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Abstract. It is proved that the reduced dynamics of an JV-level system coupled to
a free quantum gas converges to a quantum dynamical semigroup in the low
density limit. The proof uses a perturbation series of the quantum BBGKY-
hierarchy, and the analysis of this series is based on scattering theory. The
limiting semigroup contains the full scattering cross section, but it does not
depend on the statistics of the reservoir. The dynamics of the semigroup is
discussed.

1. Introduction

In recent years there has been considerable progress in the rigorous derivation of
the Boltzmann equation from the microscopic dynamics of a classical many particle
system with short range forces. Using ideas of Grad [1], Lanford [2,3] proved
the convergence of the hierarchy of correlation functions for a hard sphere gas in
the Boltzmann-Grad limit for sufficiently short times. This proof was extended by
King to positive potentials of finite range [4]. The limiting dynamics preserves
factorisation of the correlation functions, and the evolution of the one particle
distribution is governed by the non-linear Boltzmann equation.

The test particle problem was studied by Spohn [5] and Lebowitz, Spohn [6].
One considers the motion of a single particle through an environment of randomly
placed, infinitely heavy scatterers (Lorentz gas). In the Boltzmann-Grad limit
successive collisions become independent and the position and velocity distribution
of the particle, when averaged over the positions of the scatterers, converges to
the solution of the linear Boltzmann equation. In fact, also multi-time correlations
converge, and the convergence holds even for a typical fixed environment [7].

The rigorous derivation of a quantum Boltzmann equation is an open problem.
Physically one expects (e.g. [8-16]) that the evolution of a quantum gas at low
density should be described by the Boltzmann equation with the classical differential
cross section replaced by the quantum mechanical cross section. The Boltzmann
distribution function should then be understood as the low density limit of the
one-particle Wigner function. On a non-rigorous level, the author regards the
derivation by Wittwer [17] as the most convincing one.
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In this paper the certainly simpler quantum mechanical test particle problem
at low density is studied. The system is taken to be an ΛMevel system and the
reservoir to be an ideal Bose or Fermi gas. The total Hamiltonian is then formally
given by

H = Hs®ί +Jl(S}HB + Hl9 (1.1)
N

where Hs = Σ ωn | n) < n | is the Hamiltonian of the system and HB =

§d3k k2β a+(k)a(k) is the free Hamiltonian of the bath. The interaction is of the

form Hj = Q®Σaj #+(/jM/j), where Q is a self adjoint operator of the system

and Σaj a+(fj)a(fj) describes the scattering of the bath particles. This form of the
jj

interaction implies that no particles are created or annihilated. It will be proved that,
in the limit, when the particle density of the reservoir converges to zero and time is
appropriately speeded up, such that the collision rate stays constant, the reduced
dynamics converges to a quantum dynamical semigroup.

Since the interaction between gas particles and the JV-level system is strong,
the dynamical semigroup involves the full differential cross section. Let Tnn{k, k')
denote the matrix element {nk\T\nfkf} of the T matrix for the scattering process
of one reservoir particle with the system. For ωeSp(Ls), where Ls- = [Hs, •] denotes
the Liouvillian of the system, one defines Tω(k,k')= Σ Tmn(k,k')\m}(n\.

ω w — ωn = ω

At low density the rescaled particle density of reservoir particles with momentum
k is R°(k) = n(2π/β)3/2e~βk2/2, where n is the rescaled density and β the inverse
temperature. The dissipative part of the generator of the limiting semigroup may
be written in the form

K#

Dp = 2π Σ ί dk J dk δ(kf2/2 - k2β + ω)R°(k)
ωeSp(Ls)

•{TJkf, k)pT*(kf, k) - i(Γ*(fc', k)Tω(k\ k)p

(1.2)

The equation of motion formed with the generator (1.2) is a fully quantum
mechanical generalisation of the classical linear Boltzmann equation. Note, as
expected, any information on the statistics of the gas is lost, and R°(k) is simply
the Maxwell distribution.

A preliminary analysis of the problem considered was given by Palmer [18].
However, Palmer truncated the interaction and, in the limit, obtained a semigroup
which contains only the second Born approximation instead of the full scattering
cross section.

The methods used in this paper are completely different from those used in
the analysis of the weak and singular coupling limits based on the Dyson series
[19-22]. Here the starting point is the quantum BBGKY-hierarchy and its
associated perturbation series. The analysis of this series is based on multiparticle
scattering theory.

The limiting semigroup differs in two respects from the semigroup obtained in
the weak coupling limit. Clearly, in the weak coupling limit the scattering cross
section appears only in its Born approximation, reflecting the fact that the
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interaction becomes weak in the limit. In the low density limit all information on
the reservoir statistics is lost, whereas in the weak coupling limit some information
on the reservoir statistics is retained in the two point correlation function of the
reservoir.

A quantum Boltzmann equation should also be obtained in the weak coupling
limit of an interacting quantum gas. Here one expects a similar structure. The
equation will contain the differential cross section in the Born approximation and
a quartic collision term giving information on the statistics. Hugenholtz considered
recently the weak coupling limit for a Fermi gas on the lattice [23]. He succeeded
in identifying the terms of the Dyson series contributing at weak coupling, however,
without proving the convergence of the series. In the limit the set of quasi-free
translation invariant states is preserved by the dynamics, and the time evolution
of the two point function is governed by the quantum Boltzmann equation.

For a classical system one obtains the Landau equation in the weak coupling
limit, which describes a diffusion process. In contrast, the Boltzmann equation
describes a jump process in momentum space. This reflects the wave nature of
quantum scattering. For a weak potential in most scattering events the particle is
not deflected at all, but when it is eventually scattered, there is a finite probability
for a large angle deflection.

The paper is organized as follows. In Sect. 2 the dynamics of the system is
defined in the algebraic framework of quantum statistical mechanics, and the main
theorem of this paper is stated. In Sect. 3 the perturbation series for the
BBGKY-hierarchy is introduced. First the equivalence of the unitary dynamics in
Fock space with the dynamics given by the BBGKY-hierarchy equations for a
reservoir in a finite volume is proved. Then the infinite volume limit is performed,
thereby proving the equivalence of the dynamics defined in Sect. 2 with the time
evolution given by the perturbation series of the BBGKY-hierarchy. Section 4
introduces the scaling for the low density limit and outlines the strategy of the
proof. The proof is presented in Sect. 5. In Sect. 5.1 some auxiliary results are
proved. In Sects. 5.2 and 5.3 the theorem is proved in two steps. In the first step
an intermediate approximation is established, where the reservoir statistics is still
retained. In the second step it is proved that the contributions from the statistics
vanish in the limit. The semigroup generator obtained does not preserve positivity,
in general. In Sect. 6 an averaged generator is defined, which has the required
positivity properties. The relaxation properties of this semigroup are studied. In
Sect. 7 some modifications and generalisations of the result are discussed.

2. The Model and Results

In this section the model with Hamiltonian (1.1) is described in detail and the
infinite volume dynamics is constructed. Then the main theorem of this paper is
stated. The analysis is carried through for a Fermi gas. The modifications to be
made for a Bose gas are discussed in Sect. 7.

For a Hubert space J-f let J^(^f) denote the Banach space of bounded operators
on ^f with norm || || and &~(3tf) the Banach space of trace class operators with
norm II L .
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The Hubert space J f s of the system is assumed to be finite dimensional. The
single particle space of the reservoir is J^e = L2((R3). The system Hamiltonian
Hse&(J4?s) is self adjoint. The bath Hamiltonian is formally given by HB = §d3k
k2β a+(k)a(k), where a+(k) and a(k) denote Fermion creation and annihilation
operators of momentum k. The interaction Hamiltonian is given by HI = Q®F,
where Qe^(J^s) is self adjoint and F = YJ0ίia

+(fi)a(fi). {/J is an orthonormal
i

system on Jf e and αfelR, £ |αf| < oo. HI preserves the particle number of the bath,
i

and therefore the bath particles are only scattered and not created or destroyed. The
interaction is a generalisation of the interaction used by Da vies [19] in the analysis
of the weak coupling limit and of the interaction used by Palmer [18] in the
treatment of the low density limit.

