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Abstract. For asymptotically free models with two independent couplings
asymptotic expansions are constructed which express one effective coupling in
terms of the other. The expansions involve powers (including fractional or
irrational exponents) and logarithms. All orders of the ^-functions are taken
into account. The expansions found are complete in the sense that they
represent solutions (exact to any order) which generalize all the solutions
obtained with the ̂ -functions approximated to second order. It is shown that
higher orders are relevant since it is not possible in general to reparametrize the
system such that the / -̂functions become polynomials of the coupling
parameters. The simplifications in case of supersymmetric models are
discussed.

1. Introduction

In this paper asymptotic properties of effective couplings will be studied for
massless field theoretical models which are asymptotically free and involve two
coupling constants. As example may serve a non-Abelian gauge field of coupling
constant g to which a Higgs field with interaction constant λ is coupled. The
effective coupling parameters g and X are defined as functions of the coupling
constants, a Euclidean momentum variable /c2<0 and a normalization mass
κ2 < 0. In terms of dimensionless variables,

k2

g = g(u,g,λ), λ = λ(u,g,λ), u=-^. (1.1)

A model is called asymptotically free if both effective couplings vanish in the
limit of large Euclidean momenta [1-3]

]img = 0, limX=0. (1.2)

Only solutions with bounded ratio λ/g2 will be considered.
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The effective couplings satisfy the differential equations [4]

u-r— =βί(g2

yl), (1.3)

u~=β2(g2,λ). (1.4)

For the asymptotic expansions of the β-functions we consider the following
forms of the β-functions which should cover most applications

oo n— 1

Pl=bί9 + Σ Σ °n-m,mQ λ , (L5)
n=3 m = 0

oo n

n=3 m=0

Though there are important models with vanishing lowest order of βx we assume
b x, c! φ 0 throughout the present paper. Since terms of the form λm are not included
in βt we have

j8 1 = 0 at g = 0. (1.7)

Therefore, Eq. (1.3) admits the trivial solution

0 = 0, (1.8)

leaving the differential equation (1.4) for X alone. This case in which the primary
coupling g is turned off will not be considered any further.

Of particular interest are supersymmetric gauge theories with λ = h2, where h
describes a matter or Higgs interaction. For such models all coefficients c3 and cOn

of terms g2n vanish in β2 so that

β2 = 0 at λ = 0. (1.9)

Then (1.4) allows for the trivial solution X= 0, in which case the secondary coupling
h is turned off.

The ordinary differential equation

dλ _
ιdg2~ 2

follows from (1.3) and (1.4) by eliminating u. Apart from the trivial solution (1.8) u
can always be eliminated since dg2/du + 0diS a consequence of (1.2), (1.3), and (1.5)
for large enough u. Thus except for (1.8) all asymptotically free solutions satisfy
(1.11) in a sufficiently small neighborhood of λ = g — 0. The purpose of this paper is
to derive asymptotic expansions which express X as a function of small values g.

In case of the lowest order approximation

the exact solutions of (1.11) are well-known.
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For

A=(c2-bί)
2-4c1c3>0, (1.13)

the solutions are

with an arbitrary constant of integration A or B. The exponent ξ is defined by

ξ = - | i - ( ρ + - ρ _ ) . (1.15)

ρ± denotes the roots of

0, (1.16)

with ρ+ being the larger value

Q+^Q-. (1.17)

ξ is non-vanishing and in sign opposite to ci/b1 if A > 0. For vanishing ^ or B there
are the special solutions

λ±=Q±g2. (1.18)

In the limit g->0 the general solution (1.14) approaches

λ-+λ. if

and (1.19)

X->X+ if ζ<0, AΦO.

Hence for ξ > 0 the special solution X_ which corresponds to the smaller root of
(1.16) is stable while the solution X+ is unstable provided ρ+ φρ_.

