© Springer-Verlag 1985

Intersections of Random Walks in Four Dimensions. II*

Gregory F. Lawler

Department of Mathematics, Duke University, Durham, NC 27706, USA

Abstract. Let f(n) be the probability that the paths of two simple random walks of length n starting at the origin in \mathbb{Z}^4 have no intersection. It has previously been shown that $f(n) \le c(\log n)^{-1/2}$. Here it is proved that for all $r > \frac{1}{2}$, $\lim_{n \to \infty} (\log n)^r f(n) = \infty$.

1. Introduction

Let $S_1(n,\omega)$ and $S_2(n,\omega)$ be independent simple random walks starting at the origin in \mathbb{Z}^4 (for definitions see [1]), and let Π_1 , Π_2 denote the paths of the walks

$$\Pi_i(a,b) = \Pi_i(a,b,\omega) = \{S_i(n,\omega) : a < n < b\},$$

$$\Pi_i[a,b] = \Pi_i[a,b,\omega] = \{S_i(n,\omega) : a \le b \le b\},$$

and similarly for $\Pi_i(a, b]$ and $\Pi_i[a, b)$.

The probabilities that the paths Π_i intersect were studied in [1]. This paper follows up on that paper by giving a proof of a conjecture made. Let

$$f(n) = P\{\Pi_1[0, n] \cap \Pi_2(0, n] = \emptyset\}$$
.

In [1] it was shown that there exist c_1 , $c_2 > 0$ satisfying

$$c_1(\log n)^{-1} \le f(n) \le c_2(\log n)^{-1/2},$$
 (1.1)

and it was conjectured for $r > \frac{1}{2}$, that

$$\lim_{n \to \infty} (\log n)^r f(n) = \infty . \tag{1.2}$$

Here we prove (1.2).

^{*} Research Supported by NSF grant MCS-8301037

To give an idea of the technical problems involved in proving (1.2), we first sketch an argument similar to the one in $\lceil 1 \rceil$ which led to the conjecture. If

$$A_n = \{ \Pi_1[0, n] \cap \Pi_2(0, n] = \emptyset \},$$

$$B_n = \{ \Pi_1[0, 2n] \cap \Pi_2(n, 2n] = \emptyset \text{ and } \Pi_1(n, 2n] \cap \Pi_2(0, n] = \emptyset \},$$

then

$$P(A_{2n}) = P(A_n)P(B_n|A_n)$$
. (1.3)

The methods of [1] allow one to calculate $P(B_n)$. However the set A_n has small probability and it is not clear how to compute $P(B_n|A_n)$, although it was expected that $P(B_n|A_n) \cong P(B_n)$. It was shown that if one could substitute $P(B_n)$ in (1.3), one could get the result.

The main technical step in this paper is a computation of such a conditional probability. We do not choose A_n and B_n exactly as above but instead use powers of the logarithm for scales.

Choose $\alpha > \gamma > \beta > 1$, and set

$$a_n = \left[\frac{n}{(\log n)^{\alpha}}\right], \quad b_n = \left[\frac{n}{(\log n)^{\gamma}}\right], \quad d_n = \left[\frac{n}{(\log n)^{\beta}}\right],$$

and consider the sets

$$A(a_n) = \{ \Pi_1[0, a_n] \cap \Pi_2(0, a_n] = \emptyset \},$$

$$D(d_n, n) = \{ \Pi_1[0, n] \cap \Pi_2(d_n, n] + \emptyset \text{ or } \Pi_1(d_n, n] \cap \Pi_2(0, n] + \emptyset \}.$$

In Theorem 2 we prove that for $\alpha - \beta > 7$,

$$P(D(d_n, n)) \cong P(D(d_n, n)|A(a_n)),$$

i.e. that $A(a_n)$ and $D(d_n, n)$ are asymptotically independent events.

It is easier to picture the idea of the proof if we consider S_1 and S_2 to be one "two-sided" random walk. Let Ω^n denote the set of two-sided walks of length 2n, i.e. nearest neighbor walks $\omega(i)$, $-n \le i \le n$, with $\omega(0) = 0$. We can define $A(a_n)$ and $D(d_n, n)$ as subsets of Ω^n . Let \hat{P} denote the conditional measure on $A(a_n)$ derived from the usual measure P on Ω^n . Then we wish to estimate $\hat{P}(D(d_n, n))$.