The Hamiltonian for the coupled motion of the system and one bath particle is

(2.1)

on the Hubert space J f s ( x ) J f e Ή e = —1/24 is the Hamiltonian for the free
evolution of one bath particle and A = ]Γ αj/j > < ft \. A is in the trace class of Jtf*e and

from dim jfs < oo follows Q ®Ae2Γ(#es <g) J^e). Let H0 = Hs (x) H + H <g) He denote
the free Hamiltonian. From Kato-Birman theory [24] follows the completeness of
the scattering system (HQ^H^). For the following one needs the conditions:

(E) The spectral subspace belonging to the point spectrum of H1 is finite
dimensional.

00

(F) For a dense set 9 of vectors φe@, J \\Ae~iHetφ\\ dt < oo.
— oo

These conditions will be discussed in the appendix.
The initial state of the composite system is ω = ωp (x) ωηβ. ωp( ) = tr p is a state

of the system determined by an arbitrary state operator pe^~(J^s\ p ^ 0, trp = 1.
ωHfβ is the thermal equilibrium state of the bath with particle density n and inverse
temperature β with respect to the free dynamics.

The dynamics of the infinite system is defined in the algebraic framework of
quantum statistical mechanics by an automorphism group on the algebra of quasi-
local observables. Let s/s = &(^s) be the algebra of bounded observables of the
system and srfB = CAR(Jίfe) the algebra of the canonical anticommutation relations
over J^f e. The algebra of the composite system is s/ = stfs ® stfB. The automorphism
group αo(ί) of the free evolution is defined by the relation

oco(t)X®a+(f) = em^Xe'H^®a+{em'tf). (2.2)

Lj* = [Hl9 •] is a bounded derivation on s/. Therefore the interacting dynamics α(ί)
corresponding to the formal Hamiltonian (1.1) may be obtained by the Dyson series

•• Σ in J dt1...dtnoc0(t — tn)LI...LIot0(t1)Y (2.3)

for all Yesί. The series converges in norm for all t Ξg 0. For ί < 0 one puts α(ί) =

Expectation values of system observables are completely determined by the
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reduced dynamics t f—>T(ί), which is implicitly defined by the relation txXT(t)p =
ω{a(t)X (x) ί) for all Xe^(^s).

The scaling for the low density limit is as follows. The particle density of the
reservoir is scaled as nε = εn. For small ε, collisions of bath particles with the system
become very infrequent. To obtain a non-trivial limit, time is rescaled such that the
collision rate is kept constant. As the mean free path is (σnε)~ \ where σ denotes the
total scattering cross section, one should scale time as tε = ε~ 1ί. The scaled reduced
dynamics is determined by the relation

tτXTε(t)p = ωp®ωna{a{ε~H)X® ί) (2.4)

for all Xea(JPs).
In addition to the dissipative part (1.2) the generator of the asymptotic

semigroup has also a Hamiltonian part, and the total generator reads

K»p=-ί\ Σ \dkR\k){Tnn{kk) + Tm,(k,k))\n><nlp] + K#

Dp. (2.5)

The asymptotic semigroup is given by T{*(t) = exp(— zε" 1 !^ + K% where L s =
[i/ s , ] denotes the system Liouvillian.

The main result of this paper is

Theorem 2.1. Assume that (E) and (F) hold. Then there is a finite time T ̂  0, such
that for ie[0,T)

\im\\Tlt)p-T«{t)p\\ι=Q (2-6)
elO

holds for all pe3Γ(^s).
To prove the theorem, the series representation (2.3) of the dynamics is not

appropriate. Instead of (2.3) a perturbation series of the BBGKY-hierarchy is used.
The limitation ίe[0, T) comes from the limited radius of convergence of this
perturbation series, and is probably an artefact of the method used. The relevance of
the restrictions of the particular model are discussed in Sect. 7, where also some
possible generalisations are indicated.

3. The Quantum BBGKY-Hierarchy

3Λ. BBGKY-Hierarchy on Fock Space

The series (2.3) is not suitable to perform the low density limit. Therefore one
introduces reduced density matrices, for which the time evolution is expressed by
a perturbation series for the BBGKY-hierarchy. It is convenient to perform the
necessary manipulations for states on Fock space. In the next subsection the
thermodynamic limit is taken. In this section quantities are not scaled. The scaled
objects are introduced in Sect. 4.

The joint Hubert space of the system and n bath particles is denoted by
n

jff n = j f s(x) (x) j»f e and the subspace of ̂ f w, which is totally antisymmetric in the
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bath components, by (Jf n) _ = J f s (x) I (X) J f e j . For π e S(n), where S(n) is the group

of permutations of n elements, one defines the unitary operator Uπ: J^n^J^fn by

Uπf0® Λ ® ' ' ' ® /„ = /o ® /π(i)® ' ' ' ® /π(«) For 0e(jf„)_ holds t/πφ = sgnπφ.
00

The Fock space of the total system is denoted by J^ = © ffln)-
n = 0

Let pe$~(!F) be a state operator commuting with the number operator N. Then
p may be represented in the form

P=®Pn (3-1)
n = 0

with p n e ^ ( ( J f „)_), £ llPnlli = 1. The reduced density matrices Rn, n = 0,1,2,...,
n = 0

are implicitly defined by the relation

Qn> Rnfo ® / i ® *'' ® / J . (3.2)

Using the representation (3.1) one obtains the well known expression [25]

00

* « = Σ (n + m)l/mltr[n+l,n + m]Pn + m (3-3)
m = 0

In this formula pn+m is regarded as an operator on J^n + m with pn+m\j/ = Q for
ιj/e(J^n+rn)

JL. Then t r [ M + l n + m ] denotes the partial trace over the components
n + l , . . . , n + m of f̂Π+m, and no problems arise because of the antisymmetri-
sation.

The sum in (3.3) converges, if the following condition holds:
(A) There is 0 < q < 1 and C > 0 such that | |p n | | 1 < Cqn for all neN.

Lemma 3.1. // (A) holds Rn, neN, is a bounded operator on Hn and the estimate

ΪMΓ=Ϊ) (3 4)

holds for all neN.

Proof. U s i n g | | t r [ n + l j M + m ] p w + m | | ^ | | t r [ Π + 1 , ; ί + m ] p n + m | | 1 ^ \\pH+m\\l9 o n e o b t a i n s
from (3.3) t h e b o u n d

P U ^ Σ ^ ^ C « - + » . (3.5)
m = 0 Wl!

For 0 < q < 1 the right-hand side is convergent. This proves the boundedness of
Rn. Evaluating the right-hand side of (3.5) one obtains the bound (3.4). [x]

Let HBj = ί (χ)H (x) •••(8)Jϊβ® •• ®1 denote the free Hamiltonian of t h e / h

bath particle. The Hamiltonian of the interaction of the j t h bath particle with the
system is H^ = β ® H ® # ®^4®' ®H. The total Hamiltonian on p f „)_ is

Hn = Hs+ Σ(HBj + Hij)> (3-6)
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where, for simplicity of notation, the continuation of Hs on j ^ n is also denoted by

Hs. The time evolution of ρm is given by

pJt) = e-iH>»tpne
iH>*. (3.7)

If (A) holds, the reduced density matrix at time t is the bounded operator

(ft f
RnW= Σ L J τ ± t r [ π + i , , , + m ] P , 1 + m ( ί ) - (3.8)

m = 0 Wi-

lt will be proved that the reduced density matrices satisfy the integral equations

Rn{t) = UJtt)Rn(O) + J ds Un(t - s)Cnn + 1 R n + M
o

where n = 0,1,2,. . . , (3.9)

and

Cnn+l^n+l ~ ~~ l^n + \[flln + 1 •> &n+ lJ

t r n + 1 denotes the partial trace over the n + 1 t h component of J^n+1. The differen-

tial form of (3.9) is

i~Rn(t)==LHn,Rn(t)l + K+ilHIn + uRn+il (3.10)

This is the quantum analogue of the classical BBGKY-hierarchy equations. To

avoid domain problems with the unbounded operators Hn, neN, it is convenient to

work with the integral equation (3.9) instead of (3.10).

