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Abstract. We calculate the cross section for e+e -»3 jets for longitudinally
polarized virtual photons up to order α^ in the quark-gluon coupling.

1. Introduction

The cross sections for the production of 2, 3, and 4 jets in e+e~ annihilation as
measured at PETRA and PEP have given us useful information about the quark-
gluon dynamics as described by QCD [1]. So, for example, the 3-jet cross section
has been used in various ways for determining the quark-gluon coupling constant
in the perturbative region [2].

Considering also the orientation of the jets with respect to the direction of the
incoming beam the 3-jet cross section depends in general on three independent
cross sections σv, σL, στ, and σ/? where £7, L, T, and / label the polarization of the
ingoing virtual photon [3]. These polarization dependent cross sections which
fully determine the jet angular correlations with respect to the incoming electron
beam ine+e~ -+qqg are known up to order αs [3]. So far only the angular averaged
3-jet cross section σu+L = σu + σL has been measured. The statistical accuracy of
the e+e~-data is not yet sufficient for determining also σL, σr, and στ. We expect
such measurements in the near future with higher statistics data coming from
PETRA and PEP. These cross sections σL, σr, and σϊ are useful to test the spin
structure of the e+e~ -+qqg matrix element, to measure the spin of the gluon or to
obtain independent measurements of the quark-gluon coupling constant. For the
latter it is essential to know these cross sections at least up to order α^ since the
coupling can uniquely be defined through renormalization only in higher order.
The cross section σu+L has already been calculated up to this order [4]. These
calculations have shown that it is possible to define the 3-jet cross section σu+L in
such a way that it is infrared finite up to order α^ [5].

In an earlier paper [6] we have calculated the virtual α^ contributions to the
longitudinal cross section σL for e+e~ ->qqg. They are infrared singular. In this
paper we describe the calculation of the real α^ contributions to the 3-jet cross
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section σL in order to get the infrared finite cross section which can be compared to
experiment.

In Sect. 2 we collect the Feynman diagrams which contribute up to order α^
and give the basic formula from which σL is calculated. The method for calculating
the real contributions is described in Sect. 3. The results are infrared divergent as
are the virtual contributions which are taken over from [6]. The sum of these two
contributions is finite. It gives us the final formulas for the longitudinal part of
e+e~ -+qqg which are collected in Sect. 4. To point out some universal features
with respect to the polarization of the virtual photon we include also the formulas
for σu+L calculated earlier [4].

2. Higher Order Corrections to e+e~->qqg

The diagrams contributing to

(2.1)

(the symbols in brackets denote the momenta of the particles in the initial and final
state respectively) in order oζ are shown in Fig. 2a (the virtual corrections). In
Fig. 2b are the diagrams for e+e~ -+qqgg and e+e~ -+qqqq which contribute to 3
jets in the case when two of the four partons (qg, qg, gg etc.) are degenerate. Then
the cross section for e+e~ ->3 jets in order vζ is obtained by multiplying the
diagrams in Fig. 2a with the lowest order diagrams in Fig. 1 and adding the
product of the diagrams in Fig. 2b integrated over the 3-jet region of the 4-par-
ticle phase space.

The higher order diagrams in Fig. 2 have UV as well as IR divergences. We
regulate them by going to 4 — 2ε spacetime dimensions [7]. After renormalization
the sum of virtual and real contributions is finite.

The cross section for the process (2.1) is (q = p+ +p_)

(2.2)

where PS(3) is the 3-particle phase space in 4 — 2ε dimensions. Lμv is the lepton
tensor and Hμv is the hadron tensor, where final spin, colour and flavour together
with the quark charge factors are averaged out. Because of current conservation,
qμHμv = 0, Hμv in general depends on five structure functions. They can be obtained
by expanding Lμv into products of polarization vectors of the incoming virtual

photon: ε* = l/J/2 (0, + 1, — J, 0) for transverse polarization and ε(0) = (0, 0, 0, 1) for
longitudinal polarization in the system q = 0 and then specifying the z-direction in

this system. Longitudinal cross sections σL are obtained by substituting — εjί°
)ε(

v°
)

