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Abstract. In this paper, extending ideas of Witten and Atiyah, we describe
some relations of equivariant cohomology on the loop space of a manifold to
the path integral representation of the index of the Dirac operator on a twisted
spin complex. In particular, the natural extension of the Chern character to the
whole loop space is described. Also it is shown that the non-zero free homotopy
classes of the loop space have 0 measure for the index measures associated to
the index problem.

In [1], Atiyah, elaborating on an idea of Witten, suggested a very interesting
interpretation of the path integral representation of the index of the Dirac
operator on the spin complex of a spin manifold M. Namely, he wrote formally
the index as the integral of a differential form on the loop space, which is
equivariantly closed for the standard Sx action on the loop space. By applying in
this situation the prescriptions of equivariant cohomology (as expressed in a
formula of Duistermaat-Heckman [11]) he obtains the index as the integral of a
differential form over the fixed point set of the S1 action, which is the manifold
M, and so obtains the A genus of Hirzebruch.

The purpose of this paper is to describe a series of facts which confirm that the
prescriptions of equivariant cohomology are indeed correct. Moreover, we extend
Atiyah's formalism to the general Index theorem, i.e. we show that the path
integral representation of the index of a Dirac operator on a twisted spin complex
is given by an equivariantly closed form. In particular, we describe what is the
natural extension of the Chern character of a fiber bundle over M as an
equivariantly closed form on the loop space, this extension being the one which
is suggested by the path integral representation of the index.

In Sect. 1, we essentially prove (rigorously) that if M has a finite homotopy
group, the index measure of each non-trivial free homotopy class is exactly 0. This
extends our results in [7]. The proof uses the index theorem in an elementary way.

* This work was partially supported by the NSF grant MCS-8108814(A02) while the author
was visiting the Institute for Advanced Study (Princeton)
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In Sect. 2, we obtain the formula for the index of a general Dirac operator as the
integral of a differential form over the loop space. This section is entirely formal,
but it uses heavily the trick which we had given in [7] to obtain the full index
theorem for the Dirac operator, and which separates the A genus and the Chern
character of the auxiliary bundle. It turns out that this procedure permits us to
produce the adequate breaking of the (rigorous) path integral representation of the
index into a (non-rigorous) representation as the integral of a differential form on
the loop space, which is also in product form. Most of this section is conjectural.
We are still far from any "proof that the ideas of equivariant cohomology can be
used rigorously in this framework.

In Sect. 3, we prove (rigorously) that the differential form which we produced in
Sect. 2 is equivariantly closed on the loop space. It is obtained as an equivariant
characteristic class of an infinite dimensional fiber bundle over the loop space.

The reader is referred to Atiyah's article [1] for an introduction to the subject,
and also to our paper [7], from which the key ingredient of Sect. 2 is taken.

I. The Index Measure and the Free Homotopy Classes in the Loop Space

In this section, we give a few results which confirm that at least formally, the results
predicted by the application of equivariant cohomology to the index measures on
the loop space are in fact true. Namely, we essentially prove that if M has a finite
fundamental group, the index measure of each non-zero free homotopy class is
exactly 0.

We follow closely the presentation in our paper [7]. In a) the basic assumptions
and notations are given. In b), the index measure is defined. In c) its elementary
properties are described. In d) the results on the free homotopy classes are proved.

a) Assumptions and Notations

We will closely follow the notations in our paper [7]. M denotes a C°° compact
connected oriented Riemannian manifold of even dimension n = 21 TM denotes it
tangent bundle, T*M the cotangent bundle. TM and T*M are identified by the
metric.

N is the SO(π) principal bundle of oriented orthogonal frames in TM. For
every x e M, the fiber Nx is the set of linear oriented isometries from Rn (which is
oriented by its canonical Euclidean base el9 ...,en) into TXM. π is the projection
N-+M.

We assume that M is a spin manifold, i.e. the SO (n) principal bundle N lifts to a
Spin(n) principal bundle N' so that the projection N'—> N induces the covering
mapping Spin(n)-^> SO(π) on each fiber.

Let S be the 2*-dimensional Hermitian space of spinors, which splits into
S = S+®S _ , where S+, S _ are the spaces of positive and negative spinors. S + and
<S_ have dimensions 21'1 and are orthogonal in S. Moreover, Spin(n) acts
irreducibly and unitarily on S+,S_.

Let F,F+,F_ be the bundles of spinors over M
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For every x e M, the fiber N'x can be identified to a set of unitary operators from
S into F, which send S± into F±.

Let θ be the ^-valued one form defined by

XeTu(N)^θ(X) = u'1π^X. (1.1)

Let si be the Lie algebra of SO(n), i.e. the set of (n,ri) real antisymmetric
matrices, si is also the Lie algebra of Spin(n).

On N9 we put the Levi-Civita connection, whose si valued connection form is
denoted ω. We know that

dω=— ω Λ ω + Ώ, (1.2)

where Ω is the equivariant representation of the curvature tensor JR.
The Levi-Civita connection on N lifts naturally to N'. The corresponding

connection form is σ*ω.
Let ξ be a fc-dimensional complex Hermitian bundle over M. X denotes the

U(k) principal bundle of unitary frames in ξ. We assume that X is endowed with a
connection.

If Φ(fc) is the Lie algebra of I7(fc), let λ be the ^(fc)-valued connection form. We
know that

dλ=-λ*λ + Λ, (1.3)

where A is the equivariant representation of the curvature tensor L.
V denotes the covariant differentiation operator for any of the considered

connections.
If G is a vector bundle over M, Γ(G) is the vector space of C°° sections of G.
D is the Dirac operator, which sends Γ(F®ξ) into itself and interchanges

Γ(F+®ξ) and Γ(F,®ξ). D± is the restriction of D to Γ(F±®ξ).