Lemma 3.2. Cnn + ί is a bounded operator from J * (J f M + 1 ) in ^(J^n) with the bound

I I Q n + i l l ^ i i β i i M i i ! .

Proof. One defines C n n + 1 # π + 1 by the relation

for all Xne$~(jfn). F r o m the estimate

follows the boundedness of Cnn+ί and the bound stated. [x]

Theorem 3.3. On condition (A) the integral equation (3.9) holds.

n + m

Proof. One writes Hn+m = H°n+m + Hi+m, where H°n+m = Hn+ £ H w > and

Hn+m = Σ ^ / r Considering H*+m as a perturbation in the Liouville equation,

j = n+ί
Jή = [Hn+m9pn+m(t)']9 one obtains the integral equation,
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pn+m(t) = U°n+m(t)pn+m(O) - i\dsU°n+m(t - s)[frB

1

+ m,p I I + m(s)], (3.11)

where t/J+ m(ί) = e~ίH°n+mt eiH»+J. The partial trace of (3.11) gives

t r[« + 1 ,n + m]Pn + mW = Un(^[n +l,n + m]Pn + mΦ)

\ m,pn+m(s)l (3.12)

n + m

Using the fact that Hn commutes with ]Γ HBj9 and that the latter operator acts
j = n+l

only on the components n + 1,..., n + m, one obtains the identity

Exploiting the symmetry of pn+m(s\ one gets from (3.12)

t r [n + 1 ,n + m]Pn + m(0 = ί/nW t r[« + 1 ,n + m]Pn + m(°)

+ m]ds Un(t - s)Cnn+1 tr[n+2,n+m]pn+m(s) (3.13)
o

Equation (3.9) follows by inserting (3.13) in (3.8). [x]
The integral equation (3.9) may be iterated and leads to a perturbation series

for Rn(t). The following theorem shows that Rn(t) is indeed represented by the
perturbation series for short times.

To simplify the notation of the integrals, one uses the abbreviations Δ(t9 n, t'): =

Theorem 3.4. Assume that (A) holds. For ί e [ 0 , T ) with T = (l -q)/(2q\\Q\\ \\A\\±)9

the series

Σ ί Λ ζ / n ( ί - ί 1 ) C B Π + 1 . . . C n + m _ l π + m ζ / n + m ( t m R + m ( O ) (3.14)
m = 0 A(O,m,t)

converges in norm to Rn(t).

Proof. The m th term of the series has the bound

I dt... ύ

tl{2\\Q\\\\A\\ir^{n + m)\(-^An+m =:Bm.
Δ(O,m,t) ^ ' 1 — ^ \^—Q/

The series YJBm converges if 2||Q|| 11̂ 411̂ (̂ /1 — q)^ 1, which proves the conver-
m

gence of (3.14).
The fc-fold iteration of (3.9) leads to

Rn(t)= Σ ί Λ ζ / Λ ( ί - ί 0 C n n + 1 . . . C B + M . l Λ + m t / l l + m ( ί J Λ l
m = 0 Δ(0,m,t)

+ S dtUn(t-h)Cnn+ί...Cn+kn+k+1Rn+k+1(tk+ι).
Δ(O,k+l,t)
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To conclude the proof of the theorem one has to show
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lim
fe^oo

J dtUn{t — t1)Cnn+ί...Cn+kn+k+1Rn+k+1(tk+1)
Δ(O,k+l,t)

= 0.

From the bound (3.4) for Rn+k+ί(t), one obtains

f dtUn(t-tί)Cnn+1...Cn+kn+k+1Rn+k+ί(tk+1)
Δ(O,k+ί,t)

tk+1
t + 1 - ^ - ( n + fc + l)lf q n + k+1

l - ί v V~4,

For fc -• oo the right-hand side converges to zero. [x]

3.2. Thermodynamic Limit of the BBGKY-Hierarchy

Let A be a bounded region in K3 and ω Λ = ωp (x) ω ^ , where ω£β is the equilibrium
state for a Fermi system with density n and temperature β~1 in the volume /ί with
respect to the free dynamics with Dirichlet boundary conditions. For A j" U3 the
Fock states ωΛ converge to the initial state ω = ωp®ωnfβ.

In Lemma 3.6 it is shown that ωΛ satisfies the following improvement of
condition (A):

(Ao) For all 0 < q < 1 there is a C > 0 such that \\ρ£ \\λ ̂  Cqn for all neN.
The following two conditions are imposed on the reduced density matrices Rn of
ωttβ-

(B) There are constants a > 0 and C1 > 0 such that for all nef̂ J and all bounded
A a U3 || K J S C{n\ an holds.

(C) For all Ae^(J^n) lim tr jPnAR^ = tr^

Theorem 3.5. Assume that (Ao), (B) and (C) hold. Then for te[O,T) with T =

(3.15)

where

Rn(t)= Σ ί <kUn(t-t1)Cnn + ί...Cn+m_ln+mUn+m(tm)Rn+m. (3.16)
m = 0 4(0,m,ί)

Proof. From Theorem 3.4 one knows that

ωΛ(a(t){\fo><go\®a+(fn)---a+(fM9i). -a(gn)})

(3-17)

where

Λί(ί)= Σ ί dtUn(t-t1)Cnn+1...Cn+m^ln+mUn+m(tm)Rt+m- (3-18)
m = 0 Δ(0,m,t)

(Ao) implies the convergence of (3.18) for all ί > 0. ωΛ converges to ω in the weak-*
topology. Therefore the left-hand side of (3.17) converges to the left-hand side of
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(3.15) for A ΐ U3. To prove the theorem it is sufficient to show the convergence of
R*(t) to jRΛ(ί) in the weak-* topology of βt(βte„). The convergence of the series (3.18)
to the series (3.16) is proved, if one finds a majorant for (3.18) uniformly in/1, and if
each term of the series converges. ^

From condition (B) one obtains the majorant Σ ( ί m/m !)( 2 l lβ| | Mll iΓ
m = 0

C^n + nήl an+m, which converges for 2||Q|| | |>4||1at< 1. Weak-* convergence is

denoted by Λ. R?$Rn implies Un(t)R*^Un(t)Rn. From the identity

(ψ,Cnn+1(RΪ+i-Rn+i)Φ)=-ίte[o,n + i]l\ΦXΨ\®ϊ, HIn + 1](Rf+1 - Rn+1) and

the fact that UΦXΨ\®1l,HIn+l]e&'(J#'n + l)9 one concludes that R*+ί±>Rn + 1

implies Cnn + ίR*+1^Cnn+1Rn + 1. One obtains thus the pointwise convergence of

the integrand in each term of (3.18). The convergence of the integral follows by

dominated convergence. [x]

The following lemma shows that the conditions (Ao), (B) and (C) hold for the

initial states ωΛ = ωp®cθn,β-

Lemma 3.6. ωΛ satisfies (Ao). The reduced density matrices are given by

R* = p® £ sgnπUπR
Λ®- ®RΛ, (3.19)

πeS(n)

where

RΛ=(exp(β(HΪ-μ))+lΓK (3.20)

H*\L2{Λ) denotes the operator — 1/2 A on A with Dirίchlet boundary condition and
He\L2{R3\Λ) = ° ( B ) h o l d s w ί t h a = 1 - ( Q h o l d s a n d

K = P® Σ sgnπt/πjR® (8)Λ, (3.21)
πeS(n)

where

μ)) + iy1. (3.22)

Proof. To prove Ao it is sufficient to look at the bath component. The grand
canonical partition function ZΛ(β,μ) = tr exp(— β(HΛ — μN)) is finite for all chem-
ical potentials μ, and therefore for all α > 0,

<e"N)β,μ,Λ = ZΛ(β,μ + β-ιa)IZΛ{β,μ)< » .

