Commun. Math. Phys. 98, 245-251 (1985)

Borel-Le Roy Summability of the High Temperature Expansion for Classical Continuous Systems

Marco Maioli

Dipartimento di Matematica pura e applicata, Università di Modena, I-41100 Modena, Italy

Abstract. For classical gases with suitable pair interactions such that $\Phi(r) \sim (\ln r^{-1})^p$ as $r \to 0$ ($p \in \mathbb{N}$), the Taylor expansion in β of the correlation functions and the pressure are summable at $\beta = 0$ by the Borel-Le Roy method of order p+1.

I. Introduction

As it is known [5], for classical continuous systems with stable and regular pair potentials the correlation functions and the pressure admit a convergent power series expansion in the activity z, while the typical analyticity region in β $(\beta = (kT)^{-1})$ is the half plane Re $\beta > 0$. As recently proved by Wagner [7], if the pair potential is bounded and absolutely integrable, the correlation functions and the pressure turn out to have Borel summable Taylor expansions at $\beta = 0$ (for Borel summability, see e.g. [4, 6]). Among other facts the proof uses analyticity for Re $\beta > 0$ and the bound $\int |\Phi(x)|^n dx \leq (||\Phi||_{\infty})^{n-1} ||\Phi||_1$.

Here the aim is to prove the Borel-Le Roy summability ([3, 2]) of these power series, under suitable hypotheses on the pair potential $\Phi(r)$. Hypotheses (1), (2), (3) below include, in particular, the asymptotic behaviour $\Phi(r) \sim (\ln r^{-1})^p$ as $r \to 0$ $(p \in \mathbb{N})$. These assumptions allow us to analytically continue the correlation functions beyond the right half plane, to a region containing $\left\{\beta/\operatorname{Re}\beta^{\frac{1}{1+p}}>0\right\}$ on the Riemann surface of $\ln\beta$, which is suggested by the analytic structure of $\int (e^{-\beta\Phi(x)}-1)dx$ in these cases (Proposition 2.1). Moreover the power series remainders are proved not to grow faster than ((p+1)n)!, which is somehow suggested by bounds of the type $\int |\Phi(x)|^n dx \leq c(pn)!$, and by a further factor $(n!)^2$ that can be expected in the estimates of n^{th} derivatives of correlation functions.

In the case v = 2, p = 1, conditions (1), (2), (3) include potentials exponentially decreasing as $r \to +\infty$ and with the asymptotic behaviour of two-dimensional Yukawa potentials (see e.g. [8, 1]) as $r \to 0$, although $\Phi(r) = e^{-ar}(\ln r^{-1})$ is not in this

class owing to the technical requirement of the existence of an inverse function $r = \Psi(t)$ [Hypothesis (1)].

II. Notations

Let us assume the following hypotheses on the pair potential $\Phi(r)$, r > 0:

(1) $\Phi(r)$ is the restriction to $r \in \mathbb{R}_+$ of a function analytic in some angular sector containing \mathbb{R}_+ , which admits an inverse function $\Psi(t)$ analytic for $|\arg(t)| < p\pi/2$ (for some $p \in \mathbb{N}$);

(2) $\Phi(r) \sim c(\ln r^{-1})^p$ as $r \rightarrow 0$, for some c > 0;

(3) $\Phi(r) \sim c' e^{-ar} r^n (\ln r)^m$ as $r \to +\infty$, for some c', a > 0, $n, m \in \mathbb{Z}$. As a consequence, taking from now on c = c' = 1, the inverse function $\Psi(t)$ admits the asymptotic behaviours:

$$\Psi(t) \sim \exp(-t^{1/p}) \quad \text{as} \quad t \to \infty$$
 (4)

$$\Psi(t) \sim a^{-1} \ln t^{-1} \quad \text{as} \quad t \to 0 \tag{5}$$

in the analyticity sector.

An example is provided by $\Phi(r) = e^{-r}(\ln r^{-1})^p(1-r)^{-p}$.

