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Abstract. A simple formula is computed for the asymptotic Higgs field of an
SU(2) monopole. This formula is derived from the twistor description of
monopoles, and is applied to the study of boundary behaviour. It is found to
be harmonic, and to have as its natural domain of definition a branched
covering of U3. Explicit formulae are given in simple cases.

1. Introduction

The purpose of this paper is to compute a simple asymptotic formula for the Higgs
field of an SU(2)-monopole, valid up to exponentially decreasing terms: the
"algebraic" part of the Higgs field [11]. This formula is derived from the twistor
description of monopoles, and is intimately linked with the geometry of the
monopole's spectral curve [3], as follows: a point in U3 corresponds to a section
of T^P^C)) over P^C); this section intersects the spectral curve in 2fe points;
choosing k out of the 2k (asymptotically this choice is canonical), one evaluates
the slope of the curve at these points, and sums, adding 1, to obtain the asymptotic
norm of the Higgs field. This expression is harmonic, and is seen, in particular
cases, to arise from a "charge distribution" on a union of compact disk-like surfaces
in U3. We also apply the formula to give a direct proof that the boundary conditions
of a monopole are satisfied when the spectral curve satisfies the conditions given
in [3].

Let P be a principal SU(2)-bundle over [R3, p its associated su(2) bundle, Φ
a section of /?, V a connection on P, with F its associated curvature. The couple
(V, Φ) is an SU(2) monopole if the following conditions are satisfied:

1) *F = VΦ, where * is the Hodge star operator on two-forms over U3.
(Bogomolny equations [1])

2) The boundary conditions, as r-> oo:

a) \Φ\ = l
b) d\Φ\/dΩ = O{r~2),
c) \VΦ\ = O{r~2).
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The su(2) norm is given by — tr2/2. d/dΩ is the angular derivative, given in
spherical coordinates by df/dΩ= ί(df/dθ)2 + sin 2 0(δ//δφ) 2 ] 1 / 2 . The k in
k/2r is an integer, and is called the charge of the monopole.

We note in passing that the Bogomolny equations, the formula [8]
|VΦ|2 =Δ \Φ\2/2, and our formula for \Φ\ yield an asymptotic formula

for m
The first solutions produced [7] were of charge one, and depended on three

spatial parameters. Subsequent solutions of higher charge were obtained using
twistor methods; see Ward [8, 9], Prasad [6], and Corrigan and Goddard [2].
A systematic account of the twistor side of the theory is given in Hitchin [3]; we
recall briefly the methods involved; this will serve the purpose of fixing notation.

Let T be the space of oriented straight lines in U3; T has a natural
holomorphic structure under which T=T(P 1 (C)) , the holomorphic tangent
bundle of P^C). T has a natural real structure γ9 with no fixed points,
given by reversal of orientation of the lines. Also, fixing a point x9 one obtains a
section CJC:P1(C)->?', whose image is the set of lines through x; these sections
are y-invariant, and so are called real. Note that any two sections Cχf Cx, intersect
in two points; this corresponds to the two oriented lines in U3 passing through x
and x'. Finally, let z' be an inhomogeneous coordinate on Pχ(C); (w,z)^>
wd/dz'\z,=z gives local coordinates on T, in which γ(w, z) = (— w/z2, — 1/z).
Also, iί x = (xl9x29Xs)9 fix the correspondence between U3 and T by setting the
image of Cx to be w = (xί + /x2)z2 — 2x3z — (xx — ίx2).

Let E be the standard rank 2 bundle associated to P; if r is an oriented line in
M3, set Er = {seΓ(r,E):(Wu — iΦ)s = O9 u a positive unit vector}. This defines
a 2-bundle E over % with a quaternionic structure (an anti-linear lift σ of γ such
that σ2 = — 1) and a symplectic structure (a nowhere degenerate skew form on
E); if (V, Φ) is a solution to the Bogomolny equations, E has a natural
holomorphic structure. Let L be the holomorphic line bundle on T defined
by the transition function exp( — w/z) from \zφ 00} to {z/0}; let Θ(n) be the
lift to T of the bundle Θ(n) on P t(C); set L(n) = L®Θ(n); then using the
boundary conditions, one can show that E can be written in two ways as a
holomorphic extension:

0-»L(-£)->£-• L*(fc)->0, 0^L*(-fc)->£-+L(fc)-»0. (1)

These are permuted by the quaternionic structure. Let S be the curve over
which L(— k), L*(—k) coincide; S is a curve in the linear system |0(2fc)|, and
is called the spectral curve of the monopole. One has:

Theorem 1 [3].

i) S is compact.

ii) S can be written as 0 = wfc + α 1(z)w f c" 1 + ••• + ak(z\ will at polynomial, of

degree 2i.

iii) L 2 is holomorphίcally trivial on S.

iv) S is preserved by γ, and L(— k) has a quaternionic structure over S.