We accomplish this by considering another measure on $A(a_n)$ which is close to \hat{P} . Let $\Omega = \Omega^{n+b_n}$ and P the usual measure. For each $\omega \in \Omega^n$, $i = 1, ..., b_n$, we say ω is " a_n loop-free at step i" [or $I_i(\omega) = 1$ in the notation of Sect. 3] if

$$\omega(j) \neq \omega(k)$$
, $-a_n + i \leq j \leq i < k \leq a_n + i$,

that is, if ω is translated so that $\omega(i)$ becomes the origin, and is then cut off so that the translated walk is in Ω^n , the translated walk is in fact in $A(a_n)$. We can define a probability \tilde{P} on $A(a_n)$ in the following fashion:

- choose $\omega \in \Omega^{n+b'_n}$ (using P)
- consider all $i=1,...,b_n$ such that $I_i(\omega)=1$, and randomly (i.e. with equal probability to each i) choose one such i
 - translate the walk so that $\omega(i)$ is the origin.

What we prove is that \tilde{P} is in fact close to \hat{P} . This can be proven as long as the number of " a_n loop-free" points for a particular ω is an almost constant random

variable. This is true because the random variables I_i are $(2a_n)$ -dependent, i.e. for $|i-j| \ge 2a_n$, I_i and I_j are independent. If b_n is sufficiently larger than a_n $(\alpha - \gamma > 7)$, we can prove the result.

We finally show, using the fact that b_n is small with respect to d_n , that $\tilde{P}(D(d_n, n)) \cong P(D(d_n, n))$. The details of the proof are worked out in Sect. 3.

In Sect. 2, it is shown how Theorem 2 can be used to prove (1.2). Essentially what is used is a logarithmic scale equivalent of (1.3).

2. The Main Theorem

Theorem 1. If

$$f(n) = P\{\Pi_1[0, n] \cap \Pi_2(0, n] = \emptyset\},$$

then for every $r > \frac{1}{2}$,

$$\lim_{n\to\infty} (\log n)^r f(n) = \infty.$$

For any 0 < n < m, define the sets

$$\begin{split} A_n &= A(n) = \{\omega : \Pi_1[0, n, \omega] \cap \Pi_2(0, n, \omega] = \emptyset\} \,, \\ D_{n,m} &= D(n, m) \\ &= \{\omega : \Pi_1(n, m, \omega] \cap \Pi_2(0, m, \omega] \neq \emptyset \text{ or } \Pi_1[0, m, \omega] \cap \Pi_2(n, m, \omega] \neq \emptyset\} \,. \end{split}$$

Then for n < m,

$$A_{m} = A_{n} \cap (D_{n,m})^{c},$$

$$P(A_{m}) = P(A_{n}) [1 - P(D_{n,m}|A_{n})].$$
(2.1)

A large portion of [1] is devoted to estimating $P(D_{n,m})$. Theorem 4.1 states that for c > 1,

$$\lim_{n \to \infty} (\log n) P\{\Pi_1(n, cn] \cap \Pi_2(0, \infty) + \emptyset\} = \frac{1}{2} \log c.$$
 (2.2)

Analysis of the proof shows that a similar argument will work if we replace c with $(\log n)^{\beta}$ for some $\beta > 0$, giving

$$\lim_{n \to \infty} \frac{\log n}{\log \log n} P\{\Pi_1(n, n(\log n)^{\beta}) \cap \Pi_2(0, \infty) \neq \emptyset\} = \frac{1}{2}\beta. \tag{2.3}$$

The probability of the set in (2.3) differs from $P(D(n, n(\log n)^{\beta}))$ by at most

$$\begin{split} &P\{\Pi_1[0,n] \cap \Pi_2(n,n(\log n)^\beta] \neq \emptyset\} \\ &+ P\{\Pi_1[n,n(\log n)^\beta] \cap \Pi_2[n(\log n)^\beta,\infty) \neq \emptyset\} \,. \end{split}$$

However, by Theorem 4.1, both of the above probabilities are $O\left(\frac{1}{\log n}\right)$. We can therefore conclude

$$\lim_{n \to \infty} \frac{\log n}{\log \log n} P(D(n, n(\log n)^{\beta})) = \frac{1}{2}\beta. \tag{2.4}$$

In proving Theorem 1, we will use (2.1) and hence will need to estimate the conditional probability of $D(n, n(\log n)^{\beta})$ given A_n . Note that (2.4) only gives the unconditioned probability. The main independence result is contained in the following theorem which we prove in the next section.