By these assumptions $\Phi(r)$ is a monotone and positive potential and it satisfies stability and regularity [5], with stability constant given by zero. Then, in order to represent the infinite volume correlation functions [5, Chap. 4.2], on the space E of sequences $\varphi = (\varphi(x)_n)_{n \in \mathbb{N}}$ of complex functions such that

$$\|\varphi\| = \sup_{n \ge 1} \operatorname{ess\,sup}_{(x)_n \in \mathbb{R}^{\nu_n}} |\varphi(x)_n| < \infty ,$$

we can define the operator Γ_{β} such that

$$(\Gamma_{\beta}\varphi)(x_1) = \sum_{n=1}^{\infty} (n!)^{-1} \int d(y)_n K_{\beta}(x_1, (y)_n) \varphi(y)_n, \qquad (6)$$

$$(\Gamma_{\beta}\varphi)(x)_{m} = \varphi(x)'_{m-1} + \sum_{n=1}^{\infty} (n!)^{-1} \int d(y)_{n} K_{\beta}(x_{1},(y)_{n}) \varphi((x)'_{m-1},(y)_{n}), \qquad (7)$$

where $(x)'_{m-1} = (x_2, x_3, ..., x_m)$ and

$$K_{\beta}(x_1, (y)_n) = \prod_{j=1}^n \left(\exp(-\beta \Phi(x_1 - y_j)) - 1 \right).$$
(8)

On the same space we can define

$$(\Delta_{\beta}\varphi)(x)_{m} = \exp(-\beta W^{1}(x)_{m})\varphi(x)_{m}, \qquad (9)$$

where

$$W^{1}(x)_{m} = 0$$
 for $m = 1$, $W^{1}(x)_{m} = \sum_{j=2}^{m} \Phi(x_{1} - x_{j})$ for $m \ge 2$. (10)

If $\operatorname{Re}\beta > 0$, $\mathbb{K}_{\beta} = \Delta_{\beta}\Gamma_{\beta}$ is a product of bounded operators in *E* and $\|\mathbb{K}_{\beta}\| \leq \exp(C(\beta))$, where $C(\beta) = \int |e^{-\beta\Phi(x)} - 1| dx < \infty$ by regularity. For

$$|z| < \exp(-C(\beta)), \quad \operatorname{Re}\beta > 0,$$

Borel Summability of High Temperature Expansion

the sequence of the infinite volume correlation functions belongs to *E* and can be written as: $\rho(\beta, z) = (\mathbf{I} - z\mathbf{K}_{\theta})^{-1} z\alpha \qquad (11)$

where $\alpha(x_1) = 1$, $\alpha(x)_m = 0$ for m > 1.

Under assumptions (1), (2), (3) we can consider the extended function $\tilde{C}(\beta)$ defined in the following proposition.

Proposition 2.1. The integral $\int_{\mathbb{R}^{v}} (e^{-\beta \Phi(x)} - 1) dx$ admits an analytic extension $\tilde{C}(\beta)$ for $\operatorname{Re} \beta^{(1+p)^{-1}} > 0$, such that $|\tilde{C}(\beta)| \leq k|\beta|$ (k > 0) uniformly with respect to the phase of β .

Proof. By assumption (1), for $\beta > 0$, the above integral is equal to

$$k_{1} \int_{0}^{\infty} (e^{-\beta t} - 1) \Psi(t)^{\nu - 1} \Psi'(t) dt = k_{1} \int_{0}^{\infty} (\exp(-\beta^{(1+p)^{-1}}\tau) - 1)$$

$$\cdot \Psi(\tau \beta^{-p(1+p)^{-1}})^{\nu - 1} \Psi'(\tau \beta^{-p(1+p)^{-1}}) \beta^{-p(1+p)^{-1}} d\tau.$$
(12)

The last integral is absolutely convergent for $\operatorname{Re}\beta^{(1+p)^{-1}} > 0$. Indeed, setting $\beta = |\beta|e^{i\theta}$, $\tau = \sigma|\beta|^{p(p+1)^{-1}}$ and using assumption (1):

$$|\tilde{C}(\beta)| \leq k_1 \int_{0}^{\infty} |(1 - \exp(-|\beta|\sigma e^{i\theta(p+1)^{-1}}))| \\ \cdot \Psi(\sigma e^{-i\theta p(p+1)^{-1}})^{\nu-1} \Psi'(\sigma e^{-i\theta p(p+1)^{-1}})| d\sigma.$$
(13)