00

As <eαiV>0,μ,Λ = Σ ^WP^μnWi a n ( l the series is convergent, there is a C > 0 such
n = 0

that \\pfiμ n\\iύ Ce~m. As α is arbitrary, one obtains an estimate of this kind for all
q = e-«e(0,l).

The explicit representations for JR^ and Rn are obtained from the well known
formula

for quasi-free states, where 0 ̂  R S 1 is the defining operator. Using the explicit
formulas for R* and Rn, it is straightforward to verify that (B) and (C) hold, [x]
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4. The Low Density Limit

In this section the scaling for the low density limit is introduced. Instead of rescaling
time as tε = ε~1t, one may alternatively rescale the Hamiltonian as Hε =
ε~1(Hs(g)ί + D ®HB + Hj). This point of view is taken in the following.

The reduced density matrices of the scaled initial state ωE = ωp® coεrltβ are

= p(g) Σ sgnπUπR
ε®' '(g)R\ (4.1)

πeS(n)

Qxp(β(He —
the relation

S(n)

where Rε = (Qxp(β(He — με)) + I ) " 1 . The chemical potential με is determined by

The scaled reduced density matrix at the rescaled time is denoted by Rε

n(t). It
is given by the perturbation series

00

«;(«)= Σ «"" ί dtut,(t-t1)cnn+1uuΛt1-t2)
m = 0 zl(0,m,ί)

where Uε

n(t) = Un(ε~ xή. For n = 0 one obtains the reduced dynamics of the system:
Tε(t)p = Rε

0(t).

As in the weak coupling problem [20], Theorem 2.1 is proved in two steps.
In the first step Rε

0(t) is approximated by exp{(— iε~1Ls +K)t}p. The generator
— is~1Ls-\-K will not preserve positivity, in general, and therefore an averaged
generator K# is introduced in a second approximation, which leads to a quantum
dynamical semigroup in the sense of Lindblad [26]. In this section the first ap-
proximation is formulated (Theorem 4.1), and the strategy of the proof is outlined.
The details of the proof are given in Sect. 5. This approximation involves all the
essential difficulties. The averaging procedure, which is rather standard, is
considered in Sect. 6.

The semigroup exp{(— ίε~ 1LS + K)t) is given in form of a perturbation series,

which is defined as follows. Putting Uε

On(t) = exp< —i[ Hs+ £ HBj )ε 1t>

and U\n(t) = Qxp< —ί[Hs+ ]Γ HBj + HIn )ε xt >, one obtains the scattering

I V J = I / J

operatorΩn = s — lim Uε

ίn(t)Uε

On(— ί), t > 0. The corresponding operators acting on

reduced density matrices are:

U°On(t) = UUt) U%n(-t), (4.3)

U\n(ty = U\n(t) U\n(-t), (4.4)

Ωn-=Ωn Ω*. (4.5)
With these definitions the perturbation series may be written in the form

R°o(t)= Σ ί dtUUt-t1)ColΩ1U°ol(t1-t2)...Cm_1J2mUUtJ<.
m = 0 Δ(0,m,t)

(4.6)
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The initial state is given by

where JR° = n(2π/β)3/2e~βHe. As JR° commutes with the free evolution of the bath,
(4.6) may be written equivalently as

R°o(t) = Σ ί dίUUt- tJKUUh - t2)K...KUε

s(tm)p, (4.7)
m = 0 Δ(O,m,t)

where Uε

s(t)ρ = exp(- ίHsε~1t)ρ cxpiiHsS'H) (4.8)

and X p = - ι t r 1 L / 1 ί ? 1 p ( χ ) J R 0 . (4.9)

Clearly, from (4.7) one obtains jR°(ί) = exp{(- ίε~λLs + K)ή.

Theorem 4.1. Assume that conditions (E) and (F) hold and put T =

εJO

Strategy of the Proof. First a uniform majorant will be found for the series (4.2)
(Theorem 4.3). With this the proof is reduced to studying the convergence of the
individual terms of the series. In Sect. 5 this is done in two steps. In the first step
one proves the convergence of the terms of the series for Rε

0(t) to the terms of
the series

R°o(t)= Σ ί dtUe

Oo(t-h)ColΩ1U°ol(t1-t2)...Cm-lmΩmUUtm)K°m,
m = 0 Δ(O,m,t)

(4.10)

with the initial state

R%ι = p® Σ sgnπ UπR°®- ®R°. (4.11)
πeS(m)

Here the statistics is still retained in the initial state. In the second step one proves
that the terms of the series (4.10) converge to the terms of the series (4.6). [x]

To prove the existence of a uniform majorant for the series (4.2), one needs

Lemma 4.2. Let R° = n(2π/β)3/2e-βHe. Then

limllε-^-^H^O. (4.11)

Proof. Let zε = exp(/?με). From an asymptotic expansion of the Fermi function
follows limεZg"1 = n~1(2π/βγ12. It is straightforward to show that

εjO

limsup \(z~\z^emi + I ) " 1 - n(2π/β)3/2e-βk2/2)\ = 0.

The statement of the lemma follows from an application of the spectral calculus.

m
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Theorem 4.3. For all ίe[0,Γ) with Γ = (2| |β| | ||>4||ill-R°||)""1, there is ε o > 0 , such
that the series (4.2) converges in norm for ε<εo.It has a major ant not depending on ε.

Proof. As in the proof of Theorem 3.5 one obtains the bound

\\Kit)\\ύ Σ (π + m)!/m!(2ε-1ί||β
0

The right-hand side converges for 2| |β | | \\A\\X Wε'^ψ < 1. As lim H e " 1 * ! = ||R°||,

for all ί<(2 | |β | | | | i 4 | | 1 | |R° | | ) - 1 , there is ε o > 0 , such that one has 2| |β| | x
\\A\\± x Wε'1 Rε\\t < 1 for all ε < ε0. This proves the theorem. M

5. Proof of the Theorem

5.1. Auxiliary Results

In this section some results are presented, which are used in the proof of
Theorem 4.1.

The first is a cluster theorem for n-particle scattering (cf. also [27]).
The free evolution of j bath particles is denoted by

Theorem 5.1. // τx,..., τk > 0 or τγ,..., τk < 0, then

s- limlUl(τk)UB1 (τx)... UBk.x(τ,_x) - U\k(τk)UB1 (τx)...UBk_x(τ,_,)] = 0.
ε|0

(5.1)

Proof Let τx,..., τk > 0. The proof for the second case is analogous. It is sufficient to
prove the theorem for unit product vectors Φ = φo®Φi<8)'" ®Φu Using the
perturbation formula

Ul(τk) = U\k(τk)-iε-^dsUKτ,-s)(*χ .
o \j = i

the proof is reduced to showing lim l{ = 0, where
εjO

ε " 1 J* dsUε

k(τk — s)i//j t/ε

1/c(5)t/51(τ1)... Uε

Bk-λ
o

Exploiting the product structure one obtains

"^τi + +τ^^s)}^®-

iε-^τ^-f

®exp{-f(// jBfc + Jί//fc)ε-15}
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+τk.1+s)φJ\\

= \\Q\\ \\Aejp{-iHBJs}φj\\.

oo

By condition (F) the integral J ds\\Ae~iHeSφ\\ is convergent for φe<2>. Taking

φ1,...,φkeί% one obtains lim I[ = 0. This holds also for finite linear combinations of
such product vectors, which form a dense set in J^ k. A density argument completes
the proof of the theorem. |x|

The next lemma deals with a trace class property of the tensor product
3Pk = 3Vs®3#f

e®~-®3tfe. Denote by l/fc: Jfk->jfk, Ukφ0®φ1®φ2®'-
®φk = φo®φk®φ2®'" ®Φi the unitary operator, which interchanges the
first and the kth component of the bath.