Definition 1.1. The index of D+ is defined by

IndD+=dimKerD+— dimKerD. .

For f >0, let Pt(x^y) be the smooth kernel of e~tD2/2. lϊheΓ(F®ξ\ then

(1.4)
M

In (1.4), dy is the Riemannian volume in M. For x, y e M, Pf(x, y) sends Γ(F+ ® £)y

If ,4 is a linear operator acting on (F+®ξ)x [respectively (F_(x)ί)
[respectively Q-(A)~\ denotes its trace.

The following result is the base of the heat equation method.

Theorem 1.2. For any ί>0

IndD+ = f [ρ + (PXx,x))-ρ_(PΛx,x))]ώc. (1.5)
M

b) The Index Measures

We now describe shortly the index measures associated to the index problem.
W is the set of continuous functions defined on R+ with values in Rn, whose

standard element is w^ίw/, ...,vv"). P denotes the Wiener measure on W9 with
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P(w0 = 0) = 1. dw will denote the differential of w in the sense of Stratonovitch, δw
its differential in the sense of Itό (see [6]).

Xl9...9Xn are the standard horizontal vector fields on N defined by

0. (1.6)

ί is a positive real number.
Take x0 e M, u0 e NXQ. Consider the stochastic differential equation

dus = Σ Xi(u)]td^ , ιι(0) = KO . (1.7)

If xs = πws, it is well known [7] that xsjt is exactly the Brownian motion on M,
and us is the parallel transport of u0 along x.

τ° denotes the parallel transport operator from vector fibers over x0 to vector
fibers over xs, and τs

0 is defined by τ^Cτf]"1.

Definition 1.3. Us is the process of linear mappings from (F®ξ)XQ into itself defined
by the equation

17(0) - / . (1.8)

In (1.8), el9...9enίs the canonical oriented base of Rn

9 and (wo^K^o^/) acts on FXQ by
Clifford multiplication.

Let K be the scalar curvature of M. We now have the result of [7, Theorem 2.5].

Theorem 1.4. For any heΓ(F®ξ),

e-^2h(x0) = Ep Γexpί- } ̂ -ώj l/^^xol (1-9)
L I o 8 J J

Definition 1.5. For y0 eM, βξc0j>,0 denotes the law of x conditional on x1 =y0.
For the precise definition of Q5c0}),0, see [8, Sect. 2].
Let pf(x, y) denote the C°° kernel of etA/2 (where A is the Laplace-Beltrami

operator on M).
From Theorem 1.4, we immediately get:

Theorem 1.6. For any x0, y0 e M,

- ί rfs U.τj Pf(x0? y0) . (1.10)

Proo/. A.e. equality in (1.10) is obvious by disintegrating (1.9). The left-hand side is
C00 in y0. Moreover, the results of [8, Sect. 2] (see in particular the proof of
Theorem 2.14 in [8]) show that the right-hand side of (1.10) is continuous in y0.
Equation (1.10) then holds for every y0. Π

We are now ready to define the index measure.

Definition 1.7. M° denotes the set of continuous mappings x. defined on S1=R/Z
with values in M. For sεSί9 ks denotes the mapping

fcpc. = *s+ (1.11)
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Note that for any x0, Q*0fjeo is a probability measure on M°.
We finally define the index measure.

Definition 1.8. R* denotes the bounded signed measure on M° which is such that if
h is a bounded Borel function on M°, then

J
M

(1.12)

c) Some Elementary Properties of the Index Measures

We start giving some trivial properties of the measures R*.

Theorem 1.9. For any ί>0,

. (1.13)

For any s e R/Z, R* is invariant under ks.

Proof. (1.13) is an obvious consequence of Theorems 1.2 and 1.6.
We claim that the measure S* on M° defined by

J h(x)dSt(x)= f E<^^h(x)pt(xQ9 x0)dx0 (1.14)
M° M

is invariant under fcs, i.e. that

ί Λ
M°

We only need to prove (1.15) when h is given by

ί Λ(MXSt(x) = ίΛWdSt(x). (1.15)
M°

<ί2... <tm^\. (1.16)

Now if h is given by (1.16), we see easily that the left-hand side of (1.16) is given by

where t± — tm is calculated in R/Z. Equation (1.15) is now obvious.
i
f K(xu) du is clearly invariant under ks.o
Finally, using self-explanatory notations, it is trivial to prove that

(Ustiok^τϊU^U^U.τl (1.18)

[where (t/ιτj)°/c s sends (F®ξ)Xs into itself] so that

[ρ + (l/1τS)-ρ_(t71τέ)]ofcβ = ρ + (t71τJ)-ρ_(t71τJ). (1.19)

The proof is finished. D
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d) The Index Measure of Free Homotopy Classes

Take x0 E M. Let πx(M) denote the homotopy group with base point x0. e denotes
the unit element in π^M).

The connected components of M° are exactly the free homotopy classes in M°.
Moreover, it is well known that to each free homotopy class, we can associate one
and only one conjugacy class in π^M). Finally, each free homotopy class is stable
under ks.

Let Λ0 be the set of loops in M° which are (freely) homotopic to 0.
We now have the following extensions of [7, Theorem 3.21]:

Theorem 1.10. Assume that π^M) is finite. Then for any free homotopy class

yl=M°' Rt(A) = 0. (1.20)

Proof. We give two simple proofs.