Conversely, a curve S satisfying the above conditions (a spectral curve) yields
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back a (possibly singular) solution to the Bogomolny equations. This is done as
follows. From the exact sequence on % 0-»L2( — 2k)-+L2-+L2\s-+0, one has the
coboundary map, which here is an injection δ:H°(S,L2)^>H1(TfL

2(—2k)); as
this last group describes extensions of L*(/c) by L(— k\ choosing a non-zero section
a in H°(S,L2) gives a symplectic 2-bundle E corresponding to δ(a) , fitting into
a sequence (1); condition iv) above then enables E to possess a quaternionic
structure. Alternatively, one can also obtain E as an extension of L(k) by L*(— fe),
using the fact that L*2 is also trivial on S.

From E one obtains a solution to the Bogomolny equations on U3. First of
all, assuming that E is trivial on the real sections Cx, one obtains a 2-bundle £
on [R3 by setting £ x = H°(CX, E). We now define the Higgs field as an element
of End(£), and also the connection, along an oriented line. For convenience, set
r to be the line xί=x2 = 0, with the positive direction being given by x3 -* — oo.
r then corresponds to (0,0) in T; setting b = — 2x3, the points (0,0, x3) correspond
to real sections w = bz, passing through (0,0) and y(0,0); along this pencil of
sections, there are two natural connections Vo and V^ over E, determined
by evaluation of the corresponding elements of H°((w = bz\E) at (w,z) =
(0,0) and y(0,0) respectively. Φdb = ί(V0 - V J and V3 = (Vo + VJ/2 then define
the Higgs fields and the connection along the line.

2. The Asymptotic Higgs Field

Let E be the bundle constructed from a spectral curve S; let 1R3, T be para-
metrized as in the introduction. Cover T by V1 = {z φ oo}, V2 = {z φ 0}.
We will be looking at the behaviour of E on the sections w = bz.

Blow up T at (0,0) and y(0,0) to a surface T' (for a complete treatment of
blowing up, see [10]). The sections w = bz lift to a ruling of lines; we compute a
transition matrix for the lift of E to this ruling; this corresponds to computing
the transition matrix on T from the set V\ = Vί — {z = 0, w φ 0} to the set
V'2 = y{V\).

As E is obtained as an extension of L(k) by L*(— k) via the injection
δ : / / 0 ^ ^ * 2 ) - ^ ^ 1 ! ^ ^ * 2 ! - ^ ) ) , setting / to be a non-zero element of
f/°(5,L*2) = C, we first construct a Cech cocycle representative δ(f)ί2 for δ{f)
relative to the covering F'1? V'2 [10].

One has coordinates (z9b = w/z) on F'1? {l/z,b) on F'2; represent the section

/ as fi{b,z) over KJnS; f2(b,z) = exp(2b)f1(b,z). To extend /f to functions Ft on

FJ, we use Lagrange interpolation. More precisely, we suppose that S intersects
2 = 0 at w = cb ί=l,...,/c, with all ct distinct, ^0; let S intersect the sections
w = bz a t p o i n t s z = Zi(b\ i = 1,...,2/c; set ftβ>) = fβ9zβ?)), i=l,...92kj= 1,2.

The Fj(b,z) are constructed by interpolating the fi/b) in the z-direction, with
F1(&,0) = F2(h,oo) = 0. One then has δ(/)1 2 = [F2 - e x p ( - 2b)F2~\IΠ{z-zι{b))\
from this cocycle the transition matrix is then constructed:

exp(-i
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with
K(z,b) = exp(b)zk(δ(f)ί2)

2k

= exp(b)ΣiΦ)(zk + Φ)zk~1 + '-+zi(b)2kz-%

a(b)_ Mb)
i{) zίb)Y[(Φ)-ψ)Y

jfi

We use this transition matrix to prove:
Proposition 2. E defines a solution (V, Φ) to the SU(2) Bogomolny equations, which
is non-singular outside of a compact analytic set.