Theorem 2. Let $1 < \beta < \alpha - 7 < \infty$, and let

$$a_n = \left[\frac{n}{(\log n)^{\alpha}}\right], \quad e_n = \left[\frac{n}{(\log n)^{\beta}}\right].$$

Then

$$\lim_{n\to\infty}\frac{\log n}{\log\log n}P(D(e_n,n)|A(a_n))=\lim_{n\to\infty}\frac{\log n}{\log\log n}P(D(e_n,n))=\frac{1}{2}\beta.$$

From Theorem 2 we can conclude a stronger independence result.

Theorem 3. If
$$\beta > 7$$
 and $e_n = \left\lceil \frac{n}{(\log n)^{\beta}} \right\rceil$, then

$$\limsup_{n \to \infty} \frac{\log n}{\log \log n} P(D(e_n, n) | A(e_n))$$

$$\leq \lim_{n \to \infty} \frac{\log n}{\log \log n} P(D(e_n, n)) = \frac{1}{2}\beta.$$

Proof. For each n, choose $d_1, ..., d_5$ (depending on n) by $d_5 = n$ and for i = 1, ..., 4,

$$d_i = \left\lceil \frac{d_{i+1}}{(\log d_{i+1})^{\beta}} \right\rceil.$$

Then for i = 1, ..., 5,

$$d_i = n(\log n)^{-\beta(5-i)}[1+o(1)].$$

Therefore for i = 1, 2, 3, Theorem 2 states that

$$\lim_{n \to \infty} \frac{\log n}{\log \log n} P(D(d_{i+1}, d_{i+2}) | A(d_i)) = \frac{1}{2} \beta.$$

Fix $\varepsilon > 0$, and suppose

$$\limsup_{n \to \infty} \frac{\log n}{\log \log n} P(D(d_4, d_5) | A(d_4)) \ge \frac{1}{2}\beta + 2\varepsilon.$$
 (2.5)

Choose N sufficiently large that for $n \ge N$, i = 1, 2, 3,

$$\frac{\log n}{\log \log n} P(D(d_{i+1}, d_{i+2}) | A(d_i)) \le \frac{1}{2}\beta + \frac{1}{2}\varepsilon, \tag{2.6}$$

and choose n > N such that

$$P(D(d_4, d_5)|A(d_4)) \ge (\frac{1}{2}\beta + \varepsilon) \frac{\log \log n}{\log n}.$$
 (2.7)

Then

$$\begin{split} \frac{\log \log n}{\log n} & (\frac{1}{2}\beta + \frac{1}{2}\varepsilon) \! \ge \! P(D(d_4, d_5)|A(d_3)) \\ & \ge \! P(A(d_4) \! \cap \! D(d_4, d_5)|A(d_3)) \\ & = \! P(A(d_4)|A(d_3))P(D(d_4, d_5)|A(d_4)) \\ & \ge \! (\frac{1}{2}\beta + \varepsilon) \frac{\log \log n}{\log n} P(A(d_4)|A(d_3)) \,, \end{split}$$

or

$$P(D(d_3, d_4)|A(d_3)) \ge \frac{\varepsilon}{\beta + 2\varepsilon}$$
.

Doing a similar argument we get the estimate

$$P(A(d_3)|A(d_2)) \leq \frac{P(D(d_3,d_4)|A(d_3))}{P(D(d_4,d_5)|A(d_4))} \leq \frac{\log \log n}{\log n} \frac{(\beta+\varepsilon)(\beta+2\varepsilon)}{\varepsilon},$$

and since this is less than $\frac{\varepsilon}{\beta + 2\varepsilon}$ (for *n* sufficiently large), we can do this again and get

$$P(A(d_2)|A(d_1)) \leq \frac{\log \log n}{\log n} \frac{(\beta + \varepsilon) (\beta + 2\varepsilon)}{\varepsilon}.$$

But

$$P(A(d_3)) \leq P(A(d_3)|A(d_1))$$

$$= P(A(d_3)|A(d_2))P(A(d_2)|A(d_1))$$

$$\leq \left(\frac{\log \log n}{\log n}\right)^2 \left(\frac{(\beta + \varepsilon)(\beta + 2\varepsilon)}{\varepsilon}\right)^2. \tag{2.8}$$

However from (1.1) we know

$$P(A(d_3)) = f(d_3) \ge c_1(\log d_3)^{-1} \ge c_1(\log n)^{-1}$$
.

Hence (2.8) cannot hold for an infinite number of values of n and therefore neither can (2.7). This contradicts (2.5), which gives us the theorem.