Proof No. 1. Let M be the universal covering of M. M is a π1(M)-bundle over M.
Let (Γ, V) be a finite dimensional unitary representation of π^M) so that if
a e π^M), T(ά) acts linearly on V. Let V denote the corresponding flat bundle over
M. We may define the Dirac operator Dv> on F® ξ® V. From the index theorem
we know that

. (1.21)

If χv(ά) denote the trace of T(α), if τ^0 is the parallel transport operator on the
fiber of V along x., since V is flat, Theorem 1.9 shows that

(1.22)

Since dimF=χκ(e), from (1.21), (1.22), we see that

+. (1.23)

For x e M°, let h(x) be the conjugacy class in π^M) associated to x. Since the χv

span linearly the central functions on π^M), we see from (1.23) that for any central
function g on π1? f ( . (1.24)

By taking g to be the characteristic function of the conjugacy class correspond-
ing to A, we obtain (1.20).

Proof No. 2. π^M) acts freely on M, and so to each a E πt(M), we may associate
the mapping x e M->xα e M.

We may lift F and ξ to M, and define the associated Dirac operator D on the
lifted bundle F®ξ.

Now every a e π^M) acts isometrically on M, preserves the spin structure of M
and also acts unitarily on ζ. We can then define the Lefschetz number L(ά).

Take a e π^M) φ e. Since a does not have fixed points in M, it follows from the
Lefschetz fixed point theorem in Atiyah-Bott [2] that L(α) = 0.

For ΛφΛo, let I denote the corresponding conjugacy class in π^M). Since /
does not contain e, it is clear that

ΣL(a) = 0. (1.25)
ael
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Now using the probabilistic representation of the Lefschetz number in [7, Sect. 4],
it is not difficult to prove that if h is the number of elements in π^M), then

, (1.26)
ael

the factor h coming from the integration over M which is an Mold covering of M.
From (1.25), (1.26), the theorem follows. D

Let now M ' be any covering of M. For each x e M°, we may define the
monodromy of x which maps the fiber M'XQ into itself.

Corollary. Assume that π^M) is finite. Let Λ' be the set of xeM° whose
monodromy is not the identity mapping. Then

Rt(Λ')=Q. (1.27)

Proof. It is easy to see that Λ' is a finite union of non-zero free homotopy classes.
The corollary is now obvious by Theorem 1.10. D

Remark 1. It should be pointed out that the proofs of Theorem 1.10 involve
arguments which are easily obtainable by heat equation methods, i.e. do not
necessitate the explicit cohomological formulas of Atiyah and Bott [2], Atiyah and
Singer [3]. Essentially, once it is known - say by spectral theory - that a quantity -
an index or a Lefschetz number - is given by the integral of a function depending
on t > 0, the fact that this number is 0 is in general easy to show by studying the
asymptotics as t\,lQ of the corresponding integral.

Remark 2. The results of Theorem 1.10 can be easily extended to the case, where,
instead of considering the universal covering M, we consider any Galois covering,
which should then be compact.

When π^M) is not finite, we can prove the results of the first part of Theorem
1.10 hold only if there is a decreasing sequence of normal subgroups Hn of π^M)
such that nHn = {e} and that for any neN, π^M)/^ is finite.

However, the following result is true in full generality.

Theorem 1.11. The following formula holds:

ΛodRt. (1.28)

Proof. M still denotes the universal covering of M. π is the covering projection
M->M. Let D be the lift of D to M, and let Pt be the smooth kernel of Pt over M.
Let F be a fundamental domain in M. Now it essentially follows from the Atiyah-
Singer L2 index theorem [5] that

IndD+ = J lρ + (Pt(x,x))-ρ_(Pt(x,x))-]dx. (1.29)
F

By proceeding as in [7, Theorem 3.21], we see that the right-hand side of (1.29) is
exactly

nxeΛodRt(x). (1.30)

(1.28) is then proved. D
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II. Equivarίant Cohomology and the Index Theorem

In [1], Atiyah, following Witten, has shown how it was possible to write formally
the path integral which gives the index of the Dirac operator on the spin complex
of a spin manifold as the integral of a formal differential form. It turns out that this
form is equivariantly closed for the standard Sί action on the loop space, and that
the application of equivariant cohomology formulas (adequately renormalized)
produces the right cohomological expression for the index, i.e. the A polynomial of
Hirzebruch.

In this section, we show how to write formally the index of the Dirac operator D
as the integral of a differential form, which as we shall see in Sect. 3, is also
equivariantly closed.

In fact, let us recall that in [7], for the proof of the index theorem, we had
introduced an auxiliary Brownian motion with values in j/, whose effect was to
break the probabilistic expression of the index, and obtain the factorization of the
cohomological formula for the index as the product of the A genus and of the
Chern character. It turns out that the same trick produces an expression for the
index as the formal integral of a differential form on the loop space which is the
product of the Witten-Atiyah form [1] and of another form which extends the
Chern character to the loop space (although it is not a Chern character).

Everything which follows is essentially formal. Expressions which might look
horrendous to probabilists are written, as well as diverging infinite products.
However, as we shall see in Sect. 3, what we produce is algebraically quite sound,
and predicts the right answers for the index theorem.

In a) notations and assumptions are given. In b) the observations of Witten and
Atiyah are briefly summarized. In c) a conjectural formula is given for the index. In
the whole section, we closely follow our computations in [7]. The reader who is not
familiar with the stochastic calculus can consult [6].

a) Assumptions and Notations

The notations are very much the same as in Sect. 1. However, we will work with
smooth loops instead of working with continuous loops. The reason is that
standard operations like parallel transport are well-defined along any smooth
loop, while they are only defined in a measure theoretic sense along Brownian
loops. Of course, we will have always to keep in mind that the measures we will talk
about give 0 measure to smooth loops.