Lemma 5.2. Let ^ ) and ^. Then (Ukp®Ίik-1)Uϊ1)(X®Jl)e

Proof. It is sufficient to prove the lemma for p = \φ}(Ψ\9 \\φ\\ = \\ψ\\ = 1 and
X = |Φ>< Ψ\, \\Φ\\ = || IP|| = 1 . For general p, X one uses the polar decompositions
P = Σ(χi\Φi}(Ψί\ &n<i ^ = Σ)8/ |Φ/><!P ί |. Let (χ^ be a complete orthonormal

i ii i

system in Jts. Using the representations

1

k - ί

a straightforward calculation yields

The vectors {\Xk®Φm®Φk)\ f ° r m a n orthonormal system, therefore
2

= | |Φ m | | 2 . The estimate

1/2

Σ Σ
m \ k

1/2
|2 \ _ γ
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completes the proof of the lemma. [x]

Lemma 5.3. Let jf be a separable Hilbert space and Jf~ c 3Γ{2tf) a compact set. Let
H be a self adjoint operator on 34? with purely absolutely continuous spectrum and
denote by U(t) = exp(— ίHt) the unitary group generated by H. Then

limsup|trp[/(ί)|=O.

Proof. The spectral theorem implies the weak convergence of U(t) to zero. On
bounded sets weak convergence and ultraweak convergence coincide. Therefore
the boundedness of {U(t)\teU} implies limtrρU(t) = 0 for all

ί

Choose ε > 0 . There are p l 5 . . . , p f c e ^ r p f ) such that the balls {p| | |p — p j i ^
ε} cover Jf. Choose t0 such that for all t^t0 |trpjC7(i)| ^ ε for all j= l,...,/c.
The estimate \tτpU(t)\ ^ \\p -pjh + |tr PjU(t)\ g 2 ε for all t^t0 shows that
the convergence is indeed uniform on compact sets. •

5.2. An Intermediate Approximation

The first step in the proof of Theorem 4.1 is to show that Rε

0{t) approximates
R%(ή given by the series (4.10).

Theorem 5.4. For ί e [0 ,T) with T = (2| |Q| | Ml l iHΛ 0 ! ! ) " 1 holds

e|0

Proof. As d i m j f ?

5 < o o , it is sufficient to prove \imtvsX(Rε

0{ή-R%{i)) = 0 for
40

all Xe&'ffls). From Theorem 4.3 one obtains a uniform majorant of the series
(4.2), and therefore the theorem is proved if for all meN

l i m t r s X { ε - - J dtTJεo(t- tl)C01 ...Cm-ίntU*m(tm)Rε

m (5.2)
ε|0 Δ(0,m,t)

- J dίϋho(t-ti)CoiQiUΌ1(t1-t2)...Cm-1J3mUMtjRZ} = 0.
Δ(0.m.t)

Using Lemma 4.2 one obtains immediately lim||ε~mjR^ — JR° | | = 0 . The
ε->-0

estimate

f dLU°0(t - tJC
Δ(0,m,t)

shows that it is sufficient to prove

lim J i t t r s X { C / ε

o ( ί - ί 1 ) C o l . . . C m _ l m ζ / ε

m ( ί m ) ^ ° (5.3)
e|0 Λ(0,m,t)

- u°00(t - t^Co^u^ih - h)... Qm^mQmυijtm)Rl} = o.

By a straightforward estimate one sees that the proof of (5.3) may be reduced to
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prove

lim J Λ.tr
40 Δ(O,m,t)

'"Ck-lkLUl(tk — tk+ί) — QkU
ε

Ok(tk — ίfe+i)]Cfe

'm + Λh+1-tk+2)...Cm-lmU'm(tjK°ι}=0 (5.4)

for k= l,...,m. Denote by Pke&(3^k) the projection on the subspace associated
to the continuous spectrum of Hs + HBk + if/fc, and put Pk = Pk Pk.

Equation (5.4) is proved in three steps:

lim J <htrsX{Uεoo(t-tί)ColΩ1U
ε

Oί(tί-t2)...
40 Λ(O,m,t)

Step 1.

- - £k-ik[.uε

k(tk — tk+1) — u\k(tk — tk

•m+Λtn.i-tk+2)-Cm-ίmu*m(tjRl} = o. (5.5)

Step 2.

lim I Λ.trsA-{yj0(t-ί1)COiβit/ oi(ίi-t2)
40 ά(O,m,t)

•m+1(tk+1-tk+2)...Cm-lmU°m(tm)R°m}=0, (5.6)

Step 3.

lim J ΛtrsA-{£/ιoo(t-ti)CoiβiCfti(ti-t2)...

βjO ^4(0,m,ί)

•..Q-i f c [t/ ε i f c (ί f c -ί f c + 1 )P f c -e k ζ/ ε

O f c (ί f e -ί f e + i )]

•&k + 1t/ί + 1(ίJk + 1 - ί k + 2 ) . . .C m _ l w l / i ( ίJ jB!Si} = 0. (5.7)

In the first step the fully interacting /c-particle dynamics Uk is replaced by the
time evolution U\k9 where only the fcth bath particle interacts with the system.
The second step shows that in the limit there is no contribution from bound states.
Finally, in the third step the time evolution JJ\k is replaced by the free time
evolution and the scattering operator.
Step 1 of the proof. One proves the convergence of the integrand for 0 < tm < - <
tγ < t. By the boundedness of the integrand, the convergence of the integral follows
from the dominated convergence theorem. One defines Yk(t!k) = Ckk +1

m+i(h+i-tk+2).''Cm-lmUtitm)R0

m, where ίi = ( ί k + 1 , . . . , ί j . Putting U%k{t) =
Uε

oo(t)Uε

Bk(t) and using the fact that Uε

Bk(ή commutes with Cj-lj and
Ωj for j > fe, one obtains

Ek = tvsXUε

00(t - tί)COίΩ1 UUt, -12)... Ck.lkUl(h - tk+ί)Yl(t'k)

= tτsXUε

00(t - tJQo^UMh -t2)~ Ck-lkU
ε

B1(ti - t2)Uε

B2(t2 - ί 3 ). . .

... K * - ife-1 - h)Ul(tk - tk+ί)Yε

k(t'k).
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One puts Ωf' = ΩfΏj and passes to the Heisenberg picture by repeated
cyclic permutation under the trace:

Ek = ik tr^m(tk + ί - tk)Uε

Bk.±(tk - tk_ ±)... Uε

B1(t2 - t±)

'LIkU
ε

00(tk — tk-1)Ωk_ίLIk-ί... Uε

00(t2 — tί)Ωί

In order to finish step 1 of the proof it is sufficient to show

βJO

where

For fixed Xke^{J^k) instead of Xε

k(tk) this follows from Theorem 5.1. By
an ε/2-argument this property holds uniformly for Xk on compact sets of
Therefore, if one can verify

(1) forβ>0 Xj

(2) {X^(ίfe)|εe(0,1]} is compact in

the proof of step 1 is completed. These two properties are proven inductively.
First one notes that X e ^ p f s ) = 3Γ{^0\ and therefore also Uooi^i — t)Xs

3Γ(^Q). As AeF{JPe) one obtains X\{t1) = [_Q®A, Uε

oo(tί-t)X®t]e3r(3tf?

1).
Assume X\(tk)e^\^ek). From the boundedness of Ωk follows QlXk{tk)e^{^e^.
The same arguments as for fc = 0 show that Xε

k+1(tk+ί)e^~(J^k+ί). This
proves (1).

To prove (2) one notes that the set W(Jfs) = {Ue@(3>ίfs)\U*U = UU* = 1}
of unitary operators in J^s is compact, which follows from dim^f 5< oo. Let
<Tkc= ?Γ{Jfk) be compact. From the joint continuity of the maps (U,Xk)\->
U®tXk and (U,Xk)^XkU®l as maps from ^(jes)(S)^r(jek) to ^(J^k)
follows the compactness of {U®1Xk\UeW(Jtrs)9 Xke3Γk) and {XkU®ί\Όe
^(J^sl XkeJίfk}. The map ^{^k)^^{^k+1) Xk\->LIk+ίXk®ί is also
continuous, therefore {LIk + ίXk®ί \Xke3~k} is compact in ^ p f f c + 1 ) .
Finally the map Xk\-^Ω%Xk is continuous as a map on 3Γ{^fk) and consequently
{Ω%Xk\Xke^~k} is compact. Using these properties it is easy to prove (2)
by induction.