Proof of Theorem 1. Fix $\beta > 7$, and let e_j be an increasing sequence of integers satisfying

$$e_j = \left[\frac{e_{j+1}}{(\log e_{j+1})^{\beta}}\right].$$

Then by (2.1) and Theorem 3,

$$\begin{split} f(e_j) &= P(A(e_j)) = P(A(e_{j-1})) \left[1 - P(D(e_{j-1}, e_j) | A(e_j)) \right] \\ &\geq f(e_{j-1}) \left[1 - \frac{1}{2} \beta \varrho_j \frac{\log \log e_j}{\log e_i} \right], \end{split}$$

where ϱ_j is a sequence of numbers approaching 1. Fix $r > \frac{1}{2}$, and choose $\gamma, \frac{1}{2} < \gamma < r$.

Then for *i* sufficiently large

$$f(e_j) \ge f(e_{j-1}) \left[1 - \beta \gamma \frac{\log \log e_j}{\log e_j} \right]. \tag{2.9}$$

Let $g(n) = (\log n)^{-r}$. Then

$$g(e_{j-1}) \! \ge \! \left(\log \frac{e_j}{(\log e_j)^{\beta}}\right)^{-r} \! = \! (\log e_j \! - \! \beta \log \log e_j)^{-r} \, .$$

Hence

$$\frac{g(e_j)}{g(e_{j-1})} \leq \left(\frac{\log e_j - \beta \log \log e_j}{\log e_j}\right)^r = \left(1 - \beta \frac{\log \log e_j}{\log e_j}\right)^r.$$

For *j* sufficiently large,

$$\left(1 - \beta \frac{\log \log e_j}{\log e_j}\right)^r \leq 1 - \beta \gamma \frac{\log \log e_j}{\log e_j}. \tag{2.10}$$

Let J be an integer such that (2.9) and (2.10) hold for $j \ge J$. Then

$$f(e_{j+1}) \ge f(e_j) \frac{g(e_{j+1})}{g(e_j)}, \quad j \ge J.$$

Hence for every i, by induction,

$$f(e_{J+1}) \ge \frac{f(e_J)}{g(e_J)} g(e_{J+i}) = \frac{f(e_J)}{g(e_J)} (\log e_{J+i})^{-r}.$$

Hence there exists a $c_r > 0$ such that for all j, $f(e_i) \ge c_r (\log e_i)^{-r}$. Now for an arbitrary integer n, choose j such that $e_i \le n < e_{i+1}$. Then

$$f(n) \ge f(e_{j+1}) \ge c_r (\log e_{j+1})^{-r} \ge \tilde{c}_r (\log e_j)^{-r} \ge \tilde{c}_r (\log n)^{-r}$$
.

Since such an inequality holds for every $r > \frac{1}{2}$, we can conclude for $r > \frac{1}{2}$,

$$\lim_{n\to\infty} (\log n)^r f(n) = \infty.$$

3. Proof of Theorem 2

Let $1 < \beta < \alpha - 7 < \infty$ be fixed. Choose $\gamma > \beta$ with $\gamma < \alpha - 7$. For each n let

$$a_n = \left\lceil \frac{n}{(\log n)^{\alpha}} \right\rceil, \quad b_n = \left\lceil \frac{n}{(\log n)^{\gamma}} \right\rceil,$$

and c_n some number greater than $n+b_n$. For each j, let Ω^j denote the set of two-sided simple random walks of length 2j, i.e. the set of all nearest neighbor walks in Z^4 , $\omega(i)$, $-j \le i \le j$, with $\omega(0) = 0$. We will use P to denote the usual simple random walk measure, i.e. the uniform probability measure on Ω^{j} . As in Sect. 2 we define the events

$$A(a_n) = \{ \omega \in \Omega^{c_n} : \omega(j) + \omega(k), -a_n \leq j \leq 0 < k \leq a_n \},$$

$$D(b_n, n) = \{ \omega \in \Omega^{c_n} : \omega(j) = \omega(k) \text{ for some } (j, k) \text{ with }$$

$$-n \leq j < -b_n, 0 < k \leq n \text{ or } -n \leq j \leq 0, b_n < k \leq n \}.$$

On Ω^{c_n} define for $1 \leq i \leq b_n$,

$$I_i(\omega)$$
 = indicator function of the set $\{\omega : \omega(j) + \omega(k), i - a_n \le j \le i < k \le i + a_n\}$.