Definition 2.1. M°° denotes the se^of C°° mappings
If x e M°°, the tangent space TXM™ is identified to the space of smooth periodic

vector fields X over x so that Xs e TXM.
If X, Ye ΓXM°°, we define the scalar product

M°° is then a prehilbertian manifold.
Now S1 acts isometrically on M°° by the mappings ks defined by

(2.2)
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{fcs}seSl is a group of isometrics, whose generating Killing vector field X is given by

E denotes the exterior algebra of T*M°°. Of course, E decomposes into

where Ep is the set of p-differential forms over M°°.
If x E M°°, one μ e Ex is defined by a formal series

+ 00

μ= Σ μp,
where μpeE*. °

Γ(£) denotes the set of C°° sections of E. d denotes exterior differentiation, ix the
usual interior product by X. Recall that

2. (2.4)

Definition 2.2. μ e Γ(A) will be said to be equivariantly closed if

(d + ix)μ = 0. (2.5)

Following Witten, Atiyah [1], we define the fundamental one-form α.

Definition 2.3. α is the one form dual to X, i.e. if xeM°°, Ye TXM°°

α(7) = <X,7>. (2.6)

Since X is a Killing vector field, it is clear that

Lxα = 0. (2.7)

Using (2.4), (2.7) it is obvious that (d + iχ)u is equivariantly closed.
We now have [1].

Theorem 2.4. — is the two form σ defined for 7, Z e TX(M™) by

1 IDΎ \
σ(y,Z)=f (—,Z) dt. (2.8)

o\Dt I

-|- zs the energy functional E defined by

E(x)=\^fds. (2.9)
o 2

E + σ is equivariantly closed.

b) The Observation of Witten and Atiyah on the Spin Complex

For greater clarity, we briefly recall the remark of Witten and Atiyah [1] on the
path integral representation of the index of the Dirac operator on the spin
complex. In this section, ξ will then be the trivial line bundle.
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Take xeM0 0. Consider the eigenvalue problem on YE TXM°°,

D7
Ί)t~

(2.10)

Recall that Y has to be periodic, i.e. Y0 = Yί. If τ? is the parallel transport operator
from TXOM into TXlM, we denote by e±iθj (1 ̂ j^/; O^fy^π) its eigenvalues. It is
then trivial to check that in (2.10), λ can take the values

±2inm±iθj. (2.11)

The Pfaffian of — σ can then be written formally as

Pfi-*)= .ΠJ^ ίf [4π2m2-0?]| (2.12)

Now the infinite product (2.12) can be renormalized by dividing formally by
+ 00

Π (4π2w2y, so that Pf(-σ) l θ
^ ;

v = Π2sin^. (2.13)

Π 4π2m2

i

Now it turns out that by [2, 3] if we still denote by τ° the parallel transport
operator from (F±)XQ9 into itself along x, and by τj its inverse, if χ+(τj) is the
corresponding trace, then

(2.14)
1 \ /. /

and so

' T = ±Df+(τS)-χ-(τJ)]. (2.15)
Π 4π2m:

i

What follows is entirely formal. However, we will keep track of renormali-
zation constants (which are possibly infinite). Moreover, we denote by d the
dimension of M°° (d= + oo!).

The idea of Witten and Atiyah [1] is to interpret the measure Sί defined in (1.14)
in the form

(2.16)

where dD(x) is a generalized Riemannian volume element in M°°, so that by
r t i }

neglecting exp < — J K(xs)ds > - which could be the result of a normalization
t 8 o J

procedure, and keeping track of the various normalization constants, formula
(1.13) would be written

,2,7,
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Now if d was < + oo, and μ = (μi... μd)e Γ(E\ by definition Jμ is set to be equal

to f μ*
By using the fact that if d was < + oo, then

(2.18)

and using the previous conventions in infinite dimensions, then

(2.19)

M is exactly the set of fixed points of the ks (s e S^.
Now Witten and Atiyah [1] noted that if the principles of equivariant

cohomology extend in an infinite dimensional context, the right-hand side of (2.19)
can be expressed as the integral of a differential form over M (see Duistermaat and
Heckman [11], Berline and Vergne [10], and Atiyah and Bott [4] for the finite
dimensional case).

Explicit computations in [1] show that this differential form - which turns out
to be the inverse of the equivariant Euler class of the normal bundle of M in M°° - is
exactly the A genus of Hirzebruch, i.e. the right answer for IndD+ [3]. In
particular, the fact that the right-hand side of (2.19) does not depend on t is now a
trivial consequence of the fact that E and σ are both 0 on M.

Although this reasoning is at the present stage entirely formal, it raises the
exciting prospect that not only measures but also forms are relevant in infinite
dimensional integration.

Moreover, the results of Theorem 1.10 - when applied to the spin complex - are
perfectly compatible with the equivariant cohomology predictions, since ks acts on
each Λή=Λ0 without fixed points, and so equivariant cohomology predicts the
integral should be 0.

Now, as we shall see, there is an equivariant interpretation for the index of the
Dirac operator on any twisted spin complex.

Remark 1. The equivariant cohomology of a space F on which S1 acts is the
cohomology of the fibre space over the classifying space of S1 with fiber F. In the
case where F is a finite dimensional compact manifold on which a vector field Y
induces an action of SΊ, Witten [14] introduced the complex of 7 invariant forms
with the differential d + ίγ. As shown in Atiyah and Bott [4], the construction of
Witten produces a de Rham version of the equivariant cohomology of F.

In our case F is the infinite dimensional manifold M°°. Still the Witten complex
is well-defined. However, the relation of the abstract equivariant cohomology of
M°° to the Witten complex is no longer clear. Incidently, note that since we are
talking about differential forms which can be integrated, the abstract cohomolog-
ical model which is to be considered should be an extension of the compactly
supported cohomology for finite dimensional manifolds.
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c) Identification of the Integrand for a Twisted Spin Complex

We now use the notations of Sect 1, as well as our results of [7]. Let us first say that
what we do here is essentially trivial if the complex dimension of ξ is 1, so that what
follows is relevant only if dim ξ^. 2. Also we authorize ourselves several formal
manipulations.

We first proceed (rigorously) as in [7].