35898
Fig. 1
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35906

Fig. 2a and b

for Lμv in (2.2). We have calculated σ(^ with z-axis parallel to px and σ[3) with z-axis
parallel to p3. σ^2) with z||p2 follows from σ^1} by interchanging p1^p2- Since
^μ^Pίμ/Pio — tlμ/qo O'=l»3) oΐiQ has to calculate effectively Hμvpfpf/pf0 with
i=l,3. The total cross section σu+L = σv + σL is obtained by integrating over
angles

JLμv-— = — (—^'μv+'ΪΆ/*?2)? (2.3)

where

(2.4)
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3. Virtual and Real Corrections

All traces were calculated with the help of REDUCE [8] in 4 — 2ε dimensions. The
sum of all graphs, either virtual (see Fig. 2a) or real (see Fig. 2b) consists of four
distinct classes: (a) planar QED type graphs with (colour) group weight Cj , (b)
non-planar QED type graphs with group weight CF(CF—Nc/2), (c) QCD type
graphs involving the three gluon vertex with group weight CFNC and (d) graphs

N
having a closed fermion loop with group weight CF-^-. Here Nf is the number of

4 N
flavours and CF= -, Nc = 3 and Tr= — - are the Casimir operators. We used the
variables

(3.1)

(3.2)
The calculation of the virtual contributions to e+e~ ->qqg using the Gegenbauer
expansion method has been described in detail in [6]. The result can be written in
the following form

as(μ2) /4πμ2 ^ ^
~ (3>3)

Γ(2-ε)

0>i3y23(i-yi3-y23)Γεrrtual.
Here

(2) Γ(2-β) 4πα2

 χr »/ n2σ =σo-- σ°=NcQf (3'4)

is the cross section for qq production in lowest order in 4 — 2ε dimensions, μ is an
arbitrary parameter to define the coupling constant in such a way that it is
dimensionless for arbitrary ε. The index A stands for 17 + L, L1 or L3. 7jιrtual is
written as

C TCvirtual_l_ c T^ virtual I / !_/ \TCFTA + -TA +\-γ--Nc

We understand TA to contain the renormalization counterterm

IA=I/Z (3-6)

in the MS renormalization scheme [9]. BA stands for the 3-jet distributions to
order αs:

/23 ^137 /13/23

(3-7)
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The explicit formulas for τf'virtual and T/'vίrtual are rather lengthy and will not be
given here. They can be looked up in our earlier work [6] and can be reconstructed
from the final formulas for the cross section in (4.1). The singular pieces of τ£'virtual

and τ^'vίrtual are rather simple and they are identical for A = U + L, Lx and L3:

Ή^=-4 + -
(j O

7 '̂ual = - 4 + 7ln(3,133Wy12) (3-8)
8 o

The fact that the divergent parts of Γf virtual and T% virtual are equal for A = U + L,
L19 L3, i.e. for the three different polarizations of the photon, is quite remarkable. It
would be interesting to know whether this is true in general, i.e. also for the other
cross sections στ and σz which have not been calculated yet. To point out this
universal behaviour of the divergent parts is one of the reasons why we have
included the total cross section σu+L as one of the cases in (3.3) and (3.5), although
it was reported before.

We now come to the main part of this paper, the calculation of the real
contributions to σLί and σL3. In order to produce physical cross sections one must
add to the virtual contributions, given above, the infrared and collinear divergent
parts of the four-parton cross sections dσqξgg and dσq^ integrated over a small
phase space region which includes the singularities. To define this region one needs
parameters to parametrize the boundary of the region inside which two partons
are considered to be irresolvable, i.e. being one jet. For this we use an invariant
mass constraint. The partons i and; are said to be irresolvable if the invariant mass
squared (pi+pj)

2 = 2pipj is less than yq2 (all partons being massless). This
boundary has been used also for defining dσϋ+L(y) in [4, second reference]. It has
the advantage that it depends only on one parameter which makes it easier to
study the dependence of dσ3_ jet( y) on the boundary. We calculate dσ3.jet(y) only up
to terms of order 1, i.e. we neglect term of order y lny and higher. Therefore our
results are applicable only for small y < 0.05 [1, 4]. To obtain these dominant terms
we need only the most singular parts of the 4-parton matrix elements ~ y~ 1 which
we take from our earlier work [4]. Of course, these matrix elements and the
4-parton phase space must be calculated in 4 — 2ε dimensions.

