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Borel-Le Roy Summabίlity
of the High Temperature Expansion
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Abstract. For classical gases with suitable pair interactions such that
Φ^^lnr"1)*7 as r->0 (peN), the Taylor expansion in β of the correlation
functions and the pressure are summable at β = 0 by the Borel-Le Roy method
of order p +1.

I. Introduction

As it is known [5], for classical continuous systems with stable and regular pair
potentials the correlation functions and the pressure admit a convergent power
series expansion in the activity z, while the typical analyticity region in β
(β = (kT)~ί)is the half plane Re β > 0. As recently proved by Wagner [7], if the pair
potential is bounded and absolutely integrable, the correlation functions and the
pressure turn out to have Borel summable Taylor expansions at β = 0 (for Borel
summability, see e.g. [4, 6]). Among other facts the proof uses analyticity for
Re/?>0 and the bound f |Φ(x)|Ήx^(||Φ|| J"~1Φ||!.

Here the aim is to prove the Borel-Le Roy summability ([3, 2]) of these power
series, under suitable hypotheses on the pair potential Φ(r). Hypotheses (1), (2), (3)
below include, in particular, the asymptotic behaviour Φ(r)~(lnr~1)p as r->0
(peN). These assumptions allow us to analytically continue the correlation

( _j_ I
functions beyond the right half plane, to a region containing [β/Reβΐ+p> OJ on the
Riemann surface of Inβ, which is suggested by the analytic structure of
l(e~βφ(x}— l)dx in these cases (Proposition 2.1). Moreover the power series
remainders are proved not to grow faster than ((p+l)n)!, which is somehow
suggested by bounds of the type J \Φ(x)\ndx^c(pri)\, and by a further factor (nl)2

that can be expected in the estimates of nth derivatives of correlation functions.
In the case v = 2, p= 1, conditions (1), (2), (3) include potentials exponentially

decreasing as r-+ + oo and with the asymptotic behaviour of two-dimensional
Yukawa potentials (see e.g. [8,1]) as r->0, although Φ(r) = e~ar(lnr ~ *) is not in this
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class owing to the technical requirement of the existence of an inverse function
r=Ψ(t) [Hypothesis (1)].

II. Notations

Let us assume the following hypotheses on the pair potential Φ(r), r>0:
(1) Φ(r) is the restriction to r e R+ of a function analytic in some angular sector

containing R+, which admits an inverse function Ψ(t) analytic for |arg(ί)| <pπ/2
(for some peN);

(2) Φ(r)-c(lnr~1)p as r->0, for some c>0;
(3) Φ(r)~c'e~αrrn(lnr)m as r-> + oo, for some c',α>0, w,weZ. As a conse-

quence, taking from now on c = c'=l, the inverse function Ψ(t) admits the
asymptotic behaviours:

<F(ί)~exp(-ί1/p) as ί->oo (4)

Ψ(ί)~a-l]nΓl as ί-»0 (5)

in the analyticity sector.
An example is provided by Φ(r) = e~r(lnr~1)p(l — r)~p.
By these assumptions Φ(r) is a monotone and positive potential and it satisfies

stability and regularity [5], with stability constant given by zero. Then, in order to
represent the infinite volume correlation functions [5, Chap. 4.2], on the space E of
sequences φ = (φ(x)n)neN of complex functions such that

||φ|| =sup ess sup \φ(x)n\ < oo ,
n^l (x)n6]Rvn

we can define the operator Γβ such that

(Γ,φ)(*ι)= Σ ("O^ίrfω^x^ωX^, (6)

-i.ω.), (7)
w = 1

where (x)^_ 1 = (x2, x3, . . ., xm) and

Kβ(*ι, (y)»)= Π (exp(- jδΦίXi -y;))- 1) . (8)

On the same space we can define

(9)

where

m

W1(x)m=0 for m = l , W1(x)m= Σ Φί^-X;) for m^2. (10)
J = 2

If Re/3>0, Kβ = J^/^ is a product of bounded operators in E and ||Kβ||
), where C(^)=f |e-Wx)-l|ίix<oo by regularity. For

|z|<exp(-COS)),
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the sequence of the infinite volume correlation functions belongs to E and can be
wrίtten as: ρ(β,z) = (K-zKβΓ

lza (11)

where α^) = 1 , α(x)m = 0 for m > 1 .
Under assumptions (1), (2), (3) we can consider the extended function C(β)

defined in the following proposition.