For A =0 the general solution of (1.11) and (1.12) is

^ — Q±Q \—2—7? (1.20)
Cj_ ing +A

where

is the root of (1.16). In addition there is the special solution

λ±=Q±g\ (1.22)

which corresponds to infinite A.
The case A <0 will not be considered here. It has first been observed by Gross

and Wilczek that a model with A < 0 cannot be asymptotically free even if the
necessary condition bί<0 is satisfied [5].
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The solutions based on the lowest order approximation (1.12) of the
jS-functions may be misleading. In particular, if the second order approximation of
X vanishes, the leading asymptotic behavior in g2 could be quite different. On the
other hand it will be shown that for two independent couplings it will in general
not be possible to reparametrize the system by a regular transformation such that
the β-functions become polynomial. Therefore the full asymptotic expansions (1.5)
and (1.6) of the β-functions will be used in this paper in order to construct
expansions of X in terms of powers (including fractional or irrational exponents)
and logarithms of g2 which are valid asymptotically for small g. The expansions
found will be complete in the sense that they represent all possible solutions if
applied to the approximated system (1.12).

We briefly state some of the results. A general solution will be constructed
involving an arbitrary constant of integration and, in addition, special solutions
X+ which correspond to the solutions (1.18) of the approximate system. The
leading term of any expansion is always ρ±g2 provided the roots ρ + of (1.16) do not
vanish.

The expansions found are only meaningful if the coefficients of the / -̂functions
s a t i s f y AZO. (1.23)

Otherwise X is not real. Under the further condition

&!<<), (1.24)

the expansions represent effective couplings which are asymptotically free.
However, not all models satisfying A ̂  0 and b1 < 0 are covered by the asymptotic
expansions obtained. An important restriction is the positivity condition first
stated by Browne, O'Raifeartaigh, and Sherry for supersymmetric models [6] *. A
similar restriction in the general case excludes positive values of λ for asymptoti-
cally free models if the roots ρ± are negative. If ρ_ <0 but ρ + ^0, only an unstable
mode of the system can be asymptotically free. There may be other requirements of
a related nature. For instance the ratio λ/g2 may for dynamical reasons be
bounded, say by i

0 S

If the upper bound η is below the two roots ρ ± the model cannot be asymptotically
free.

Since asymptotic freedom requires b1 < 0 and cx is usually positive, the value of
ξ as defined by (1.15) is non-negative. We therefore set

ξ^O (1.25)
in the remainder of the introduction.

Special solutions of (1.11) can be constructed in the form of power series

λ+=ρ+g2+ Σa+ng
2n, (1.26)

n = 2

_ °°

I-=M2+Σ«-/, (1-27)
n = 2

which correspond to the solutions (1.18) of the approximate system.

1 This work was generalized to models of more than two couplings in [7]
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The solution X+ always exists with uniquely determined coefficients. A unique
solution X_ also exists provided ξ is not a positive integer. For positive integral ξ
either X_ cannot be constructed or represents the general solution with arbitrary
coefficient aξ+1.

If ξ > 0 and not an integer the general solution X involves fractional or
irrational powers of g2. The lowest order contribution of this kind is

dg2iξ+ί) (1.28)

with arbitrary d corresponding to the constant of integration. The other
coefficients are uniquely determined. The special solution X_ is obtained by setting

If ξ is an integer, logarithms usually appear in the expansion of the general
solution. For positive, integral ξ the first logarithm may appear in the order
g2{ξ+1). In this order the general solution contains the terms

aξ+ίg
2iξ+1) + dξ+1g

2(ξ+i)\ng2. (1.29)

aξ+ί is arbitrary, dξ+1 and the other coefficients are unique. dξ+1 may vanish in
which case the expansion becomes a power series.

For ξ = 0 the general solution may be expanded with respect to powers of g2

and inverse powers of ln#2. The leading terms are

λ= — -g2 --—~—- +o(ά 4). (1.30)
c1 c1 mg +A

A is an arbitrary integration constant. The coefficients of the higher order terms
are unique.

The asymptotic behavior of the solutions obtained is

for non-vanishing roots ρ±. Accordingly X_ is a stable solution while X+ is
unstable if the roots ρ+ are different (£>0).

