint
and contained in £2,\D,, the number L of &, is at most C(Q)e'°Q,].
Now fix a spherically symmetric ¢oeC§ (x| =c(2)) with [¢oll,2=1 and
| VoollL: < C(£2). Form an L-electron wave function

1
Vot )= n boleny— I, (10.1)

where 7 runs over permutations of 1... L. We check easily that

YoeCy([2,\D, 1Y), Yol =1, (Hy, pnpVos¥o) < C()s1°)Q,].
Now define an isometric injection iy: L3(D,)— L%, .(£2,) by

() (X1 Xy 4p) = \/WZ( gn W(xnu)u-xn(zv))

"/’o(xn(zv 1) XN +L)

where 7 runs over permutations of 1... N + L.
For ||| = 1, one compute that

CHyip,on¥siny ) ={Hyp 0¥ > + CHy ap\pVos Yo
+ <[;F(wk)—;F(xj)]¢,l//>, (10.2)



310 C. Fefferman
where w, runs over the lattice points of D,, and

RO = 3, (b= 0l — = i) (103)
The proof of (10.2) uses the mean-value property of |x|~!, radial symmetry

of ¢, and the fact that ¢y(x — ) is supported away from D,.
Now with ¢ as in (3.18), we have

,;¢*¢*F(wk)—z¢*¢*F(x,-)

< CR*5 4 CR™2 ’

;(b*d’*F(wk)_’ Z¢*¢*F(xj)

S CR*®+ CR™**||V(n[¢*F]) |- (Hy,p, + CN + C(2):|02,])  (104)

by Lemma 3. Here we are using C(£2)-(€2,| as an upper bound on the number
of nucleii in D,; and we take n(x) = 1 if dist (x, 2,) < R, n(x) = 0 if dist (x, £2,) = 2R,
and |Vy| £ C(2)R™! everywhere. We introduced 5 because Lemma 3 applies to
functions of compact support.

The obvious estimates

IpxFX)| S Y (Ix— & +1)"2C<C(@,D) for dist(x,2,)> R
hi#Fd
and

IVo+F)|S Y (x—dy +1)73C < (2, D)

for all
\ 2o =Ttdist(x,02,00D,) &%

show that
IV(n-[¢+F])|}. < C(2,D) R
So (10.4) yields

‘;¢*¢*F(a)k) - ;¢*¢*F(xj) S CQ,D)R™'*(Hy p, + CN + C(Q)|2,])

<e'%Hy p,+ CN + C(2)|2,]) (10.5)
if R is large enough. On the other hand,

=

;¢*¢*F(wk)— §¢*¢*F(xj)

+C Y Y I% =Y -y <1730

yeJ j

l;F(wk) ~ Y F(x)

= {&, of distance < 1/20 from D, }. (10.6)

To see (10.6), note that the w, have distance at least 1 to the &, and hence also
distance at least 9/10 to the $,, while the p, have distance at least 1/20 to the
D, and hence also to the x;. So if z=x; or w, and z’=9, or &, then
lz—2|7!' =(p*dp*|x| ')z —2) unless z=x;, 2 = .
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Now estimate (3.8) gives an upper bound Ce*(Hy p, + CN + C(©)|Q,]) +
C(e): C(D)R? for the last term on the right-hand side of (10.6). For R large enough,
C(e): C(D)R* < €2|0,, so that (10.5) and (10.6) yield

Y F(w,) — ZF(XJ') < Ce¥(Hyp+ CN + C(2)-12,)).

Therefore, by (10.2) and our estimate for the energy of ¥, we know
iFHy 11, 0.iy S (1 + C(Q)e*)Hy p, + C()*N + C'(2)e?|2,]. (10.7)

Using Lemma 7 and (10.7), we can assert

Ze‘m Tre—FHvn,0 > Zeﬁ<N+L) Tre PHn+Lo
N TN
> eﬁLzeﬁN Tr e~ PikHy+L v
N

2 L= C@PFI 2 i~ C(D2PN T = B(L+C@e)H , (10.8)
N

Pick i, B so that B(1+C(R)e?)=p and ji—C'(Q)e?f=u. Thus, |f—p|,
lu— | £ C"(2)e?, and (10.8) yields

[2,|F (i, B, 2,) > D |F(u, B, D) — C"(Q)e?[22,]. (10.9)

Estimates (3.21) give [F(u p,02,)—F(i B, 2,) < C2)e* and |D,|<|2,]<
(1 +¢'%)|D,|. Therefore (10.9) implies F(u,f,£2,) = F(i, B, D,) — C(2)e*, which is
stronger than the conclusion of Lemma 2. W
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