Remark. This set has one defining equation; it is, generically, a surface.
We first prove a lemma:

k

Lemma 3. Let abcteC, i = l , . . . , f c . Let NSft = ]Γ aic
k~1~s+\ s, ί = l,...,/c.

k k

Then det JV = Π ai Π (ci ~ cj)-

Proof. Let V be the Vandermonde matrix ViJ = ck~i; let Witj= Vjtk-i + ί =cj~1;
then the matrix above can be written as V diag(α1, α 2 , . . . , ak) W; the lemma follows.

Proof of the proposition. A solution will be non-singular at a point x if E is
holomorphically trivial over the corresponding section Cx in T; if this is not so,
we call Cx a jumping section. Using the jumping criterion of [2], we see that w = bz
is a jumping section iff the k x k determinant det(M ί7 (fc)) = 0, where

2fe

Mij(b) = ^an(b)zM~i+J-

Suppose now that b -• + oo in our expression for T 1 2 ; the reality of w = bz and
of S, and the compactness of the curve S imply that half of the points z^b) tend
to zero, with the other half going to infinity; renumbering, let zf->0, zk+ί = γ(zt)9

ϊ=l , . . . , fc . Furthermore, bzi9 i=l, . . . , fc, tends to a point of Sn(z = 0); again
renumbering, set bz^c^ by reality, zk+i/b-+ — l/cf. Also, as fo-^ + oo and / 2

is bounded in a neighbourhood of (z=oo), / α =exp(— 2ft)/ί2 = O(exp(— 2b))
decreases exponentially with b9 for i = k + 1,..., 2k. We get for K(z9 b\

K(z9b) = exp(fr)Γ Σ aib)(zk + z ^ " 1 + ^ z? fez- fc)l + O(exp(- ft)),

with r , m ΓT / - \

Returning now to Mί<7 , multiply row i by fe^"1, column) by bj; as b^co, the
transformed matrix tends to

n=l
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using lemma 3, this has non-zero determinant, and so for b > b0, say, w = bz is a
non-jumping section. In this way, varying the origin z = 0, and also the corres-
ponding transition matrices, one can obtain a bound on an open patch of directions
in S2 = P^C).

We now must consider two cases left out: 1) S has multiple points at z = 0;
this case goes through exactly as above; one still obtains in the limit matrices that
are non-singular. 2) (0,0)eS. This can be avoided by changing the origin in 1R3.

Thus one can cover the compact sphere of directions with patches on which
the surface is bounded; the theorem is proved.

Remark. Hitchin [4] has shown that the additional condition for non-singularity
of the monopole is H°(S, L\k - 2)) = 0, for ίe(0,2).

We now turn to finding the asymptotic formula for the Higgs field. The principle
will be the same as in the preceding proposition; a matrix contains sums indexed
from 1 to 2/c; these degenerate asymptotically into sums indexed from 1 to k; the
matrix becomes of Vandermonde type, and easily tractable.

Again, we compute along the line w = bz. Let Vo, V^ be defined as in the intro-
duction. Suppose that b>b0; let s(b,z) = (sί(b,z), s2(fc,z)), ί(b,z) = (ί1(fo,z), t2φ,z))
be sections of E on w = bz given in the V\ trivialisation, with s(b,0) = (l,0),
ί(6,0) = (0,l); set u(b,z)tτ = T2ί(b,z)s(b,zf9 v(b,zfr =T21(b,z)t(b,z)iτ. (s9t) is
a V0-flat basis for E along xx = x2 = 0 in (R3; as the coordinates of s, t in a V^-flat
basis are u(b, oo), v(b, oo), we have:

φ = Γ v2(b,co), -Vl(b,co)l

|_ — u2(b, oo), uγ{b, oo) J \u2(b,co\

, oo)

, oo)

Ί

j

remembering det T12 = 1. Set

Mi(b, oo) =

v^b, oo) =

ft), M2(fc, oo) = exp(- ft)M2(ft),

ίfe), ι?2(ft, oo) = exp(- %(&).

5,ί are determined by the condition that T21s
t r, T2ίt

tτ are continuous at z = oo;
writing sf(ft,z) as Σsi3{b)z\ etc., one can show that sί7 = 0 for j > k ; one has
ύ2(b) = s2k(b\ and also, substituting s2j(b) = s2j(b)b~\ u^{b) = ϋ^fyb*, one has:

Σai(bzi)
k+\...,Σai(bzi)

2k

Σφztf, ..