Definition 2.5. W denotes the set of continuous functions defined on R+ with
values in $#. P' denotes the Wiener measure on j/, with P'(y(0) = 0) = 1 .

Under P', the various (yl

jiS) (i <j) are independent standard Brownian motions.
x s?w s, Us are taken as in Sect. Ib).
We will now work on (Wx W\P®P'\ i.e. (X,M, 17) and γ are independent.

Definition 2.6. V^ is the process of linear mappings of FXQ into itself defined by the
Itό equation

VΪ Σ
2 ί<J (2.20)

Vs

2 is the process of linear mappings from ξxo into itself defined by the Itό equation,

dV2 = V2Σ τ oL,.(ι<A, use^δy(\ , V2 = / . (2.21)

In what follows, Ep denotes the expectation operator in the variable y. for fixed
(x, u).

Proposition 2.7. The following relation holds:

Uι=Ep'[yϊ®V?]. (2.22)

Proof. This is Proposition 3.7 in [7].
Clearly under the assumptions of Definition 1.8, which imply that xs is a loop,

we have
]. (2.23)

We will now try to interpret the factorization of the right-hand side of (2.23) in
terms of exterior products of differential forms.

To simplify the discussion, we first assume thatjs is^a C°° function defined on
[0, 1] with values in Λ/ such that y0 = 0, and that F/, Fs

2 are the solutions of the
differential equations,

i<J (2.24)

Consider the 2-form on TXM°°

*(Y9 Z) = < 7S, usysu; iZsyds . (2.25)
o
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By recalling that \ X e^fy s is exactly the action of ys on S (see e.g. [7, Proposition
ί<j

1.3]) we see easily that by using the same renormalization prescriptions as in (2.15),
we have

' " (2-26)
Π 4π2m2

1

Now consider the equation in the sense of Stratonovitch

dVs

n = — - Vς1 Σ (Uoei)(uoej)dyl9s, VQI = I . (2.27)

By [7, Theorem 3.10] we know that

n(n—l}t2

^—^F/1. (2.28)

Moreover, since we know (see e.g. [9, Chap. I]) that Stratonovitch equations can
be adequately approximated by standard differential equations, we will use (2.26)
formally with γ instead of y, Vn instead of F1, do some stochastic calculus and
eliminate y.

Using Theorem 1.9, and the same normalization procedures as in (2.26), we
find that

+ 00

Π (m2)1

• exp v ' Tr[V?τtidD(x)dP'(γ). (2.29)

Now observe that formally

(2.30)

Using the same conventions as in (2.19), we can then write

= )exp- +rΊ,lVf,iWW (131)

Now since even forms form a commutative algebra, we have

(E(x) + σ \ ( £(x) + σ\
exp - I-^ + rΠ = exp I - -̂  I exp( - r1). (2.32)

We should now compute

(2.33)
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The computation is very close to what we did in [7, Theorem 3.18]. We will
write formally

ry=\ ΣlusdxiAusdx^δyί

jfS. (2.34)
o i<j

In (2.34), usdxl is the one form at TXM such that if

(MxU^Ei^rr. (2.35)

Set for O^

rl = Σ (M*i A uvdxίWj v (2.36)
0 i<j

The same argument as in [7, Theorem 3.18] shows that

s

exp( - rl) = 1 - f (exp - rl) Λ δrj .
o

In fact, recall that exp( — ry

s) is calculated in an infinite dimensional exterior
algebra, and that [dxj Λ dx£|2 = 0, so that the higher order terms in Itό's
formula drop out.

Now by Itό's formula, we have

• Γ - δrl® 1 + 1 ® Σ τ oLx.(ujH, uvej)δγ{ „]
L ;<j J

s

+ J exp( - ry

v)® Vv

2[_(uvdxi Λ uvdxj

v)®iVQLXv(uvei, uυe$\ dv .

(2.37)

By taking expectations with respect to y, we find

£p'[exp - rl® Fs

2] = 1 ® / + J £p'[(exp - rl® VV

2)~]
o

• Σ [M< Λ uυdxJ

υ®τv

0L(uveί9 uυe$]dv .
ί<j (2.38)

Now if we consider JL. as a ίr ® ί* valued 2 form on Tγ M. we have clearlyΛS ^ΛS ^ΛS ΛS -» •/

LΛβ= Σ L(uvei,uvej)uvdxi Λ ivk 7'. (2.39)
i<j

Let then Hs be the solution of the differential equation

dHs = Hsτ
s

0Lxds , H(Q) = I . (2.40)

In (2.40) Hs should be understood as a formal power series of even forms on
TXM° valued in ξxo®ξ*0 in the sense that

f $LXvl Λ tfL^dv2 + . . . , (2.41)
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so that for instance if X, Y, Z, Te TXM™

J τ5lLXι;1 Λ τ$LxJvldv2} (X, 7, Z, T)

+ τS'L^y.,, Zvl)τv

0

2LxJXv>, Tv>) + ... ̂ dυldυ2 . (2.42)

It is then clear that (2.33) is exactly the formal power series of complex valued even
forms ΊτH^l Using (2.29), (2.31), we get

' + oo Y

T J Γ\ "V" LJ1' \ 1 / •/ f / JL-'V Λ7~r ly \ rπ TT 1 //Λ Λ ">\IndD+=exp .../ t'Jexp Λ TrH^J. (2.43)

ι- - tWe now eliminate exp - — - by nonrigorous arguments.
16

In fact, assume that ξ has complex dimension 1. Lx is now a complex valued
2-form on TXM. Consider the differential equation

dU',= - I^ΓΣ ("o^(M0^)MttA,M^)lώ; E/Ό = /. (2.44)

In (2.44), U'8 acts on F±Xo. Clearly,

(2.45)

where [TQ],* is the complex number which gives the parallel transport along x on
the considered fiber of ξ.