Step 2 of the proof. Using the definition of Gjj+1, the formula
UB

Ok-1(tk.1 - tk)trk- = tvkU
ε

Ok{tk.1 - tk) and the identity

-ί
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one writes (5.6) in the form

lim εjdt1...dtk_1dtk + 1... dtm

•thiUUh-! - h) - UUh-1 - h))(ί - Pk)Ckk+1

m+i(tk+i-tk+2) - Cm-lmU JίtjR°}=0. (5.8)

It is sufficient that the integrand is bounded by some constant C. Then the absolute
value of the integral is bounded by ίm~7(m— 1) C and therefore the left-hand
side of (5.8) converges to zero.

The integrand may be written in the form

ti>k{(1 - Pk)(U\k(tk ~ h-1) - mk(tk - ίfc

UUh ~ h)U%2{t2 -13)... ΨBk-2{h-2

£ f t i ( ί i - ί 2 ) ί / i 2 ^ is uniformly bounded

in ε. Therefore it is sufficient to prove that

(i - EkWUh - h-x) - uε

Ok(tk - tk_ j j ί f l .±xι_,(ί f c-x))® 11 e ^ ( ^ f c ) ,

and that this expression is uniformly bounded in ε.
To prove this, condition (E) is used. P± = H — px is the projection on the

eigenstates of Hv Condition (E) is equivalent to \\P±\\± < oo.
The required estimates are proven separately for

(1 -f*)ί/ΐ*(ί*-ί*-i)(βf-i^ί-i(ί*-i))®1l (5.9)

and

Defining £/ε

2fc(ί) = exp{- ϊ(H s + flΛ + HIk)z~H} and ψ2k{ty = U*2k(tyU£

2k(-1),

one obtains U\k(ή= U^iήU^.^t). As Uε

2k(t) and (1 -Pk) commute, the identity

ii (i - p k)u\k(tk - h-iWt- ixi-iik-i)) ® i ii i

for (5.9) follows. Xl-1{tk)=UBk.1{tk--tk_1)Qt-1Xl-1{tk-1) is in
and there is a constant C2 such that for all ε > 0 ||X^_ x(ίfc) || x ^ C 2.

Let X e ^ J f k_ t). Using the permutation operator Uk9 one may write ί — Pk =
UkP^ί^-^Uj,. With the identity (ί -Pk)(X®t) = PkX®t(l -Pk) +
(l-Pk)X®i, the estimate

(5.11)

follows from Lemma 5.2. In particular one obtains for (5.9) the estimate
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To estimate (5.10) one notes that Uεok{h-h-iWk-i^k-i(tk-i))® H =
(LΓojk- i(ίjt — ίjt- i)Λ*- i-3Γ|- i(£jk-1)) ® H, and obtains with (5.11)

The right-hand side of this inequality is bounded in ε.

Step 3 of the proof. Again it is sufficient to prove the convergence of the integrand.
As Pk commutes with ζ/ife(ίfc — ίfc-iX Λ e integrand of (5.7) may be written
as

- tk)Ek - Ωί)xi

. (5.12)

The existence and completeness of the wave operators implies s — lim(Uε

Ok(tk) x
40

U\k{— t)Pk — βjf) = 0 for t > 0. The compactness argument used in step 1 of the
proof shows that

lim \\(mk(tk-tk + 1)U\k(tk+1 -tJPt-QdXifώh =0.

Furthermore \\Uε

Bί(tί — t2)^.Uε

Bk-1(tk-1 — tk)Yl(t'k)\\ is bounded uniformly in ε.
Therefore (5.12) converges to zero in the limit εJ,O. [x]

5.3. Contribution of the Statistics

To complete the proof of Theorem 4.1 it remains to show that in the limit εJ,0
the contribution from the exchange terms in RQ vanishes.

Theorem 5.5. For £e[0,Y) with T = (2| |β | | MHi Hi^0!!)"1 holds

lim\\R°o(t)-ROo(t)h=0.
ejO

Proof. Using the series (4.6) and (4.10) for Rg(t) and jRίg(t), one sees that it is
sufficient to prove for all nef\J and all non-trivial permutations πeS(m\ π φ id,

lim J dtlVsXUUt-tJC^Q.XJ^it.-tz)...
40 Δ(0,m,t)

...Cm-ίmΩmUε

Om(tm)p®UπR°<g) -®Ro = 0.

One proves that the integrand converges to zero almost everywhere. Taking into
account the boundedness of the integral, the result follows from the theorem on
dominated convergence.

The integrand may be written in the form

ΓJU = ti>w[ζ/ εoo(- tJΩ*X'JtJWBi(ti -h)... £/JM-i(ί»-i - O

'UBm(tm)(Uπp®R0®- ®R0).

Using the invariance of .R0 under the free evolution one obtains

ΓJtJ = ̂ SUεoo( ~ tm)QtXε

m(tm)-]p ®R°®' ®R° UπVm(tm),
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where VJtm) = U~' U^t, - t2)... U%JfJVπUBm(-tm)... UB1(t2 - tή. A
straightforward calculation gives F w ( ίJ = e x p ( - is γHnJtm)\ where HπJtm) =

j 1

If π ^ i d , then ff£,(£m)^0 on a set of full measure in Δ(0,m, t). As all HBp

j= l , . . .,m have purely absolutely continuous spectrum, HUtm) has also purely
absolutely continuous spectrum when it does not vanish. By the methods used in
step 1 of the proof of Theorem 5.4, one proves the compactness of

in ^~(j4?m). From Lemma 5.3 follows lim/^(ίw) = 0 for all tm for which

6. The Averaged Generator

According to Theorem 4.1 the reduced dynamics is approximated by the semigroup
T^(ί) = exp{(— iε~1Ls + K)t}, where the dissipative part of the generator is
given by

Kp= -iiViL^QiP^R0. (6.1)

In general, K will not be of the canonical form given by Lindblad, and therefore
T°(ί) will not be a quantum dynamical semigroup. However, as in the weak
coupling case [20}, the semigroup Γf (ί) = exp{(~ iε~ 1LS + K#)ή formed with the
averaged generator

1 τ

K#= lim — f dtexp(—iLst)Kexp(iLst) (6.2)
τ->oo 2 π -T

is a candidate for a quantum dynamical semigroup. The discreteness of the spectrum
of Hs implies the existence of the limit in (6.2). The following approximation
theorem holds:

Theorem 6.1. For allt^O and all

lim sup | |7t(s)p-T?(5)p||1=0.

Tf is a quantum dynamical semigroup.

Proof. The first part of the theorem is Theorem 1.4 of [20]. From Theorem 4.1
one has

lim llexpίiε-^ίjΛSίO-expίiε-^ίjTtίOplli =0
40

for sufficiently small t. Rε

0(t) is the reduced dynamics of a Hamiltonian time
evolution, therefore p-+Qxp{iε~1Lst}Rε

0(ή is the dual of a completely positive
map. As [ L 5 , X # ] = 0 , e x p ΐ z ε " 1 ! ^ } ! ^ ) has the weak limit explz'ε"1!^}-

= Qxp{K#t}p. Therefore exp{X#ί} is also the dual of a completely
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positive map, and consequently T*(t) = exp{ — iε~1Lst}exp{K#t} is a
quantum dynamical semigroup. [x]

Using the spectral representation Hs = Yιωn\n}{n\ of the system Hamiltonian,
n

one forms the operators Pmn = |m><>|, which are the eigenvectors of the system

Liouvillian Ls. The operators T = HI1Ω1 and X = Ωί — ί may be represented

a s T = Σ P T X Σ P

Lemma 6.2. The averaged generator is given explicitly by

where

= Σ cmnm,n,PmnPPn,m, + B«p + pB«*, (6.3)
m,n,m',n'

(6.4)

and

B*=-i X Pnn.tτR°Tm,. (6.5)

Proof. (6.1) may be written in the form

Kp = tr x [ - iTp <g> R°X* + Xp® R°(iT*)] + tr 2 [ - iTp ®R° + p® R°{iT*)-\.