Since $e^{-z} - 1 = -ze^{-\varepsilon z}$ for some $\varepsilon = \varepsilon(z)$, $0 \le \varepsilon \le 1$, we have by (4),(5):

$$|\tilde{C}(\beta)| \leq k_2 \int_0^1 |\beta| \sigma \exp\left(-\varepsilon |\beta| \sigma \cos\frac{\theta}{p+1}\right) |\ln \sigma^{-1}|^{\nu-1} \sigma^{-1} d\sigma + k_2 \int_1^\infty |\beta| \sigma \exp\left(-\varepsilon |\beta| \sigma \cos\frac{\theta}{p+1}\right) \cdot \exp\left(-\nu \sigma^{p^{-1}} \cos\frac{\theta}{p+1}\right) \sigma^{p^{-1}-1} d\sigma \leq k_3 |\beta|$$
(14)

if $|\theta| < (p+1)\pi/2$, for some $k_2, k_3 > 0$. The uniformity of (14) with respect to θ can be checked by the equivalent substitution $t = (\beta e^{i\gamma})^{p(p+1)^{-1}}$ in (12), with γ real and small. Indeed the consideration of complex β leads to the estimate (14) with θ replaced by $\theta + \gamma$: whence the uniformity near $\theta = -(p+1)\pi/2$ and $\theta = (p+1)\pi/2$ by assuming $\gamma > 0$ and $\gamma < 0$ respectively, and the assertion is proved.

Let $z \in \mathbb{C}^{\nu}$: we say that $|\operatorname{Im} z| \leq d$ if the imaginary part of each component is not larger than d. Let $S_{\delta}^{n} = \{(z)_{n} \in \mathbb{C}^{\nu n} / |\operatorname{Im} z_{j}| \leq \delta$ for $j = 1, 2, ..., n\}$ and let $T_{\delta}^{n} = \{(z)_{n} \in S_{\delta}^{n} / z_{1} = z_{j} \text{ for some } j \neq 1\}$. We can consider the space F_{δ} of sequences of functions $\varphi(z)_{n}$ analytic [in each one of the νn components of $(z)_{n}$] at least on $S_{\delta}^{n} \setminus T_{\delta}^{n}$ and bounded on S_{δ}^{n} , such that

$$\|\varphi\|_{\delta} = \sup_{n \ge 1} \sup_{(z)_n \in S_{\delta}^n} |\varphi(z)_n| < \infty .$$
⁽¹⁵⁾

Of course $\alpha \in \bigcap_{\delta>0} F_{\delta}$ and $\|\alpha\|_{\delta} = 1$ for all δ . Moreover, by the properties of $e^{-\beta\Phi}$ on \mathbb{C}^{ν} , $\varrho(\beta, z)$ belongs to these spaces for $\beta > 0$.

III. Analytic Continuation and Estimates

Proposition 3.1. There is some d > 0 such that if $\varphi \in F_{qd}$ (q > 1) the expressions (6), (7) admit analytic continuation $(\tilde{\Gamma}_{\beta}\varphi)(x)_m$ to $\operatorname{Re}^{\beta^{(1+p)-1}} > 0$ such that $(\tilde{\Gamma}_{\beta}\varphi) \in F_{(q-1)d}$ and

$$\|\tilde{I}_{\beta}\varphi\|_{(q-1)d} \leq k_1 \exp(k_2|\tilde{C}(\beta)|) \|\varphi\|_{qd}$$
(16)

with k_1, k_2 independent of q.