Proposition 2.1. The integral J (e~ βφ(x) — l)dx admits an analytic extension C(β)
R v

for Re/J(1 +PΓ l > 0, such that \C(β)\ ^ k\β\ (k > 0) uniformly with respect to the phase

of β.

Proof. By assumption (1), for β>0, the above integral is equal to

dτ. (12)

The last integral is absolutely convergent for Rβj8(1+p)~1>0. Indeed, setting
β = \β\eίθ, τ = σ\β\p(p+ιrl and using assumption (1):

(13)

Since e~z- 1 = — ze~εz for some ε = β(z), O^β^ 1, we have by (4), (5):

i
-s\β\σcos

o \ P+l

+ fe2 J |/?|σexρ -s\β\σcos—
i \ p +
/ Q \

•exp I —vσp~lcos -\σp~1~1dσ^k3\β\ (14)

if |0| < (p + l)π/2, for some /c2, /c3 > 0. The uniformity of (14) with respect to θ can be
checked by the equivalent substitution t = (βeiγ)p(p+ιrί in (12), with γ real and
small. Indeed the consideration of complex β leads to the estimate (14) with θ
replaced by θ + y: whence the uniformity near θ = — (p + l)π/2 and θ = (p + l)π/2 by
assuming y>0 and y<0 respectively, and the assertion is proved.

Let z e (Cv: we say that |Imz| ̂  d if the imaginary part of each component is not
larger than d. Let SS = {(z)II6Cvn/|ImzJ.|^δ for j = l,2,...,n} and let
Tδ = {(z)M e SJj/z! = Zj for some j φ 1}. We can consider the space Fδ of sequences of
functions φ(z)n analytic [in each one of the vn components of (z)J at least on SJ^TJ1

and bounded on S"δ, such that

|| φ || δ = sup supjφ(z)n |<oo. (15)
«^1 (z)neSδ

Of course α e Π ^ and ||α||^ = 1 for all (5. Moreover, by the properties ofe~βφ on
<5>0

<CV, ρ(β,z) belongs to these spaces for /?>0.
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III. Analytic Continuation and Estimates

Proposition 3.1. There is some d>Q such that if φe F d (q > 1) the expressions (6),
(7) admit analytic continuation (Γβφ) (x)m to Re β(1 +p)~ > 0 such that (fβφ) e F(q _ 1)d

and
\\Γβφ\\(q-.^klap(k2\C(β)\) U φ l l ^ (16)

with fcl9 k2 independent of q.

Proof. It is sufficient to consider (7). For

n=l

. J J Π(^^)_1)(_1)Vv-ld )
(IR + ) " Γ n j = l

'φWm-liXl-rJii . Xi-rJJdμH. (17)

In these integrals rj = \xί—yj\ (/=1,2, ...,n), x r — yj = ΐjfp where /} only depends

on the angular part of the v-dimensional polar coordinates, and J dμn denotes the
Tn

integration over such angular coordinates for all j. By the substitution

n=l

• Ψ(tjβ-p(1 +rt

^!)-1 ί ί Π((l-exp(ί/1+pΓ1))
"

(18)

where them's are independent of β and ί, . Now, the right-hand-side of (18) makes
sense as an analytic function of β for Re/?(1+p)~'>0. Indeed the integrand is
analytic by assumption (1). Moreover, after the substitution tj =τ7 |jβ|(1+p) ~'p we
have by (4), (5):

' - ~ ~ ) a s τ^oo, (19a)
1 as τ^O. (19b)

As a consequence:
(20)

for some d>0, uniformly for \θ\^(p+l)π/2. On the other hand |/)|^1, therefore:

(21)

if llmxJ^Oz-lK Comparing (18) and (21) with (12) we obtain (16) and the
assertion is proved.

Proposition 3.2. Let φ e Fqd (q, d as in Proposition 3.1). For fixed R>0 there are
AltA2 such that, for Re0<1+p)">0, \β\<R,

x)J ̂ Aί(A2)\(p+ \)s)\\\φ\\qd (22)

^_1)d, sεN0.
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Proof. It is sufficient to consider the m>\ cases and to bound the sth derivative with
respect to |]8|. By the substitution tj = τj\β\p(ί +p)~ l in (18), the only term depending
on \β\ is

Hence, by the same argument of Proposition 3.1 we have:

+Σίw.'Γ 1 Σ -
«=1 5ι,...,5n^0 Si I ..