For supersymmetric models these results simplify considerably. Because of
c3 = 0 the condition A ̂  0 is always satisfied. The coupling parameter λ = h2 cannot
be negative. The differential Eq. (1.11) always admits the trivial solution X=0
which corresponds to λ = 0. For the interacting case the positivity condition λ > 0
and the condition b1 <0 leads to the requirement

<0 (1.32)

of Browne, O'Raifearthaigh, and Sherry for asymptotic freedom. It is

ρ_=0, ρ + = ̂ i > 0 , ξ=^-l>Q. (1.33)

The leading behavior of the general solution is always determined by the value
of£,

X~dg2iξ+1) (1.34)
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with arbitrary coefficient d. If ξ is a positive integer, no logarithms occur and the
general solution can be expanded as power series starting with the term (1.34).
Apart from the trivial solution

X_=0, (1.35)

there is also an unstable solution

00
Ύ ~2 i v^ ~2n /1 i zr\

λ+=ρ + g + 2^ Qn9 (1.36)

with uniquely determined coefficients.
In Sect. 2 of this paper reparametrizations in two variables will be discussed

with the result that in general the β-functions cannot be made polynomial by a
regular transformation. Asymptotic expansions of Jin terms of g2 are derived in
Sect. 3. The special case of supersymmetric models is discussed in Sect. 4.

2. Reparametrization in Two Variables

We consider transformations g2, λ^>g'12, λ' defining new coupling parameters
g'12, λ' by power series expansions

oo n — 1
Λ ' 1 2 _ Λ 2 , V V /ϊ n2(n-m) m ίη i\

n=2m=0

oo «— 1

λ' = λ+ Σ Σ ^n-msm^"m^2m (2-2)
n=2 m = 0

In case of a single coupling parameter it has been shown by 't Hooft that the
/̂ -function can always be made polynomial by a regular reparametrization [8].
Here the corresponding problem with two coupling parameters will be discussed,
as well as the question of the invariance for the coefficients of the β-functions.

Equivalence under a renormalization group transformation requires (2.1) and
(2.2) to satisfy the differential equations

p^/12 U'12

eg dλ

dλ' dλ'
2 dλ 2 dg2 ι'

β'uβ'i denote the new β-functions in terms of the new variables,

oo n~ 1
π/ i/ \4- i "V"̂  \~* L,/ f\2{n — iti) ΊΠfn (^ ζ\
IJ A —U1 Q "| / / U niQ A 9 V1"'^/

oo n

n = 3 m = 0

Comparing coefficients in second order g4, g2λ, λ2 yields the invariance of all
second order coefficiients

7 / T / / /

U Λ ^ ~ 1/ Λ , C1 ^ ~ Ci j Co 6 9 } C-3 3 *



Asymptotically Free Models 575

Comparing third order coefficients of g6, g4λ, g2λ2 in (2.3) we find

From the third order of (2.4) we get

^30 ^30 ?

C21 = C 2 1 + C 2 ( ^ 2 0 ~ f l l l ) ~ C 3 " l l •> ,~ Q,

d2Q-an) + bidll—a20c2,

Hence the invariants in third order are

c3Oλ\ (2.9)

and the combination

ho--b12. (2.10)
C l

At this stage we do not dispose of the second order coefficients a20, alu d20, dXί of
the transformations (2.1) and (2.2). Instead we try to use them to make all
coefficients of β[, β2 in fourth and higher order vanish.

Six more parameters α3 0, a2U α1 2, d30, d2ί,
 a n ^ dί2 enter the fourth order

check of the conditions (2.3) and (2.4). Together with the four parameters left over
from the third order there are ten parameters available for the purpose of making
the fourth order coefficients in β[, β2 vanish. By comparing the coefficients of g8,
g6λ, g*λ2, g2λ3 in (2.3) and of Λ4, λ3g2, λ2g4, λg6, g8 in (2.4) one obtains nine
constraints if all fourth order terms in β[, β2 are set zero. Since there is one variable
more than there are constraints it is possible to eliminate the fourth order terms of
the jS-functions - apart from exceptional situations.

In fifth order there are eight more parameters in (2.1) and (2.2) together with
one parameter left over from fourth order. On the other hand there are eleven
constraints if the fifth order coefficients of β\, β2 are required to vanish. Hence in
general the available parameters are overdetermined.

In nth order we get 2(n— 1) new parameters of the transformations as
compared to 2n +1 new constraints. Hence it appears impossible to eliminate all
fifth and higher order terms in the β-functions for the general case of two variables.