Proof. It is sufficient to consider (7). For $\beta > 0$:

$$(\Gamma_{\beta}\varphi)(x)_{m} = \varphi(x)'_{m-1} + \sum_{n=1}^{\infty} (n!)^{-1} \cdot \int_{(\mathbb{R}_{+})^{n}} \int_{r_{n}} \int_{j=1}^{n} (e^{-\beta\Phi(r_{j})} - 1)(-1)^{n} r_{j}^{\nu-1} dr_{j}) \cdot \varphi((x)'_{m-1}, x_{1} - r_{1}f_{1}, ..., x_{1} - r_{n}f_{n}) d\mu_{n}.$$
(17)

In these integrals $r_j = |x_1 - y_j|$ (j = 1, 2, ..., n), $x_1 - y_j = r_j f_j$, where f_j only depends on the angular part of the *v*-dimensional polar coordinates, and $\int_{T_n} d\mu_n$ denotes the integration over such angular coordinates for all *j*. By the substitution $r_j = \Psi(\beta^{-p(1+p)^{-1}}t_j)$

$$(\Gamma_{\beta}\varphi)(x)_{m} = \varphi(x)'_{m-1} + \sum_{n=1}^{\infty} (n!)^{-1} \int_{(\mathbb{R}_{+})^{n}} \int_{T_{n}} \prod_{j=1}^{n} ((1 - \exp(t_{j}\beta^{(1+p)^{-1}}))) \cdot \Psi(t_{j}\beta^{-p(1+p)^{-1}})^{\nu-1}\Psi'(t_{j}\beta^{-p(1+p)^{-1}})dt_{j})\beta^{-pn(1+p)^{-1}} \cdot \varphi((x)'_{m-1}, x_{1} - \Psi(t_{1}\beta^{-p(p+1)^{-1}})f_{1}, \dots, x_{1} - \Psi(t_{n}\beta^{-p(1+p)^{-1}})f_{n})d\mu_{n},$$
(18)

where the f_j 's are independent of β and t_j . Now, the right-hand-side of (18) makes sense as an analytic function of β for $\operatorname{Re}\beta^{(1+p)^{-1}} > 0$. Indeed the integrand is analytic by assumption (1). Moreover, after the substitution $t_j = \tau_j |\beta|^{(1+p)^{-1}p}$ we have by (4), (5):

$$\Psi(\tau e^{-i\theta p(1+p)^{-1}}) \sim \exp(-\tau^{p^{-1}}e^{-i\theta(1+p)^{-1}})$$
 as $\tau \to \infty$, (19a)

$$\operatorname{Im} \Psi(\tau e^{-i\theta p(1+p)^{-1}}) \sim -a^{-1}ip\theta(1+p)^{-1} \quad \text{as} \quad \tau \to 0.$$
(19b)

As a consequence:

$$|\operatorname{Im}\Psi(\tau e^{-i\theta p(1+p)^{-1}})| \leq d \tag{20}$$

for some d > 0, uniformly for $|\theta| \leq (p+1)\pi/2$. On the other hand $|f_j| \leq 1$, therefore:

$$|\varphi((x)'_{m-1}, x_1 - \Psi(\tau_1 e^{-i\theta p(1+p)^{-1}}) f_1, \ldots)| \le \|\varphi\|_{qd}$$
(21)

if $|\text{Im} x_1| \leq (q-1)d$. Comparing (18) and (21) with (12) we obtain (16) and the assertion is proved.

Proposition 3.2. Let $\varphi \in F_{qd}$ (q, d as in Proposition 3.1). For fixed R > 0 there are A_1, A_2 such that, for $\operatorname{Re} \beta^{(1+p)^{-1}} > 0$, $|\beta| < R$,

$$|D_{\beta}^{s}(\tilde{I}_{\beta}\varphi)(x)_{m}| \leq A_{1}(A_{2})^{s}((p+1)s)! \|\varphi\|_{qd}$$
(22)

for $(x)_m \in S^m_{(q-1)d}$, $s \in \mathbb{N}_0$.