Of course, I_i (as well as several other quantities defined below) depends on n. Then

$$E(I_i) = f(a_n). (3.1)$$

Let

$$L(\omega) = \sum_{i=1}^{b_n} I_i(\omega);$$

then

$$E(L) = b_n f(a_n). (3.2)$$

Also note that the $\{I_i\}$ are $(2a_n)$ -dependent random variables, i.e. if $|i-j| \ge 2a_n$, then I_i and I_j are independent.

Lemma 4. If $X_1, ..., X_n$ are non-negative identically distributed m-dependent random variables with $X_i \le M$, then

$$\operatorname{Var}(X_1 + \ldots + X_n) \leq 2nmM^2.$$

Proof.

$$\begin{split} E[(X_1 + \ldots + X_n)^2] &= \sum_{i=1}^n \sum_{j=1}^n E(X_i X_j) \\ &\leq \sum_{i=1}^n \sum_{j=1}^n E(X_i) E(X_j) + \sum_{|i-j| \leq m} E(X_i X_j) \\ &\leq [E(X_1 + \ldots + X_n)]^2 + 2nmM^2 \,. \end{split}$$

Lemma 5.

- (a) $\operatorname{Var}(L) \leq 2a_n b_n = 2n^2 (\log n)^{-(\alpha + \gamma)}$.
- (b) For some $c_3 > 0$, for every $\varepsilon > 0$,

$$P\left\{\left|\frac{L}{EL} - 1\right| \ge \varepsilon\right\} \le \frac{c_3}{\varepsilon^2} (\log n)^{2 - (\alpha - \gamma)}.$$

Proof. Lemma 4 immediately implies (a) since $I_i \le 1$. Chebyshev's Inequality on (a) gives

$$P\{|L - EL| \ge \varepsilon(EL)\} \le \frac{\operatorname{Var} L}{\varepsilon^2(EL)^2}$$

\$\le [\varepsilon(EL)]^{-2} 2(\log n)^{-(\alpha + \gamma)} n^2.\$

But by (3.2) and (1.1),

$$(EL)^2 = (b_n f(a_n))^2 \ge c_1^2 n^2 (\log n)^{-2-2\gamma}$$
.

Therefore,

$$P\{|L-EL| \ge \varepsilon(EL)\} \ge \left(\frac{2}{c_1^2}\right) \varepsilon^{-2} (\log n)^{2-(\alpha-\gamma)}.$$

Let

$$\Lambda_n = \{ \omega \in \Omega^n : \omega(i) \neq \omega(j), -a_n \leq i \leq 0 < j \leq a_n \},$$

and let \hat{P} denote the conditional probability measure on Λ_n induced by P, i.e. $\hat{P}(\omega) = \frac{1}{f(a_n)}P(\omega)$. We can restate Theorem 2 as

$$\lim_{n\to\infty} \frac{\log n}{\log \log n} \hat{P}\left(D\left(\frac{n}{(\log n)^{\beta}}, n\right)\right) = \frac{1}{2}\beta.$$

Unfortunately, the measure \hat{P} is very difficult to work with. Instead we will replace it by a more tractable measure which we can show is close to \hat{P} . To set the framework for our strategy, we state an abstract lemma.

Lemma 6. Let (Ω_1, P_1) and (Ω_2, P_2) be finite probability spaces and $T: \Omega_1 \to \Omega_2$. Suppose $\overline{\Omega}_1 \subset \Omega_1$, $\overline{\Omega}_2 \subset \Omega_2$ and for every $\omega_2 \in \overline{\Omega}_2$,

$$\left| \frac{P_2(\omega_2)}{P_1(T^{-1}(\omega_2) \cap \overline{\Omega}_1)} - 1 \right| \leq \varepsilon.$$

Then if $F: \Omega_2 \to [0, M]$,

$$(1-\varepsilon) \left[E_{P_1}(F \circ T) - M \left[(1-P_1(\bar{\Omega}_1)) + \left(1 - \frac{1}{1+\varepsilon} P(\bar{\Omega}_2) \right) \right] \right]$$

$$\leq E_{P_2}(F) \leq (1+\varepsilon) E_{P_1}(F \circ T) + M[1-P_2(\bar{\Omega}_2)].$$