This does not preclude the possibility of rendering the ̂ -functions polynomial
in special situation. We have therefore checked the supersymmetric case separately
in which all powers g2n in β2 are absent. This simplification makes it indeed possible
to eliminate all fourth and fifth order terms. In sixth order, however, the available
parameters are overdetermined. In the nxh order there are 2(n— 1) new parameters
for In new constraints.

In conclusion we remark that there are three third order invariants in the
supersymmetric case, namely

(2.11)
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and the combination

ί>2i + ̂ z £ 2 A 2 . (2-12)

3. Construction of Asymptotic Expansions

We first study the possibility of power series expansions.

I = α o + α ^ 2 + α 2 ^ 4 + . . . . (3.1)

Asymptotic freedom (1.2) requires ao = 0. Comparing coefficients of g4 in the
differential Eq. (1.11) we find for ax the condition

fe1)α1 + c 3 = O. (3.2)

aγ can only be real if A ̂ 0 which will be assumed in the work that follows.
We begin with the case A > 0, or equivalently ξ Φ 0. Then there are two distinct

solutions for

a1 = ρ+ or ρ_ with ρ + > ρ _ . (3.3)

Comparing the coefficients of g2n+2 in (1.11) with n = 2,3,... we find the condition

(b9n-2c1a1-c2)an = EH (3.4)

for an. En only depends on lower order coefficients (m < ή). If for all n = 2,3,... the
expression

b1n — 2cίaί—c2ή=0 (3.5)

does not vanish, all coefficients an are uniquely determined. A value n = k satisfying

bik-2cia1-c2 = 0 (3.6)

may directly be related to ξ by

ξ = k— 1 if a i = o _ ,
1 * ' (3.7)

£ = l - f c if fli=ρ+,
with £ defined by (1.15). Hence we arrive at the following statement: If ξ is not a
positive or negative integer the differential Eq. (1.11) can be solved by two power
series,

n = 2
a+ng

2\ (3.8)

λ-=Q-f+ Σa.J2". (3.9)
n = 2

Moreover (3.8) exists for positive integral ξ9 (3.9) exists for negative integral ξ. If ξ is
a positive integer and Eξ+ί=0 also (3.9) exists. In that case aξ+1 is not restricted by
(3.4), hence may be an arbitrary constant. Similarly (3.8) exists with arbitrary aλ _ξ

if ξ is a negative integer and £ ^ ^ = 0.
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In the case Δ = 0 (equivalently ξ = 0) the two expansions (3.8) and (3.9) coincide.
The construction is unique since (3.6) can only be solved by k = ξ+ 1 = 1.

This completes the construction of the power series solutions of (1.11). They
represent the special solutions which may be constructed. In addition they also
provide the general solution if ξ is an integer and Eξ+ί or Eγ_ξ respectively
vanishes.

Logarithms occur if ξ=±l, ±2,... and £ π φ 0 with n = ξ+l or 1 —ξ,
respectively. Then (3.6) holds and (3.4) has no solution an. The difficulty can be
resolved by adding a logarithmic term

The inclusion of the logarithmic term will automatically lead to the general
solution with an arbitrary parameter. Comparing the coefficients of g2k and
g2klng2 in (1.11), one finds

(bίk-2c1a1-c2)ak=-b1dk + Ek,

(bιk — 2c1a1—c2)dk = 0.

Since b1k — 2c1a1—c2 = 0 the two conditions are satisfied by arbitrary ak and
dk = Ek/bί. In higher orders also powers of logarithms occur. Inductively one finds

Σ ΣhQσgg
= k+ί σ (3.H)

if ξ>09

k=ί"ζ\ if ξ<0,
0 β J

The exponents σ of the logarithms are restricted by

Equation (3.11) represents the general solution in case of integral
For ξ = 0 the solution (1.20) of the approximate systems suggests the ansatz

00 00 00

1= Σ ang
2n+ Σ Σ dnjg

2»\n-Jg2. (3.12)
n=ί n=lj=l

The logarithmic terms do not affect the recursion formulae of the an. Therefore the
first series in (3.12) is the power series expansion of the stable solution. In particular