(2)Σab Σφzd,

5 2 O

5 2 2

Jlk_

=

0

0

0
510_

where the summations are taken over ί from 1 to 2k. a{ and bz{ tend to finite,
non-zero limits as fe-*oo, for ie(l,...,fc); for ie{/c + l,...,2/c}, at decays
exponentially. Using Lemma 3, the limit equation is non-singular; thus, upto
exponentially decreasing terms, one may approximate solutions to (2) by solutions
to the same equation, with the difference that the summations are taken from
1 to k; we also make the following remark:
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(*) The exponentially decreasing terms are of the form exp(— nb) (meromorphic
function in b); thus all their derivatives also decay exponentially; we can take
derivatives of the approximations with impunity, and obtain approximations to the
derivatives.

Row-reducing (2), remembering that s l o = l , ί l o = 0, we obtain:

u1(b) = (-l)kf\zί(b),
i = l

and similarly, v^b) = 0. The symplectic structure then ensures that v2(b) = u^b)'1.
Substituting in the expression for Φ, one obtains the asymptotic formula, valid up to
an exponentially decaying term:

This formula extends to the (parallel) lines la of real sections w =
az2 + bz — a,b varying in U; setting {z^a, b)} = {w = az2 + bz — a}nS, numbering
the zf's as above, one has the same formula, with zf(α, b) substituted for z^b).

We now give an intrinsic interpretation of (3). Defining S locally by p(w9 z) = 0,
one has piazza, b)2 + bz^a, b) — α, zt{a, b)) = 0. Taking the derivative of this with
respect to b, one obtains:

b l Λ ' Ό)) ^ 0 , b)) + b) dp/dw + dp/dz

where z P^C)-*? 7 is the section whose image is w = az2 + bz — ά. One has the

natural exact sequence for the tangent bundle of T:

where TF is the bundle of tangents to the fibers of T; the map i+ gives a splitting of the
above along w = az2 + bz — a. Equation (4) is then just the ratio of the components
of a tangent vector to the spectral curve with respect to this splitting and the natural
identification TF = π*(T((P1(C))).

One thus has the following picture of \Φ\as at a point x far from the origin in [R3,
along a direction corresponding to z = z 0 in P^C); one looks at the fe (out of 2k)
points in (S n Cx) that are near z = z0 in T; one evaluates (4) at these points, and then
sums to obtain (3). Thus, the asymptotic Higgs field is determined by the choice of a
set W of k points zt out of 2k, such that (zieW)=>(y(zi)φW); asymptotically, this
choice is natural, as the z/s cluster into two distinct sets.

Formula (4) also shows where | Φ | α s can become singular: at sections tangent
to the spectral curve. However, it is not all the tangents that give singularities; at
those where two z^seW come together, \Φ\as remains finite; it is only at
sections where zteW and ZjφW meet that singularities occur: this singularity,
as we shall see, is generically a curve, and | Φ | α s is of order d~1/2, where d is
the distance to the curve in IR3.

Note that the real structure of S and of the sections forces the tangents to
come in pairs; thus the singular set is a subvariety of the variety of bitangent
sections.
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Proposition 4. Let S be a compact curve in T. The set of bitangent sections to S
is a union of algebraic curves in C 3.

Sketch of proof. The tangent sections to S are parametrised by a surface M in
C 3. It suffices to show that each component of M has a section that is simply
tangent at one point only. Suppose that w = 0 is tangent to S at (w, z) = (0,0); then
w = cz2, ceC, is also tangent. Letting c-> oo, one can show that there must be a
simply tangent section.

Restricted to the R3 of real sections in C3, the bitangent variety is a set of
algebraic curves Cn, n= l , . . . ,α and of points Pm9 m = l,...5j8. If | Φ | α s becomes
singular at Cn, branching around Cn has the effect of interchanging z'/s in W and
z'jS not in W. Thus the appropriate domain of definition of |Φ| f l s will be a
branched covering of M3.

Theorem 5. | Φ | β s is naturally defined on a branched cover F:U3^U3 branching
over a subset (Cn9 neΛ) of the curves of bitangents, with at most 2k sheets. Away
from F~ 1(Cn, neA, Pm9 m= 1,...,/?), | Φ | α s is harmonic.

Proof. Away from Cn9 U3 is defined from pairs {U9ϋ\Φ\as)9 where U is an open
subset of 1R3, and v\Φ\as is a single valued analytic continuation of |Φ| f l S over
U; (U9ϋ\Φ\J and (V9V\Φ\J are identified over UnV iff υ\Φ\as = v\®\as

over UnV. However, the different possible values of |Φ| f l S are determined by
the choice of k out of 2fc points, in a way that respects the real structure; there
are 2k such choices.