Si + ... +Sn = S

Πί

*W+p)-y-iy'(τ^-wp(i+P)-yτ Λ . (23)

Now, by (19) [compare with (14)],

o

exp -vτ^cos - Hr*'1-1^^^)!^)*, (24)

where the constants are independent of \β\ for \β\<R and can be chosen
independent of θ by the argument used in Proposition 2.1. By combining (23) and
(24):

s, (25)
n = 0

since si +52+ ... +sn = s, and the estimate (22) is proved.

Proposition 3.3. There is a scale of spaces FδίhCFδίh_ίC ... CFδf0 = Fδ (with norms
|| - \\δth, c5>0, /zeNo; swc/z ίήαί, ι/ |j8|<R, (9), (10) define a bounded operator Aβ

from Fδfh+i to Fδfh and

(26)

uniformly for seN0, (5>0, ΛeN 0, |j8|<jR.

Proo/. We can simply consider the space Fofh of vectors φeFδ such that

sup Qχp(hR'\Wί(x)m\)\φ(x)m\«v, (27)
m x)meS^

where R'>R and W^Xx)^, is defined by (10). Then the first assertion is immediate.
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Since

(Ds

βAβ)φ(x)m = ( - W\xU exp( - /WXx)Jφ(x)m ,

^

and the proposition is proved.

Lemma 3.4. Let R>0 be fixed, Reβ(1+p)~^>0, \β\<R, Γβ and Aβ as in Proposit-
ions 3.1 and 3.3. Then the product ίLβ = AβΓβ is a bounded operator from Fqdfh+1 to

F(q-l)d,hSUctl

||I)rΛllS:Λ)ί*^^o^Γ((P+ !>)! (29)

uniformly for q>\ and h,re N0.

Proof. By definition of the weighted norms (27) in Fδ j Λ (δ > 0, h e N0) it obviously
follows from Proposition 3.2 that

(30)
for all φεFqd>h. Thus by (30) and Proposition 3.3

r /r\< ί»Λ< V I 1 I I D S / 1 | | (β-i¥,Λ ι ι τy-sr | | (β-i)d,Λ+ι
l = Z- I I I I -̂  jj^1/? I I (β-l)d,Λ +111-^)8 7 j 8 l l « d , Λ + l

s = 0\S/

^ Σ 2^
r)! (31)

and the lemma is proved.

Lemma 3.5. For any R>0 there is R1 > 0 such that, for \z\<Rl9 ρ(β, z) admits an
analytic continuation ρ(β,z) in Fd to the region RejS ( 1 +p)~1>0J \β\<R. Moreover

\\Dr

βρ(β, z) \\d ̂  \z\B0B
r((p + 2)r)! (32)

uniformly with respect to β, z.

Proof. Since α(x1) = l, oφc)w = 0 for m>l, | |α| |^h=l for all δ and h. Hence the
partial sums of the geometric series associated with (11) satisfy:

N

Σ

h = 0

uniformly with respect to N, by Lemma 3.4. Thus, given R > 0, there is Rί = (AQ) ~ί

such that §(β, z) exists for \β\<R, Reβ(1 +pΓ J >0, |z| < R1 as a uniform limit, in Fd,
of analytic approximants.
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Moreover, by Lemma 3.4:

oo
< y | 7 | Λ + l Y II DrilR' l l d ' ° IIDr2lK" l l 2^' 1 I I ΠrhHt \\M,h-\
= 2-< \z\ Z^ I \\L'β]^β\\2d,l\\Lfβ^β\\3d,2- IIu ^β\l(h+l)d,h

r\(A0?Ar*((p+l)r1)\...Ar*«p+l)rJ\

- \z\A0) ~ lA\(p + 2)r) ! (34)

and (32) is proved.
A bound of the type (32) can be easily extended to the function βp(β, z), where

p(β, z) is the thermodynamic limit of the pressure, as well as to/(ρ(/?, z)), where /is
any linear functional defined on Fd (see [7]). As a consequence, the remainders of
the Taylor expansions of such functions satisfy the criterion for Borel-Le Roy
summability of order p+1, which is implicit in Watson-Nevanlinna theorem
concerning Borel summability (see [2, 3, 6]).
Theorem 3.6. If Φ satisfies assumptions (1), (2), (3), the power series expansion at
β = 0 of βp(β, z) and f(§(β, z)) (where f is any linear functional on Fd) admits a
convergent Borel-l£ Roy sum of order p+l.
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