* ^ (3.13)
2c1

For the logarithmic terms of order g2 one finds

d i i = 0 or dίl = - .
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The solution d11 = 0 leads back to the power series expansion since it implies that
all dnj = 0. In the other case dί2 is arbitrary and all dlj(j^3) are unique. The
logarithmic terms of order g2 can be summed up in closed form by

with the integration constant A. This follows by making the ansatz

λ = ρ(lng2)g2 + o(g4), (3.14)

which leads to the differential equation

xJ\nψ=ClQ + ^2~ fci^ + c 3 '

with the solutions

b1—c2 bt 1 b1-c2

* 2c c\ng2 + A y 2c

The coefficients dnj(n^2) are uniquely determined by recursion formulae of the
form

where £Π J is a function of lower order coefficients,
h

(3-15)

With these results the general solution may be written in the form

g2, ξ = 0, (3.16)± 7 ϊ d f c 7 Σ Σnjgg,
C1 lug -\-Λ n = 2 j=ί

with the power series (3.8) and (3.9) for I ± .
It remains to construct the general solution for non-integral ξ. As suggested by

the solution (1.14) of the approximate system we include a term

dίlQ

2\ (3.17)

where k = ξ + liϊξ>0,k=l — ξiϊξ<0. Comparing coefficients in the order g2{k+1)

of the differential Eq. (1.11) of λ, one finds

(kb1-2a1c1-c2)d11 = Q. (3.18)

We have

kbί-2a1cί-c2 = 0 if ξ>O,a1=ρ- or ξ<09a1=ρ+. (3.19)

Hence for ξ>0 a term (3.17) with arbitrary coefficient d11 may be included in the
expansion starting with ρ _ g2. Similarly for ξ < 0 when the expansion starting with
ρ + g2 is used.

When the expansion including the term (3.17) is inserted into the differential
Eq. (1.11) terms of the form

dmng
2immn\ m , n = l , 2 , . . . (3.20)
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are generated in the expansion of X If ξ is rational we write

\ξ\=£ (3.21)

as the ratio of relative prime integers p and q. The expansion

λ= Σ ang
2n+ "Σ Σ dmng

Άm^+n) if ξ is rational (3.22)
n = 1 m = 1 n = 1

or

1= Σ ^ 2 M + Σ Σ ϋ 2 ( m | ξ | + n ) if ξ is irrational (3.23)
n= 1 m = l / i = l

solves the differential equation provided the coefficients satisfy

:; r<t
= 0 , (3.25)

and recursion formulae of the type

(b1n-2a1cϊ-c2)an = En, (3.26)

n)-2aίcί-c2)dmn = Emn. (3.27)

The inhomogeneous terms En and Emn only depend on lower order coefficients.
The coefficients an are uniquely determined by (3.27). Since bί(m\ξ\ + n)
— 2a1c1—c2 = 0 only for m = n—l, the coefficients dmn are also uniquely deter-
mined once the arbitrary value ofdίl is given. For rational ξ the coefficients an in
general involve d1 x. If ξ is irrational the coefficients an are not affected by the value
of dίί. Then the first sum in (3.23) represents the power series solution (3.8) or (3.9)
respectively.

For the discussion of the leading asymptotic behavior of X we assume for
simplicity that the roots ρ + are non-vanishing. The supersymmetric case for which
ρ _ = 0 will be treated separately in the following section. By (3.8), (3.9), (3.11), (3.16),
and (3.23) the asymptotic behavior of the solutions obtained is

λ.^Q_g\ X^ρ_<f if <^0, X^ρ + < f i f ^ 0 , (3.28)

where X denotes the general solution. A particular solution Xo is called stable if for
almost all solutions

lim^- = l . (3.29)

According to (3.24) X_ is stable for ξ^ 0 and X+ is stable for ξ^ 0. X+ is unstable for
ξ > 0 and X_ unstable for ξ < 0.