To see that | Φ |β s is harmonic, we use the Penrose transform. This associates
to each element / of H1(T9Θ(-2)) = H1(T9π*{ΩL(P1(C)))) a harmonic
function φf over U3; covering T by our open sets Vί9 V2 and representing / by
a cocycle f(w9z)dz over Vί n V2, ψf is given by jίx*(f(w,z)dz\ where ix: P^C)-^ T
is the section associated to x9 and the integral is taken over an appropriate contour
in iχί(V1nV2). It is then easy to see that the cocycle (—(dp/dw)/p)dz gives
2πi(\Φ\as— 1) by this transform; the different values of | Φ | f l s correspond to
different contours of integration.

Remark. We will see in the examples that it is possible there to define cut surfaces
Ds so that IΦ |α s is defined and continuous over !R3\[(the union of a subset of the set of
branching curves) u {Pm, m = 1,..., β} ], and so that away from the surfaces Ds, | Φ \as

is also harmonic. | Φ | α s is then the field generated by a "charge" distribution on
the surfaces Ds and on the points Pm. On the interior of the Ds, the distribution
is represented by a function, i.e. a surface charge density, whose sign is opposite
to that of the monopole. It is tempting to conjecture that this is possible in the
general case.

3. Boundary Conditions

Proposition 6. The solution (V, Φ) defined by E satisfies the boundary conditions
of a monopole.

k

Proof. We use formula (3), and note that Y[ z^b) has a zero of order k at b — oo;
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therefore its logarithmic derivative is — kb~x + O(b~2) = —kr~1/2 + O(r~2); this
gives the first boundary condition. To get the two others, noting that | Φ | α s

is analytic at r = o o , expanding in spherical coordinates, one writes | Φ | α s =
1 —kr~~1/2 + h2(θ,φ)r~2+ ••• Remembering remark (*) above, and noting, as in
Ward [8], that |VΦ|2 = Δ(\Φ\2)/2, the second and third boundary conditions
follow.

4. Examples

1. The Axisymmetric Case

i) k even, k = 2ft.
One has axisymmetric solutions of charge k with spectral curves [4]:

One obtains, in U3:

. ... < £~_I7_2 A2n+l)π

This is singular on the circles Cn = {x3 = 0, r = (2n + l)π/4}. Defining the cut
surface D = {x3 = 0, r<(2h + l)π/4}, \Φ\as is continuous and single valued
on R3\(Cn,n=l,...,h); on Dn{(2j- l)π/4<r <(2/
has a discontinuity ("charge density") of

A ΠnJ. 1W Γ/7?«4- 1W\2 Ί-3/2(2n+l)πΓ/(2n

L -"]'
ii) fcodd, fc = 2ft + l.
One has solutions with spectral curves:

w [ ] ( w 2 + (mrz)2) = 0.
n=l

Then,

This is singular on the circles Cn = {x3 = 0, r = (nπ/2)}9 and at r = 0. Again,
setting the cut surface D = {x3 = 0, r<ftπ/2}, \Φ\as becomes single valued,
and one has the charge density, on Dn{(j — l)π/2 < r <jπ/2}:

with a point charge superimposed at the origin.
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2. The Case of Charge 2

After translation and rotation, one can reduce the spectral curve to the form [5]:

w2 = k(z - s)(z + s){sz + ί)(sz - 1), k> 0, se[0,1).

By solving the appropriate quartic, one can obtain |Φ| α s ; this will have a
singularity of type r~1 / 2 over the ellipse

(s2 - ϊ)2x{ + (52 + \)2x\ = fc(s4 - l)2/4, x3 = 0.

Again, one can take a cut surface D as the interior of the ellipse in the plane
x 3 = 0; one can see this directly, as follows. The monopole has a symmetry of
reflection in the x3 = 0 plane, corresponding to the symmetry z->l/z in IP^C);
near D, this symmetry interchanges zj's in W with z'f's not in W; thus one obtains
either two possible cut surfacs, images of each other by the symmetry, or one cut
surface in the x3 = 0 plane. However, algebraic considerations of degree in
the deformation from the axisymmetric case (the moduli space is connected [5]
preclude the first possibly.

Acknowledgement. The author is indebted to N. J. Hitchin and W. Nahm for useful discussions.
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