Proof. Let $U = \{\omega_1 : T\omega_1 \in \overline{\Omega}_2\}$. Then

$$\begin{split} P_1(U) & \ge \sum_{\omega_2 \in \bar{\Omega}_2} P_1(T^{-1}(\omega_2) \cap \bar{\Omega}_1) \ge \sum_{\omega_2 \in \bar{\Omega}_2} \frac{1}{1 + \varepsilon} P_2(\omega_2) \\ & = \frac{1}{1 + \varepsilon} P_2(\bar{\Omega}_2) \,. \end{split}$$

$$\begin{split} E_{P_2}(F) &\geqq \sum_{\omega_2 \in \bar{\Omega}_2} F(\omega_2) P_2(\omega_2) \\ &\geqq \sum_{\omega_2 \in \bar{\Omega}_2} F(\omega_2) (1-\varepsilon) P_1(T^{-1}(\omega_2) \cap \bar{\Omega}_1) \\ &\geqq (1-\varepsilon) \bigg[\sum_{\omega_1 \in \bar{\Omega}_1} F(T\omega_1) P_1(\omega_1) - \sum_{\substack{\omega_1 \in \bar{\Omega}_1 \\ T\omega_1 \notin \bar{\Omega}_2}} F(T\omega_1) P_1(\omega_1) \bigg] \\ &\geqq (1-\varepsilon) \bigg[E_{P_1}(F \circ T) - \sum_{\omega_1 \in \bar{\Omega}_1} F(T\omega_1) P_1(\omega_1) - M P(U^c) \bigg] \\ &\geqq (1-\varepsilon) \bigg[E_{P_1}(F \circ T) - M \bigg[1 - P_1(\bar{\Omega}_1) + 1 - \frac{1}{1+\varepsilon} P_2(\bar{\Omega}_2) \bigg] \bigg]. \end{split}$$

Similarly,

$$\begin{split} E_{P_2}(F) &= \sum_{\omega_2 \in \bar{\Omega}_2} F(\omega_2) P_2(\omega_2) + \sum_{\omega_2 \in \bar{\Omega}_2^c} F(\omega_2) P_2(\omega_2) \\ &\leqq (1+\varepsilon) \sum_{\omega_1 \in \Omega_1} F(T\omega_1) P_1(\omega_1) + M(1-P_2(\bar{\Omega}_2)) \\ &\leqq (1+\varepsilon) E_{P_1}(F \circ T) + M(1-P_2(\bar{\Omega}_2)) \,. \end{split}$$

We will now apply Lemma 6 to our particular case. Let (Ω_2, P_2) be (Λ_n, \hat{P}) as defined above. The function $F: \Omega_2 \to [0, 1]$ will be the indicator function of the set $D(n(\log n)^{-\beta}, n)$. The probability space (Ω_1, P_1) will be defined so that the measure TP_1 on Ω_2 will correspond to the measure \tilde{P} as described in Sect. 1. Let

$$\overline{\Omega}_1 = \{(\omega, k) : \omega \in \Omega^{c_n}, k \in \{1, ..., b_n\} \text{ with } I_k(\omega) = 1\}.$$

Define P_1 on $\overline{\Omega}_1$ by $P_1(\omega, k) = P(\omega) [L(\omega)]^{-1}$. That is, we take a point ω at random, using P, then randomly, according to a uniform distribution, choose an " a_n loop-free" point. Note that $P_1(\overline{\Omega}_1) = P\{L \ge 1\}$. An easy estimate using $(2a_n)$ -dependence gives

$$P\{L=0\} \leq (1-f(a_n))^{b_n/2a_n} \leq \left(1-\frac{c_1}{\log n}\right)^{(\log n)^{\alpha-\gamma/2}} \leq O\left(\frac{1}{n}\right).$$

We let $\Omega_1 = \overline{\Omega}_1 \cup \{*\}$, where * is a dummy element with $P_1(*) = P\{L=0\}$. Define $T: \overline{\Omega}_1 \to \Omega_2$ by

$$[T(\omega, k)](i) = \omega(i+k) - \omega(k), \quad -n \leq i \leq n.$$

This is just a shift making $\omega(k)$ the origin. Since $I_k(\omega) = 1$ if $(\omega, k) \in \overline{\Omega}_1$, $T(\omega, k) \in \Omega_2$. We extend T to Ω_1 by defining T(*) arbitrarily.

For $\omega_2 \in \Omega_2$, $1 \le i \le b_n$, let

$$J_i(\omega_2) = \sum_{j=1-i}^{b_n-i} I_j(\omega_2)$$
.