In conclusion we discuss the question of asymptotic freedom. Inserting any of
the expansions of X back into the differential Eq. (1.3) of g with respect to u we
obtain

g2 J < 0 if bt<0

j if bί>0
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for sufficiently small values of g2. Hence A ̂ 0 and b1 <0 are necessary conditions
for lim g = 0 and lim X=0. On the other hand if bγ is negative, the solution

u—> oo u—* oo

g2 ζljζ

w = exp J ——j-—r (g2,g2 sufficiently small)

implies g->0 for u-+oo. Hence

lim# = 0 if zl^O and b ^ O .
«-> oo

With this also j j m j _ Q

follows for all expansions. This result seems to indicate that the conditions

A^09bt<0 (3.30)

are not only necessary but also sufficient for asymptotic freedom. However, for
models involving two independent coupling parameters the full range in both
variables is not covered by the asymptotic behavior for large Euclidean momenta.
For instance, if the roots ρ+ do not vanish the ratio λ/g2 approaches a non-
vanishing value. Hence only for values of λ and g2 in a sufficient neighborhood of
the line λ = ρ + g2 asymptotic freedom is guaranted. Though an initial domain of
coupling parameters can be enlarged by the equivalence transformations of the
renormalization group non-perturbative effects may restrict the ratio λ/g2 so that
asymptotic freedom does not hold. A most obvious restriction of this kind was first
found by Browne, O'Raifeartaigh, and Sherry for supersymmetric interactions [6].
We will now give a generalization of this restriction to the class of models
considered here. In order to simplify the following discussion we assume c1 > 0 as is
usually the case. Then the necessary condition bt < 0 implies ξ^ 0, according to the
definition (1.15). A model with A >0 cannot be asymptotically free if ρ_ ^ρ+ <0. If
ρ_ <0, but ρ+ ̂ 0, only the unstable mode of the model corresponding to the
solution λ = λ+ can be asymptotically free.

4. Supersymmetric Case2

For supersymmetric interactions β2 vanishes if λ = 0. Therefore λ = 0 is always a
solution of the differential equation (1.11). This trivial solution corresponds to the
case λ = 0 of no interaction. For the following discussion we exclude the non-
interacting case and require λ = h2>0. cx >0 is assumed throughout this section.
Since c3 = 0 the roots of (1.16) are

ρ±0,
ci

and AέiO is always satisfied. If the root {b1—c2)/c1 were negative the general
solution (3.11) would become negative for large Euclidean momenta in contradic-
tion to λ>0. Hence

( 4 1 )

2 We consider the class of models studied in [6]
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By a similar argument we can exclude £ = 0, which is equivalent to A = 0 or c2 = b1.
Then the leading term of the general solution (3.16) takes the form

^ ^ (4 2 )

Since b1<0 and cx > 0, this becomes negative for sufficiently large |/c2| if asymptotic
freedom holds with g-*0 for |/c2|->oo. The stable solution (3.8) and (3.9) as the only
power series expansion possible for £ = 0 must reduce to the trivial solution X=0.
Hence for the interacting case l > 0 a model can only be asymptotically free if

bx<0 and £ > 0 or equivalently c2<bί<0. (4.3)

We will now simplify the general solutions (3.11), (3.22), and (3.23) for the
super symmetric case. We begin with the case £ = 1,2,... and show that logarithms
are absent in (3.11), as well as terms of order less than g2{ξ+1). If α1 = ρ _ = 0 .
Assuming α1 = . . . = α / _ 1 = 0 , it follows (c2—jbί)aj = 0. Hence cij = O iίj^ξ and
aξ+1 arbitrary. Thus (3.11) reduces to the power series

λ= Σ ajg2J, £ = 1,2,...; aξ+1 arbitrary. (4.4)

If £ is irrational the expansion (3.23) becomes

λ= Σ Σdmng
2imξ+n\ £ irrational, dxl arbitrary, (4.5)

m—1n=1

since the coefficients an are the same as for the solution I_ which vanishes in this
case.

For rational £, ξ = I > Q ?

«

with p and f̂ relative prime integers. The first integral power generated in the
expansion of I is g2?+2 so that (3.22) becomes

(4.6)

In all cases the leading behavior of the general solution is given by λ~ ag2(ξ+1} with
arbitrary a. In contradistinction the unstable solution (3.8) is of order

0 0

1 = Σ ang-
n = p+l

a — 1
2 M + Σ

m = l

0 0

Σ dmng
2(mξ+n), dίl arbitrary.

Cί
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