Borel Summability of High Temperature Expansion

Proof. It is sufficient to consider the m > 1 cases and to bound the s^{th} derivative with respect to $|\beta|$. By the substitution $t_j = \tau_j |\beta|^{p(1+p)^{-1}}$ in (18), the only term depending on $|\beta|$ is

$$\prod_{j=1}^{n} \left(\exp(-|\beta|\tau_{j}e^{i\theta(1+p)^{-1}}) - 1 \right).$$

Hence, by the same argument of Proposition 3.1 we have:

$$|D_{|\beta|}^{s}(\tilde{\Gamma}_{\beta}\varphi)(x)_{m}| \leq \|\varphi\|_{qd} + \sum_{n=1}^{\infty} (n!)^{-1} \sum_{\substack{s_{1},\ldots,s_{n}\geq 0\\s_{1}+\ldots+s_{n}=s}} \frac{s!}{s_{1}!\ldots s_{n}!} \cdot \|\varphi\|_{qd}$$
$$\cdot \prod_{j=1}^{n} \left(\int_{\mathbb{R}^{+}} |D_{|\beta|}^{s_{j}} \{\exp(-|\beta|\tau_{j}e^{i\theta(1+p)^{-1}}) - 1\} \right)$$
$$\cdot \Psi(\tau_{j}e^{-i\theta p(1+p)^{-1}})^{\nu-1} \Psi'(\tau_{j}e^{-i\theta p(1+p)^{-1}}) d\tau_{j}| \right).$$
(23)

Now, by (19) [compare with (14)],

$$\int_{\mathbb{R}_{+}} |D_{|\beta|}^{s} \{ \exp(-|\beta|\tau e^{i\theta(1+p)^{-1}}) - 1 \} \Psi(\tau e^{-i\theta p(1+p)^{-1}})^{\nu-1} \Psi'(\tau e^{-i\theta p(1+p)^{-1}}) d\tau |$$

$$\leq k_{1} \int_{0}^{1} |\beta| \tau^{s+1} |\ln \tau|^{\nu-1} \tau^{-1} d\tau + k_{2} \int_{1}^{\infty} |\beta| \tau^{s+1} \exp\left(-\nu \tau^{p^{-1}} \cos\frac{\theta}{p+1}\right) \tau^{p^{-1}-1} d\tau \leq k_{3} (ps)! (k_{4})^{s}, \qquad (24)$$

where the constants are independent of $|\beta|$ for $|\beta| < R$ and can be chosen independent of θ by the argument used in Proposition 2.1. By combining (23) and (24):

$$|D^{s}_{|\beta|}(\tilde{I}_{\beta}\varphi)(x)_{m}| \leq \|\varphi\|_{qd} \sum_{n=0}^{\infty} (n!)^{-1} A^{s}(s!)(k_{3})^{n}(ps)!(k_{4})^{s},$$
(25)

since $s_1 + s_2 + \ldots + s_n = s$, and the estimate (22) is proved.

Proposition 3.3. There is a scale of spaces $F_{\delta,h} \subset F_{\delta,h-1} \subset \ldots \subset F_{\delta,0} = F_{\delta}$ (with norms $\|\cdot\|_{\delta,h}, \delta > 0, h \in \mathbb{N}_0$) such that, if $|\beta| < R$, (9), (10) define a bounded operator Δ_{β} from $F_{\delta,h+1}$ to $F_{\delta,h}$ and

$$\|(D^{s}_{\beta}\Delta_{\beta})\varphi\|_{\delta,h} \leq (A_{3})^{s}(s!) \|\varphi\|_{\delta,h+1}, \qquad (26)$$

uniformly for $s \in \mathbb{N}_0$, $\delta > 0$, $h \in \mathbb{N}_0$, $|\beta| < R$.

Proof. We can simply consider the space $F_{\delta,h}$ of vectors $\varphi \in F_{\delta}$ such that

$$\|\varphi\|_{\delta,h} = \sup_{m \ge 1} \sup_{(x)_m \in S_{\delta}^m} \exp\left(hR'|W^1(x)_m|\right) |\varphi(x)_m| < \infty , \qquad (27)$$

where R' > R and $W^1(x)_m$ is defined by (10). Then the first assertion is immediate.