Then by definition of T,

$$P_{1}[T^{-1}(\omega_{2}) \cap \overline{\Omega}_{1}] = P(\omega_{2}) \sum_{j=1}^{b_{n}} [J_{j}(\omega_{2})]^{-1}$$

$$= P_{2}(\omega_{2}) f(a_{n}) \sum_{j=1}^{b_{n}} [J_{j}(\omega_{2})]^{-1}.$$
(3.3)

It is difficult to analyze J_j directly because there is a dependence on the fact that $\omega_2 \in A_n$. Instead we define for $\omega \in \Omega^n$, $1 \le i \le b_n$,

$$H_i(\omega) = \sum_{\substack{j=1-i\\|j| \ge 2a_n}}^{b_n-1} I_j(\omega).$$

Then for every ω ,

$$H_i(\omega) \le J_i(\omega) \le H_i(\omega) + 4a_n,$$
 (3.4)

and H_i is independent of the algebra of sets generated by $\{B_n\}$, $\eta \in \Omega^{a_n}$, where

$$B_n = \{ \omega \in \Omega^n : \omega(i) = \eta(i), -a_n \leq i \leq a_n \}.$$

What we will show is for some $\theta > 1$, $\phi > 2$,

$$P\left\{ \left| f(a_n) \sum_{j=1}^{b_n} (H_j)^{-1} - 1 \right| \ge (\log n)^{-\theta} \right\} \le O((\log n)^{-\phi}), \tag{3.5}$$

$$P\left\{ \left| f(a_n) \sum_{j=1}^{b_n} (H_j + 4a_n)^{-1} - 1 \right| > (\log n)^{-\theta} \right\} \le O((\log n)^{-\phi}). \tag{3.6}$$

However, since the H_i are independent of the sets $\{B_{\eta}\}$ we can replace P in the above inequalities with P_2 . Then (3.4) gives

$$P_{2}\left\{\left|f(a_{n})\sum_{j=1}^{b_{n}}(J_{j})^{-1}-1\right| \ge (\log n)^{-\theta}\right\} \le O((\log n)^{-\phi}). \tag{3.7}$$

In the notation of Lemma 6, let $\bar{\Omega}_2$ be the subset of Ω_2 given by

$$\bar{\Omega}_2 = \left\{ \left| f(a_n) \sum_{j=1}^{b_n} (J_j)^{-1} - 1 \right| \le (\log n)^{-\theta} \right\}.$$

We now consider $E_{P_1}(F \circ T)$. Since the transformation T shifts the walk ω by at most b_n , we get that

$$\begin{split} & P\{\Pi_{1}[n(\log n)^{-\beta}, n-b_{n}] \cap \Pi_{2}[b_{n}, n] \neq \emptyset \text{ or } \\ & \Pi_{1}[0, n-b_{n}] \cap \Pi_{2}[n(\log n)^{-\beta} + b_{n}, n] \neq \emptyset \} \\ & \leq E_{P_{1}}(F \circ T) \\ & \leq P\{(\Pi_{1}[0, n] \cup \Pi_{2}[0, b_{n}]) \cap \Pi_{2}[n(\log n)^{-\beta}, n+b_{n}] \neq \emptyset \text{ or } \\ & \Pi_{1}[n(\log n)^{-\beta} - b_{n}, n] \cap \Pi_{2}[n(\log n)^{-\beta}, n+b_{n}] \neq \emptyset \}. \end{split}$$

By (2.2) and (2.4), both the left- and right-hand sides of these inequalities equal $\frac{\log \log n}{\log n} (\frac{1}{2}\beta)$ (1+o(1)). Therefore

$$E_{P_1}(F \circ T) = \frac{\log \log n}{\log n} (\frac{1}{2}\beta) (1 + o(1)). \tag{3.8}$$

Plugging (3.7) and (3.8) into the result of Lemma 6, with $\varepsilon = (\log n)^{-\theta}$, we get

$$\frac{\log \log n}{\log n} (\frac{1}{2}\beta) (1 + o(1)) \leq E_{P_2}(F) \leq \frac{\log \log n}{\log n} (\frac{1}{2}\beta) (1 + o(1)),$$

which gives Theorem 2.