Using the product representations of T and X, one obtains Kp = Kίp + K2p,
h K i £ P P t(T^°X* X^°T*) d Xwhere KlP = - i £ P ^ P ^ tr(T m ^°X*, n , - X m ^°T*, π , ) and

Bp + PB*, B=~ i^PmntrR°Tmn. Applying

mn

1 Γ

l i m — j dtQxp{-iHst)Pmnexp{ίHst)pexip(-iHst)Pn,m,exp{iHst)

^ c o m — ω M »ω m r — ωn> mnr *• m'n'i

and

1 Γ

l i m — J dtQxp{-iHst)PmnQxp(ίHst) = δωm>ωnPmn,
T-> oo Z i — j 1

a straightforward calculation leads to (6.3). [x]

As HI1eT(J^?

s® Jf e ), the operator Γ is an integral operator with the
momentum space representation {m®φ\T\n®φ} = \dk\dk $*(K)Tmn(k,k!)
φ(k'). If the kernel satisfies some additional regularity conditions, one obtains an
integral representation for K#, from which the physical meaning of K# be-
comes clear.

It is assumed:

(G) ] dt\\Aexp(-iHet)A\\i<™,
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(H) for all m, n, Tmn(k,k') is jointly continuous and uniformly bounded in

k,k'

Theorem 6.3. Assume (G) and (H) hold. Define TJk,k)= £ Tmn{k,k)Pmn.

Then

K*P =-i\ Σ Pnn'tτR°(Tm,
\_ωn = ωn,

+ 2π X $dkSdk'R°(k)δ(k'2/2-k2/2
coeSp(Ls)

• { Tω(k\ k)PT*Jk, k) - KTZ(k\ k)TJk, k)p

+ P T%(k', k)TJk, k)~] }. (6.6)

Proof. Let ωm — ωn = ωm. — ωn, = co. Using

X = s - lim {e~iHlt - e-
iHot)eiHat

= s - lim \dse-iHosl(- iHn)e-iHl('-s)eiHo(t-s)yH°s,
ί->oo 0

one obtains

Cmnm'n' = tΐ R \Xm>n> Tmn — Tm'n'Xmn)

ί-> ooo

e-ifli(i-S)eiHo(t-5)-|eiHo5je (g 7)

The terms in square brackets converge ultraweakly to iT* respectively ίT for
ί-> 00. The following estimate proves that they may be replaced by their limits:

ίo

where the product representation ί2i =Y4Pmn®Ymn is used. By condition (G) the

second term is smaller than any given ε > 0 for sufficiently large t0. As ί->oo?

the integrand in the first integral converges to zero pointwise. It is bounded by
the integrable function Sr^2| |#°| | \\Q\\X WAe'^'A^ | |Y*J, therefore the
integral vanishes for t -+ co. A similar estimate holds for the second term in (6.7).
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A straightforward calculation leads to

Cmnm'n' = 1™ } ds J™$dk$dk'eXP { - ί(k2β - k'2 β)s}
ΐ*ao

'R°(k)τm,AkfΛ)τmn(k'Λ)

= \im$dk$dk'R°(k)2ε/((k'2β - k2/2 + ω) + ε2)
eJO

where an Abelian limit is used in the last step. By condition (H) one obtains finally

Cmnm'n' = ^ f dk \dk R°{k)δ{k'2β - k2β + ώ) Γm V(fc', ft) Tmn(k\ k\ (6.8)

With this representation one has

Σ cmnm.n.PmnPPm,n,= Σ 2πμkμk'δ(k'2/2-k2/2 + ω)
mnm'n' ωeSp(Ls)

•R°(k)Tω(k',k)pT%(k',k).

The remaining terms in (6.6) are obtained by writing B# in the form

B# = B\ + iB*2, where

and

The Hamiltonian term in (6.6) is formed with B#

2. B% may be written in the form

dkldkfδ{k'2/2 - k2β + ω)R0(k)T*(k\k)Tω(k\kl (6.9)

which follows from the unitarity relation

Γm,m(fc', k) - Tmm{k, kf) = - 2πί X Jdfc" δ{k"2β + ωn- k2β - ω j

'Tnm,(k"Λ')τnm(k"Λ), (6.10)

for /c2/2 + ω m = k'2β + ωm,. Equation (6.10) is proved analogously to [24],

Theorem XI.44. Using (6.9), one obtains the last two terms in (6.6). [x]

F o r each ω, k, kf

k\ k)Pτ*ω(k\ k) - Kτ*(k\ k)τω(k\ k)P + Pτ*ω(k\ k)τω(k\ m

is of the canonical form given by Lindblad. The generator is obtained by a

superposition of such terms with positive coefficients and is therefore also the

generator of a quantum dynamical semigroup. The Hamiltonian term is a level

shift induced by the interaction with the reservoir. The dissipative part describes

the scattering process \nk}^\nfk'} of the system with the bath particles.
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The (5-function accounts for the conservation of energy in the scattering process.
The particle density R°(k) determines the rate at which bath particles are
scattered.

The relaxation properties of the semigroup are stated in the following theorem.

Theorem 6.4. Assume:

(a) Hs has non-degenerate spectrum,
(b) the microreversibility condition Tmn(k, k) = Tnm( — k\ — k) holds for

(c) for each pair m, n there is a pair k, k' with k2β + ωm = kf2/2 + ωn satisfying

τmn(k,k')ίo.
Then peq = exp(— βHs)/trQxp( — βHs) is a stationary state of Tf and for all

one has lim T*{t)p = peq.
t-*co

Proof. K# may be written as K# = K% + K#

D, where

K*HP=-i\ Σ PnntiR°(Tnn,+ T*,n),p] and

As K% and K#

D commute and K%peq = 0 it is sufficient to prove K%peq = 0 and

is represented as p = ΣpmnPmn For ρ(t) evolving according to
mn

(d/dt)p(t) = K#

Dp(t\ the coefficients pmn(t) satisfy the equations

d N

JtPnJt) = Σ CmknlPkl(t) ~ i £ (ckmkτn + CknJpmn(t). (6.11)
k — (Oι = ω T O — ωn

Let Iω = {m13n: ωm — ωn = ω}. In each class Iω there is for every melω a uniquely
defined index m which satisfies ωm — ωrh = ω. Each set {pmrh\melω} has a closed
subdynamics.

First the diagonal elements are considered. The dynamics is given by

"TrPmnW 2-i mnmnPnwJ) / βnmnmPmmV'))
Ut n n

which is the master equation of a classical Markov process with transition rates
pm^n = cnmnm. From assumption (b) one obtains

Cmnm'n' ^P ( ~ β^n) = ^nmn'm' eXP ( ~ βωj, (6.12)

from which follows the detailed balance condition

Hence peq is a stationary state. Furthermore, as (c) implies cmnmn > 0 for all pairs
m, n, l i m p j ί ) = peqnn holds for all pe<rpf s ) .