Since

$$(D_{\beta}^{s} \Delta_{\beta}) \varphi(x)_{m} = (-W^{1}(x)_{m})^{s} \exp(-\beta W^{1}(x)_{m}) \varphi(x)_{m},$$

$$|\exp(hR'|W^{1}(x)_{m}|) (D_{\beta}^{s} \Delta_{\beta}) \varphi(x)_{m}| \leq \exp((h+1)R'|W^{1}(x)_{m}|) |W^{1}(x)_{m}|^{s}$$

$$\cdot \exp((R-R')|W^{1}(x)_{m}|) |\varphi(x)_{m}|$$

$$\leq s! \|\varphi\|_{\delta,h+1} (A_{3})^{s},$$
(28)

and the proposition is proved.

Lemma 3.4. Let R > 0 be fixed, $\operatorname{Re} \beta^{(1+p)^{-1}} > 0$, $|\beta| < R$, $\tilde{\Gamma}_{\beta}$ and Δ_{β} as in Propositions 3.1 and 3.3. Then the product $\widehat{\mathbb{K}}_{\beta} = \Delta_{\beta} \widetilde{\Gamma}_{\beta}$ is a bounded operator from $F_{qd,h+1}$ to $F_{(q-1)d,h}$ such that:

$$\|D_{\beta}^{r}\widetilde{\mathbf{K}}_{\beta}\|_{qd,h+1}^{(q-1)d,h} \leq A_{0}A^{r}((p+1)r)!$$
⁽²⁹⁾

uniformly for q > 1 and $h, r \in \mathbb{N}_0$.

Proof. By definition of the weighted norms (27) in $F_{\delta,h}$ ($\delta > 0, h \in \mathbb{N}_0$) it obviously follows from Proposition 3.2 that

$$\|(D_{\beta}^{s}\widetilde{\Gamma}_{\beta})\varphi\|_{(q-1)d,h} \leq A_{1}(A_{2})^{s}((p+1)s)! \|\varphi\|_{qd,h}$$
(30)

for all $\varphi \in F_{qd,h}$. Thus by (30) and Proposition 3.3

$$\begin{split} \|D_{\beta}^{r} \mathcal{\Delta}_{\beta} \widetilde{\Gamma}_{\beta}\|_{qd,h+1}^{(q-1)d,h} &\leq \sum_{s=0}^{r} \binom{r}{s} \|D_{\beta}^{s} \mathcal{\Delta}_{\beta}\|_{(q-1)d,h+1}^{(q-1)d,h} \|D_{\beta}^{r-s} \widetilde{\Gamma}_{\beta}\|_{qd,h+1}^{(q-1)d,h+1} \\ &\leq \sum_{s=0}^{r} 2^{r} (A_{3})^{s} s! A_{1} (A_{2})^{r-s} ((p+1)(r-s))! \\ &\leq A_{0} A^{r} ((p+1)r)! \end{split}$$
(31)

and the lemma is proved.

Lemma 3.5. For any R > 0 there is $R_1 > 0$ such that, for $|z| < R_1$, $\varrho(\beta, z)$ admits an analytic continuation $\tilde{\varrho}(\beta, z)$ in F_d to the region $\operatorname{Re}\beta^{(1+p)^{-1}} > 0$, $|\beta| < R$. Moreover

$$\|D_{\beta}^{r}\tilde{\varrho}(\beta,z)\|_{d} \leq |z|B_{0}B^{r}((p+2)r)!$$
(32)

uniformly with respect to β , z.

Proof. Since $\alpha(x_1) = 1$, $\alpha(x)_m = 0$ for m > 1, $\|\alpha\|_{\delta,h} = 1$ for all δ and h. Hence the partial sums of the geometric series associated with (11) satisfy:

$$\left\| \sum_{h=0}^{N} (z \widetilde{\mathbf{K}}_{\beta})^{h} z \alpha \right\|_{d}$$

$$\leq \sum_{h=0}^{N} |z|^{h+1} \| \widetilde{\mathbf{K}}_{\beta} \|_{2d,1}^{d,0} \| \widetilde{\mathbf{K}}_{\beta} \|_{3d,2}^{2d,1} \dots \| \widetilde{\mathbf{K}}_{\beta} \|_{(h+1)d,h}^{h,h-1} \| \alpha \|_{(h+1)d,h}$$

$$\leq |z| (1-|z|A_{0})^{-1}$$
(33)

uniformly with respect to N, by Lemma 3.4. Thus, given R > 0, there is $R_1 = (A_0)^{-1}$ such that $\tilde{\varrho}(\beta, z)$ exists for $|\beta| < R$, Re $\beta^{(1+p)^{-1}} > 0$, $|z| < R_1$ as a uniform limit, in F_d , of analytic approximants.