It remains to derive (3.5) and (3.6). First note that each H_j is a sum of $(2a_n)$ -dependent random variables. The ideas of Lemma 4 and 5 can be applied to H_j giving (uniformly in j)

$$P\left\{\left|\frac{H_j}{EH_j}-1\right|\geq \varepsilon\right\}\leq \varepsilon^{-2}O((\log n)^{2-(\alpha-\gamma)}),$$

or, in other words,

$$P\left\{ \left| \frac{EH_j}{H_j} - 1 \right| \ge \varepsilon \right\} \le \varepsilon^{-2} O((\log n)^{2 - (\alpha - \gamma)}). \tag{3.9}$$

Let

$$L_1(\omega) = \sum_{i=2a_n}^{2a_n + \frac{1}{3}b_n} I_i(\omega) , \qquad L_2(\omega) = \sum_{i=-2a_n \frac{1}{4}b_n}^{-2a_n} I_i(\omega) .$$

The ideas of Lemmas 4 and 5 can again be applied to L_1 and L_2 giving

$$P\left\{\left|\frac{L_i}{EL_i}-1\right|\geq \varepsilon\right\}\leq \varepsilon^{-2}O((\log n)^{2-(\alpha-\gamma)}), \quad i=1,2.$$

Since $EL_i \simeq \frac{1}{3}EL \ge \frac{1}{3}EH_i$, and for each j, $H_i \ge \min(L_1, L_2)$,

$$P\{H_i \ge \frac{1}{8}EH_i \text{ for some } j = 1, ..., b_n\} \le O((\log n)^{2 - (\alpha - \gamma)}).$$
 (3.10)

Choose $1 < \theta < \mu$ such that $\phi > 2$, where $\phi = (\alpha - \gamma) - 2 - 2\mu - \theta$. Let

$$\Gamma_j = \left\{ \left| \frac{EH_j}{H_i} - 1 \right| \ge (\log n)^{-\mu} \right\}.$$

Then (3.9) states that for some $c_4 > 0$, for all j, $P(\Gamma_j) \le c_4 (\log n)^{2+2\mu-(\alpha-\gamma)}$. Now let

$$\Delta = \left\{ \left| \sum_{j=1}^{b_n} \frac{EH_j}{H_j} - b_n \right| \ge b_n (\log n)^{-\theta} \right\} \cap \left\{ H_j \ge \frac{1}{8} EH_j \text{ all } j \right\}.$$

If $\omega \in \Delta$, since $\left| \frac{EH_i}{H_i} - 1 \right| \leq 7$, we must have

$$7(\#\{j:\omega\in\Gamma_i\})+b_n(\log n)^{-\mu}\geq b_n(\log n)^{-\theta},$$

or

$$\begin{split} \# \left\{ j : \omega \in \Gamma_j \right\} & \geqq \frac{1}{7} b_n \left[(\log n)^{-\theta} - (\log n)^{-\mu} \right] \\ &= b_n O((\log n)^{-\theta}) \,. \end{split}$$

But

$$P\{\omega : \#\{j : \omega \in \Gamma_j\} \ge R\} \le \frac{1}{R} \sum_{i=1}^{b_n} P(\Gamma_j)$$
$$\le \frac{b_n}{R} c_4 (\log n)^{2+2\mu-(\alpha-\gamma)}.$$

Therefore,

$$P(\Delta) \le O((\log n)^{2+2\mu-(\alpha-\gamma)+\theta}) = O((\log n)^{-\phi}).$$
 (3.11)

Combining (3.10) and (3.11) we get

$$P\left\{\left|\sum_{j=1}^{b_n} \frac{EH_j}{H_i} - b_n\right| \ge b_n (\log n)^{-\theta}\right\} \le O((\log n)^{-\phi}).$$

In a very similar way one can show that

$$P\left\{\left|\sum_{j=1}^{b_n} \frac{E(H_j+4a_n)}{H_j+4a_n}-b_n\right| \ge b_n(\log n)^{-\theta}\right\} \le O((\log n)^{-\phi}).$$

But, using (1.1) and (3.1),

$$EH_{j} = b_{n} f(a_{n}) \left[1 + O((\log n)^{2 - (\alpha - \gamma)}) \right],$$

$$E(H_{i} + 4a_{n}) = b_{n} f(a_{n}) \left[1 + O((\log n)^{2 - (\alpha - \gamma)}) \right].$$

We therefore can conclude (3.5) and (3.6).

4. Remark

We have proven that $f(n) = F(n) (\log n)^{-1/2}$, where $F(n) \le c_2$, and for every s > 0, $\lim_{n \to \infty} F(n) (\log n)^s = \infty.$

It is still an open question whether or not

$$\lim_{n\to\infty}F(n)=0\,,$$

i.e. does there exist a $c_6 > 0$ such that $c_6 (\log n)^{-1/2} \le f(n)$?

References

Lawler, G.F.: The probability of intersection of independent random walks in four dimensions. Commun. Math. Phys. 86, 539-554 (1982)

Communicated by T. Spencer

Received July 12, 1984