Let τ be the 2-form on TXM™ defined by

τ(Y,Z)=]LXβ(Y,9ZJds. (2.46)
o

By using the same normalization prescriptions as in (2.15), we find

Π4π2m2

i

(2.47)

We can then proceed as before and obtain formula (2.43), with the exception that
φ-l)ί2

u ,. Λexp - — - has disappeared.
16

This inconsistency comes from the fact that y is not differentiable.
The normalization prescriptions become ambiguous, and it is not unnatural

that inconsistencies arise. It should be pointed out that x. itself being nondifferenti-
able, other severe inconsistencies may develop in the process. It is also plausible

that the term expί — t ] — ̂  — I, which is omitted in (2.19), (2.43) does appear
.

because of the nondifferentiability of x.
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In any case, since when ξ is one dimensional, there is no need to introduce y,

and exp - — - does not appear in the final formula, we feel entitled to cancel it
16

in (2.43) and rewrite (2.43) in the form

+00 V

Π
A TrH.τJ. (2.48)

Remark 2. Formula (2.48) is, of course, formal. However, as we shall see in the next
section, the right-hand side is still the integral of an equivariantly closed form.

III. Equivariant Cohomology on the Loop Space and the Chern Character

In this section, we prove that the integrand in the formal index formula which we
derived in Sect. 2 is indeed equivariantly closed. It can be obtained as an
equivariant characteristic class over an infinite dimensional bundle over the loop
space. It is calculated by integrating a differential equation over the trajectory of
each considered loop.

In a) the bundle X™ of periodic sections of X over each loop is introduced,
whose structure group is the loop space of U(k).

In b) an equivariant cohomology class is constructed on the loop space by
following the general prescriptions of Chern- Weil theory [4, 10] which exactly
coincides with what has been found in Sect. 2. The restriction of this class to the
base manifold M is exactly the Chern character of ξ. In c) the obvious formal
application is done to the index theorem. In d), we show briefly how to include the
Lefschetz fixed point formulas of Atiyah and Bott [2] and Atiyah and Singer [3] in
this framework.

a) Assumptions and Notations. The assumptions and notations are essentially the
same as in Sects. 1 and 2. In particular, we will use the results of Sect. 2a).

Definition 3.1. U(k)co [respectively ^(/c)°°, Z°°] denotes the set of C°° mappings
from S1 = R/Z into U(k) [respectively *(fc), X']. We endow M°°, l/(fc)°°, Φ°°(fc), X™
with the topology of uniform convergence of the considered functions and their
derivatives over Sλ.

U(k)™ is naturally a group, with the obvious multiplication rule (ab)s = asbs,
Φ(fe)00 is, at least formally, the Lie algebra of I7(fc)°°.

Let π' be the projection X->M. π' obviously extends to a projection X°° ->M°°.
Moreover, if αE I/(/c)°°, r eX00, we may define ra in the obvious way.
We now have

Theorem 3.2. J?°° is a U(k)°° principal bundle over M°°.

Proof. Take x e M°°. We first exhibit r e Z°° such that π'r = x. Take v0 e Xxo, and
let υs be the parallel transport of v0 along x. If r e X00, we may write rs = vsas with
as E U(k) for each s e R/Z.

Set b = vϊ 1υ0. Of course, b e U(k). Since U(k) is connected, we can find as with
values in U(k) which is such that
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a) It is C00 on ]0,1[, constant on [0,£| and [f, 1].
b) as is equal to e on [0,£] and to b on [f, 1].
We have then found one r e X™ such that π'r = x. Clearly, the other elements of

X™ are obtained by the action of Uχfe)°° on r.
To prove the bundle property, we only need to prove local triviality. Using the

exponential mapping in M and parallel transport in X, local triviality is very easy
to prove. This is left to the reader. D

If r e J?°°, the tangent space 7 ?̂°° is the space of smooth periodic vector fields Y
over r so that YseTrX.

Definition 3.3. λ denotes the ^(/c)°° valued connection form on X™ such that if

(3.1)

If Λ is the curvature form of the considered connection, if r eZ°°, 7, Z e Tr

then

Λ(Y,Z)S = Λ(YS,ZS). (3.2)

b) Equivariant Characteristic Classes over M°° and the Chern Character. Observe
that for 5 e Sl9 we can define the action of fcs, k's on J?°° and (7(/c)°° by

ks is a group of transformations of X™ generated by the vector field K given by

k's is a group of isomorphisms of t/(/c)°°. Moreover, ks(rά) = ks(r)k's(ά). ks is then
a bundle isomorphism of X°°. However, it does not act trivially on the structure
group ί/(fc)°°, so that some care will have to be taken when using the results of [10].

In particular, the connection form Z is not invariant under ks. To be more
precise, we now define

Definition 3.4. λ' is the ^(/c)°° valued form defined by the fact that if YE TrX™

(3.3)

Jκ is the ^(/c)°° valued function defined by

(3.4)

If α is a differential form, Dα denotes the form which, when acting on horizontal
vectors, coincides with rfα, and which is 0 if any of the vectors on which it acts is
vertical. Also if α E t/ί/c)00, Ra denotes the usual action of the mapping r^ra on the
tensor algebra.