Borel Summability of High Temperature Expansion

Moreover, by Lemma 3.4:

$$\begin{split} \|D_{\beta}^{r} \widetilde{\varrho}(\beta, z)\|_{d} &= \left\|\sum_{h=0}^{\infty} z^{h+1} \sum_{\substack{r_{1}, \dots, r_{h} \ge 0\\r_{1}+\dots+r_{h}=r}} \frac{r!}{r_{1}! \dots r_{h}!} (D_{\beta}^{r_{1}} \widetilde{\mathbb{K}}_{\beta}) (D_{\beta}^{r_{2}} \widetilde{\mathbb{K}}_{\beta}) \dots (D_{\beta}^{r_{h}} \widetilde{\mathbb{K}}_{\beta}) \alpha \right\|_{d} \\ &\leq \sum_{h=0}^{\infty} |z|^{h+1} \sum_{\substack{r_{1}, \dots, r_{h} \ge 0\\r_{1}+\dots+r_{h}=r}} \frac{r!}{r_{1}! \dots r_{h}!} \|D_{\beta}^{r_{1}} \widetilde{\mathbb{K}}_{\beta}\|_{2d,1}^{d,0} \|D_{\beta}^{r_{2}} \widetilde{\mathbb{K}}_{\beta}\|_{3d,2}^{2d,1} \dots \|D^{r_{h}} \widetilde{\mathbb{K}}_{\beta}\|_{(h+1)d,h}^{hd,h-1} \end{split}$$

$$\leq \sum_{h=0}^{\infty} |z|^{h+1} \sum_{\substack{r_1, \dots, r_h \geq 0\\r_1 + \dots + r_h = r}} r! (A_0)^h A^{r_1} ((p+1)r_1)! \dots A^{r_h} ((p+1)r_h)!$$

$$\leq |z| (B_1)^r (1-|z|A_0)^{-1} A^r ((p+2)r)!$$
(34)

and (32) is proved.

A bound of the type (32) can be easily extended to the function $\beta p(\beta, z)$, where $p(\beta, z)$ is the thermodynamic limit of the pressure, as well as to $f(\tilde{\varrho}(\beta, z))$, where f is any linear functional defined on F_d (see [7]). As a consequence, the remainders of the Taylor expansions of such functions satisfy the criterion for Borel-Le Roy summability of order p+1, which is implicit in Watson-Nevanlinna theorem concerning Borel summability (see [2, 3, 6]).

Theorem 3.6. If Φ satisfies assumptions (1), (2), (3), the power series expansion at $\beta = 0$ of $\beta p(\beta, z)$ and $f(\tilde{\varrho}(\beta, z))$ (where f is any linear functional on F_d) admits a convergent Borel-Le Roy sum of order p + 1.

Acknowledgements. It is a pleasure to thank Professors V. Grecchi and G. Gallavotti for useful discussions.

References

- 1. Fisher, M.E., Ruelle, D.: The stability of many-particle systems. J. Math. Phys. 7, 260 (1966)
- 2. Graffi, S., Grecchi, V., Simon, B.: Borel summability: application to the anharmonic oscillator. Phys. Lett. **32**B, 631 (1970)
- 3. Hardy, G.H.: Divergent series. Oxford: Clarendon Press 1949
- 4. Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. IV. New York: Academic Press 1978
- 5. Ruelle, D.: Statistical mechanics. Rigorous results. New York: Benjamin 1969
- Sokal, A.: An improvement of Watson's theorem on Borel summability. J. Math. Phys. 21, 261 (1980)
- 7. Wagner, W.: Borel-summability of the high temperature expansion for classical continuous systems. Commun. Math. Phys. 82, 183 (1981)
- 8. Wentzel, G.: Quantum theory of fields. New York: Interscience 1949

Communicated by J. Fröhlich

Received July 20, 1984