ί-» oo

It remains to show limpmM(ί) = 0 for mφn. The closed subdynamics for
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any ω =/= 0 is described by the equation of motion

4Σ (6-13)4
(It

Σ
kelω

where the coefficients L™k are determined by (6.11). Equation (6.13) is regarded
as a differential equation in the Hubert space Jfω with the scalar product (x, y) =
Σ xkykQxp(βωk). The proof is complete, if the matrix Lω = (Lζk) generates a

kelω

strict contraction semigroup in J fω.
The matrix Lω is written as

m,kelω

m<k

T ω _
^(mk)ij —

-Wmkmk + CmUύ l= J = k

0 elsewhere,

m ij = (cm~ liCiiu + cm))δij9

D2ΪJ~ ~ Λ λ Ckiki+ X Ckikϊ )°ij >

where I? = {l,...9N}\Iω, I% = {l,...,N}\{£\keIω}. Using the re-
presentation (6.8) of cmnm>n' and the relation (6.12), it is straightforward, but
somewhat lengthy, to verify R e ( x , L ^ f e ) x ) ^ 0 for all xGJ4?ω and all m<k.
Analogously one verifies Re(c m / w M - i ( c m m m m + ciMuM)) S 0 for all m e / ω , and conseq-
uently R e f o L ^ x ) ^ 0 for all xeJfω. Finally, as ckmkm > 0 for all k, m and /y ^ (J,
the matrix Lg 2 is strictly negative. [x]

7. Discussion

In this section some modifications and generalisations of the model are considered.
The Fermion reservoir may be replaced by a free Boson reservoir at some

temperature T > 0 . For sufficiently low density one is above the transition
temperature, and no condensate is present. Then the methods used in this paper
apply. After performing the thermodynamic limit, one obtains the perturbation
series (4.2) for the reduced density matrices, where the initial state is now given by

Σ UπR
ε®

πeS(n)

As only the initial state changes, Theorem 4.1 also holds in the Boson case. At
T = 0, one remains in the condensed phase in the low density limit, and the methods
used here are no longer applicable.

If the reservoir has Boltzmann statistics, the initial state in (4.2) is of the form
Rε

n = p 0 Rε (x). (x) Rε

m In this case the radius of convergence of (4.2) is infinite,
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and one obtains the convergence of Rε

0(t) for all times ί ^ 0. The finite radius of
convergence of the series (4.2) for Fermion and Boson reservoirs is due to the
statistics. As in the low density limit the reservoir has Boltzmann statistics, one
would obtain convergence for all times, if one had a good a priori estimate of the
contribution of the statistics.

It was assumed that the space dimension d of the reservoir is three. However,
it is sufficient to assume d ^ 3. For d < 3 condition (F) will not hold, in general.

The condition dim Jf s < oo may be omitted. Then one assumes that Hs has
completely discrete spectrum, which is a sufficient condition for the existence of
the averaged generator. Instead of Theorem 4.1 one obtains the weaker result
\imtτX(Rε

o(t)-R°o(t)) = 0 for all Xe iΓpf s ) . If one takes β e « ( ^ s ) , Q®A
40

is no trace class operator, in general, and the existence and completeness of the
wave operators does not follow from Kato-Birman theory. Therefore one has to
state additional conditions to assure the existence and completeness of the wave
operators.

The compactness argument for Xε

k(tk) used in the proof of Theorem 5.4 has

to be modified. {Xε

k(tk)\εe(0,1]} is no longer compact in ^~(J^k). But for
each δ > 0 Xε

k(tk) may be decomposed in Xε

k{tk) = Xε

kl(tk) + Xε

kl{tk\ such that

^<5 and {X£2(ίfe)|εe(0,1]} is compact. Using this decomposition,
it is possible to modify the proof of Theorem 5.4 such that the result still holds.

The interaction may be generalized to HI=γ^ Qt®Fh where g

self adjoint and Fi = Yίocija
+(fij)a{fij)9 £ | a y | < o o , α^ elR, | | / 0 || = 1 for all

j

For times t < 0 a theorem similar to Theorem 4.1 may be derived, where the
sign of the dissipative part K of the generator is reversed. This symmetric situation
is due to the assumption of factorizing initial conditions at t = 0.

In this paper only the reduced density matrix Rε

0(t) of the system was studied.
One would like also to consider the limit of the π-particle reduced density matrix
Rε

n(t). For ε[0 the motion of the bath becomes very fast, and the bath particles
move out to infinity. Therefore Rε

n(t) will not have a limit, but in the interaction
picture one may expect Uε

On(~ t)Rε

n(ή to have a limit. However, there is a
problem. Technically, this problem is indicated in the fact that the cluster theorem,
reducing the n-particle collision to a series of independent collisions, is no longer
applicable. Physically, one should not expect the convergence to hold everywhere.
This situation is familiar in the classical case. There one proves convergence only
for those configurations, which have path histories without recollision events. The
problem is to formulate a corresponding notion of convergence in the quantum
case.

Appendix

Given an interaction Hamiltonian of the form Q®F, it is in principle possible
to check if conditions (E) and (F) are satisfied. The following theorem shows that
the class of such interaction Hamiltonians is not empty.



Low Density Limit 357

Theorem A.I. Let

(1) j

(2) J \\\A\ll2e\p(-iHet)φ\\dt<ao for φe3>,
— oo

where 2f is a dense linear subspace in 34?e. Assume that H0 = Hs®ί + t®He

has purely absolutely continuous spectrum. Then s-limQxp(—ίHot)Qxp(ίH1ήφ
ί->oo

exists for all φeJfu and H1=H0 + HIί has purely absolutely continuous spectrum.
It is easy to find interaction Hamiltonians Hn = Q®A satisfying (1) and (2).

k

Let A= £ otj\fjy(fjl where ocjeU and /, e^([R3). Then t\->(fhexp(-iHet)fj)
J = I

is integrable for ij = 1,..., fc, and therefore condition (1) is satisfied for sufficiently
small | |β | | . Condition (2) may also be satisfied, if one takes 9 = ^(IR3).

If the theorem holds, H1 has no bound states and therefore condition (E)
is satisfied. The estimate M e x p ( - iHeήφ\\ S IIMI1/2IIII Ml 1 / 2 exp(- iHeήφ\\
shows that (F) is also satisfied.

Proof of Theorem A.I. It is sufficient to prove the existence of s-limexp(z'iίot) x
ί-»-oo

Qxpi—iH^i// for all ψEJ4f1. Then the scattering operator s-limexp^H^) x
ί-»00

exp(— iHot) is unitary, and therefore Hx has purely absolutely continuous
spectrum.

One may restrict oneselves to proving the existence of 5-limexp(iiί0ί) x
ί->oo

Qxp(—ίH1t)φ for all ψ = φs®φ, φseJ^fs, φe@. The limit exists also for finite
linear combinations of such vectors. The existence of the limit for dλ\\j/e^?

ι follows
by a density argument.

To prove the existence of s-limexp(i//oί)exp(— iH^ψ one uses the pertur-

bation series

exp(iHot)exp(-ίH1ήψ= £ (-ί)n J dίHI1(tn)...HIί(t1)ψ, (A.I)
n = 0 Δ(O,n,t)

where Hn(t) = Qxpi-iHoήHj^xpiίHoή. The nth term of the series is estimated by

/ „ = J dtHI1(tn)...HIί(t1)φs®
Δ(O,n,t)

^\ds2..]dsn " j Sndsx\\Q\\n\\φs\\\\Ae-iH's Ά...Ae-m'Siφ\\,
0 0 0

where sί = tί, sj = tj-tj-.1, j = 2,...,n. Using the identity A = \A\1/2sgnA
\A\ί/2

9 one obtains /„ ̂  abn~γ, where
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Therefore the series (A.I) is majorized in norm by 1 + J /„, which is convergent
n=ί

for b < 1.
To prove the convergence of the series (A.I) one still has to show that each

term of the series has a limit. For this Cauchy's criterion is used. With the defini-
tions h(ή=\\\Λ\1/2Qxp(-ίHet)\A\ί/2l hx(t)= \\\A\ιl2Qxp{-iHet)φl one
obtains the estimate

( J dL- J iίWθ...H/1(ί1>/'

t + τ tn

ί f ΛjΛ,,-1...jΛ1||βΠI^|||||A|1/2||Λ(ί.-t1>-1)...Λ(ί2-ίi)Mti)
ί 0 0

ύ + J ώΛ..Jds1||β|ri|φs|||||4
1/2||^J...Ms2)Msi).

s1,...,sn^->h1(s1)h(s2)...h(s^ *s integrable on ([0, oo))n, and the domain of
integration decreases monotonically to the empty set for £->oo. Therefore the
integral vanishes in the limit ί-> oo. Π
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