We now have the following relations, which slightly differ from [10].
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Theorem 3.5. The following relations hold

Lκλ = λ ,

κ-\-I', (3.5)

Moreover, if aε [/(k)00, then

Proof. Since

we have

ΓΛΛ^ΛΊ
(3.8)

_ at

and so (3.6) holds.
Moreover, if 7e Γ^00, we have

so that

(3.10)

Take Ae^(k)co and let A* be the vertical vector field such that λ(A*) = A.
Clearly,

K[IC4*)] = 0, (3.11)

so that using (3.10), we get

X(IK,A* ])=-X(A*). (3.12)

Now

A*[JJ = (LAJ)(K) + I([A*,K]). (3.13)

Using (1.3) we also know that

IJK,A\. (3.14)

From (3.12H3.14) we see that the second line in (3.5) holds.
Finally, we know that

Lκλ = diκλ + iκdλ = dJK - [ Jκ, I] + iκA . (3. 1 5)

Using the first two lines of (3.5) and (3.15), we see that the third line in (3.5)
holds. D

Remark L The third line in (3.5) is also an easy consequence of the very definition of
the curvature tensor A.

We now set a definition which closely imitates (2.40).
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Definition 3.6. H's denotes the solution of the differential equation

dv. (3.16)

Of course, A is here considered as a 2-form and H's should be considered as a
formal power series of matrix valued even forms.

We now have

Theorem 3.7. For any se [0, 1],

H; = 0. (3.17)

Moreover, if aε [/(fc)00,

Ra(H\ = a^H'sas. (3.18)

Proof. Since

(3.19)
o

we have

; = J KD + W] (Jκ + Ά}dv + ] H'υ(D + ικ}(Jκ + Ά)dv. (3.20)

Using the third line in (3.5), (3.17) follows. Moreover, from (3.6), we know that

Ra(JK + Λ) = ad(α; *)(J + Λ) + αf 1άs . (3.21)

Equation (3.18) is now obvious. D

In particular, in (3.18), since q1 = α0, we see that (RaH
/)1 = aό1H'ίa0, so that

ΊτH\ is invariant under the action of £/(fc)°°. TrHi is clearly a horizontal form.
We can then define

Definition 3.8. β denotes the formal series of even forms on M°° such that

ΊτH\ = π*β. (3.22)

We now have the fundamental result.

Theorem 3.9. β is equivariantly closed. Moreover, the equivaήant cohomology class
of β does not depend on the connection on X. The restriction of β to M is equal to
TrexpA

Proof. By Theorem 3.7, we know that (D + iκ}π*β = Q. Since (D + iκ)π*β
= π*[(d + ix)β'], it is clear that (d + ix)β = Q. To prove the second part of the
theorem, we proceed very much as in [10]. Let λ' be another connection form on X.
Set

(3.23)

a is a tensorial 1-form, so that if Dt denotes the operator D corresponding to λ*,

(3.24)
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ά, λ\ Ά\ Jl

κ are defined in the obvious way. Let Hn be the solution of the equation

ffί = /+JfΓ?(J ί

J C + ̂ )ώ. (3.25)
o

Clearly,

=ί α; = </α + α Λ λ* + λ* Λ α, (3.26)
<π ot

so that using (3.24), we get

fiHn s fiW1 s

ΊΪΓ = ί IΓ^- "̂-1- J W + Wfcfc (3-27)

Let ZJ be the solution of

Zl = I + { K(Λ + JO + Hffldυ . (3.28)
o

Set

z;. (3.29)

Using Theorems 3.5 and 3.7, we know that

iκ)a]dv . (3.30)

(3.31)

0

Comparing (3.27) and (3.30) we see that

3ΓJ/Ϊ

Moreover, using (3.28), and Theorems 3.5 and 3.7, we see that

(3.32)

The form TrZ? is then U(k)™ invariant, horizontal, and so projects as a form f
on M°°. Using (3.31), we see that

f, (3.33)

and so

β'-β = (d + ix)lfdt. (3.34)
0

To compute the restriction of β to M, note that on M, Jκ = 0, and that A is
constant on each trivial path x0, so that H\ =expyl. The theorem follows. D

Remark 2. By slightly modifying the construction of β, we may obtain β as a
"standard" equivariant characteristic class. In fact, let F(fc)00 be the semi-direct
product of U(k)co and SΊ, with the multiplication rule, (α, s)(α', s') = (α/c^αO, s + sx).
The Lie algebra ^(/c)°° of F(fe)°° is an affine Lie algebra associated with %(k) in the
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sense of Kac [13] and Frenkel [12]. It identifies naturally with the Lie algebra of
differential operators on S l9

, d
^-+A, beR, AεW(kΓ (3.35)
at

Set Z™=X™x Sv Then Z°° is naturally a F(/c)°° bundle over M°° with the product

(r,s)(α,sO = (rfe:(fl),s + sO (336)

X00 embeds naturally in Z°° by r e J?°°_->(r, 0) e Z°°, which is a bundle homomor-
phism. The connection form λ on J?°° can then be naturally extended to a
connection form μ on Z°°. Namely, if (7, b)e T^Z00, using the identification
(3.35), we have ,

(3.37)

If JV is the curvature form of μ we deduce from (3.37) that at (r, 5),

N = k?-J(Z). (3.38)

Si acts naturally on Z°° by the formula

/ί(r,ί) = (V,s + 0. (3.39)

Using (3.36), (3.38), for any 5eSx =R/Z, k'ί is a bundle isomorphism, i.e.

and /c^ preserves the connection μ. fc^ is a group of bundle isomorphisms of Z°°.
It is generated by the vector field K" given by

K" = (K,\). (3.40)
Set

(3.41)
Obviously, at (r, s),

{3'42)

It then follows that at (r, 5),

JK» + N=^t+
 k'-stf(V + Λ-] . (3.43)

Of course, J^- + N must be considered as a differential form on Z°° with values in
(fc)00.

Consider now the differential equation on [0, 1],

H^(0) = /, (3.44)

which can also be written as

" = 0 H"(ϋ) = I . (3.45)
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Clearly, in the sense of formal power series, at (r, 0),

#:=[#:']-!, (3.46)
so that at (r, 0),

- - ~—ι = π*0. (3.47)

At least formally, this permits us to construct β as a standard equivariant
characteristic class by extending Chern- Weil's theory as in Berline and Vergne
[10]. However, because the problem is now infinite dimensional, we cannot
directly use the argument in [10] to deduce "trivially" the main properties of β. So
even using affine Lie algebras, the results in Theorems 3.5 and 3.7 would still have
to be proved in another form. Finally, note that the adF(fc)°° in variance of

"1 is very easy to prove.

Remark 3. The restriction of β to M coincides, up to irrelevant normalization
constants, with the Chern character of ξ.

Before going back to the index problem, let us make a final remark.
Namely, assume that Sί acts on M as a C°° group of diffeomorphisms, and that

this action lifts to ξ. There is then a natural mapping /: M->M°°, which to each x
associates the orbit of x by S^.

Let Y be the vector field ^m M which generates the action of S l9 Z the
corresponding vector field in Jf00, so that π^Z= Y.

Theorem 3.10. f*β is equivariantly closed, i.e. (d + iγ)f*β = 0. // λ' is a S^ invariant
connection on ξ, and if Λ' is the curvature, the equivariant cohomology class of f*β is
equal to Tr exp \_λ'(Z) + Λ'~\.

Proof. Since /„, Y= X, and since (d -h ix)β = 0, the first part of the theorem is clear.
The equivariant cohomology class of β does not depend on λ. Since St is compact,
there is always an St invariant connection on ξ. Then λ'(Z) is constant on an orbit
f(x). A similar argument for Af shows that f*β = Trexp[Λ,'(Z) + Λ']. _ D
c) The Index Theorem. Note that if H' is calculated at reJf0 0, then
Hf

s = rQlHsτ
SQrs. It is now clear that formula (2.48) becomes

Λ J 8 . (3.48)

The form under the integral is now globally equivariantly closed.
Let e be the equivariant Euler class of the normal bundle of M. This is an

infinite product which diverges (see [1]).
If we apply formally the classical formulas of equivariant cohomology, we get

~ 2

(149)

By proceeding as in Atiyah [1] for the first term, we get

IndD+ = J Π - <ΓM> Λ chξ ' {3 50)

M i

which is the correct formula.
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Everything which we have done can be made to work rigorously in at least one
case.

Namely, consider the vector bundle L^ over M whose fiber at x0 is the set of
C°° mappings seS1=R/Z ^yseT^. Let π be the projection L^-^M.

Using the Levi-Civita connection, we may decompose T(ΓM) into an
horizontal and a vertical part.

If Ye TyL^, we denote by 17 the vertical part of Ys. Let η be the 1-form on L^
defined by

(3.51)
0

Then it is trivial to check that

\ 11
ysyds. (3.52)

o \as i 02

Let X be the vertical vector field such that

*ω.=^ (3 53)
Set

E(y)=S^-ds, σ = η/2. (3.54)
o 2

Clearly,

Lxη = Q, (3.55)

and moreover,

(d + ix)^=E + σ. (3.56)

For x0eM, let P^0 be the law of the Brownian bridge w1 in TXQM, with
wj = w} = 0. In Theorems 3.15 and 3.18 in [7] we proved that

IndD+ = f J exp-1 j - -?-} R(dw}9 w,1) j dP\ Λ chξ, (3.57)
M ( 4π o J

j 1
where — -— f Kίdwhwg) is considered as an antisymmetric matrix whose

4π o
exponential is taken in the exterior algebra of M. Using the symmetries of R as in
[7, Proposition 3.16], we may put (3.57) in the form

+oo

Λ TrexpΛ, (3.58)

where the renormalizations in (3.58) are essentially trivial. However, for obvious
reasons, it is totally unnecessary to use equivariant cohomology to calculate (3.58)!



236 J.-M. Bismut

d) Extensions. Let 7 be a Killing vector field on M. Assume that 7 lifts to a U(k)
invariant vector field Z on X, which preserves the connection form λ.

We now consider the problem of calculating the Lefschetz number L(ez). We
show briefly how to put this problem in the form suggested by Witten and Atiyah
[1]. We use the notations of Sect. 2.

Let α' be the 1-form on M°° defined by

A 6 TXM^ ->α'(4) = J (Xs + Y(xsl Asyds (3.59)
o

( recall that X(x) =-τ-}. Since 7is a Killing vector field, it is easy to check that
V dsJ
M Lx+γa' = 0. (3.60)
— is the two form σ' defined by

1 / / \ \

— + rAY,B])ds. (3.61)

is the functional Έ defined by
[ .̂  __|_ y 12

(3.62)

Equivariant cohomology will then be defined with respect to the vector field X + Y.
Similarly, the definition of Jκ in Definition 3.4 is changed into

Jκ+z(s) = λ(K + Z ) . (3.63)

H' is now calculated with Jκ+z instead of Jκ, and β is changed into /?'.
Using the results in [7] on the probabilistic representation of the Lefschetz

number, the Girsanov transformation [6], and proceeding as previously, it is not
difficult to obtain the formal formula

(we use the sign conventions of [7] for the definition of L(ez)).
Now the zeroes of X + Fare exactly the closed orbits of 7, which correspond in

an obvious way to the fixed points of eγ.
In the case, where the fixed points of eγ coincide with the zeroes of 7, the formal

application of the fixed point formula in equivariant cohomology gives immedi-
ately the Lefschetz fixed point formulas of Atiyah and Bott [2] and Atiyah and
Singer [3].

If eγ has other fixed points than the zeroes of 7, this is also the case. To see this,
one must note that Ω is invariant under Z, so that the equivariant Euler class of the
normal bundle of the fixed loops can be calculated "pointwise" on the fixed point
set of eγ in M. Similarly, the analogue of Theorem 3.10 shows that the "orbital"
equivariant Chern character coincides with the usual equivariant Chern character.
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