For the case that we integrate over the singularity};^1, i.e. that parton 1 and 3
form one jet, the 4-parton phase space is [5]

211π3Γ(l-ε)Γ(2-2ε) \q2 J

•Jrfy123dy134dy13(y123y134-y13)-ε

•GΊ3 + 1 -JΊ23 -yi34ΓεyΪ3θ(y13) (3.9)

• - τ r - .
o N θ> o

S is a statistical factor, Nθ, is the normalization for the θf integration. For defining
the angles we take the system z||p2 and Pi +p3 = 0. Then θ and #xare the polar
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angles of p1 in this system and

ί,=i(l-cosθHl- — . (3.10)
^123

It appears that this coordinate system is very convenient for doing the rather
complicated integrations of the singular terms over the 3-jet region bounded by y.
Since the longitudinal cross sections dσLί and dσL3 are obtained from invariant
quantities Hμvp1p\ and Hμvp%pl respectively the choice of the coordinate system
does not matter.

When calculating the contributions to Hμvp^p\ and Hμvp%pv

3 one must be
careful concerning the correct definition of the labels "1" and "3". Integrating over
the singularity ί / y ί 3 means that p3->0 or p3\\pι. Then the corresponding 3-jet
momenta are pl = pl + p3, pu = p2, and puι = p4, so that actually one has to calculate
HμvPΪPl = Hμv(pί+p3)

μ(p1+p3) = v etc. Only with this choice of 3-jet momenta
for defining dσLl and dσL3 one can achieve consistency, i.e. the cancellation of the
1/ε2 and 1/ε singularities. In the end all contributions are proportional to BA(ylja,
ymll) as they should.

Before presenting the results we make a few remarks concerning the region of
integration in (3.7). For the graphs of type (c) with a gluon loop and the graphs of
type (d) the singularity is l/y34 instead of l/y13. Then one uses the analogue of the
phase space formula (3.9) in the system p3 + p4 = 0 and integrates over 0 ̂  y34 ̂  y.
Outside the 2-jet region y <^y134, y234> and the integrations are rather simple. For
the other graphs the i -integration is somewhat complicated, because one has
singularities ί / y ί 3 and l/y23 which must be considered together. To avoid double
counting in the infrared region, p3->0, one integrates the l/y13 terms over the
region 1 1

2\dv- ] dυ, (3.11)
0 ι-y/yιιι

which then accounts correctly for the l/y23 contribution.
After having done the θ'-integration we obtain the following expression for the

integrand, , { , ^
Integrand =BA(yιm, j;ΠIIIH CF — - - +(1 -ε)(l -v)

A stands for U + L, L t and L3. yull and j;πm are the 3-jet variables. Equation (3.12)
must be integrated over (3.11) and 0^y13 ̂ y in the case of the l/y13 singular part
and over the analogous regions in the case of the l/y34 singular piece. It is
remarkable that the curly bracket in (3.12) is universal for A = U + L, L{ and L3.
For graphs of type (a) and (b), which do not depend on θ' this is obvious. In this case
one encounters in the original expression within the traces always the following
product jfj .j\

where ε is the polarization vector of the gluon which has momentum p3. We
decompose p3 = /^+p3 with respect to p1? i.e. p^(/?3) is in the direction of
(perpendicular to) pίt p3 is small since parton 1 and 3 are assumed to form one jet
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and can be neglected. Then the expression (3.13) goes over into

.*,>....
so that (3.13) is reduced to a contribution equal to the lowest order diagrams in
Fig. 1 multiplied by a universal function which is independent of the virtual
photon polarization. These arguments do not go through for graphs of type (c) and
(d). Indeed there one finds that the ^'-dependence of the integrand depends on A.
Nevertheless we find the universal factor in (3.12) after integrating over θ'\

The final result is written again in the form (3.3H3.5) with "virtual" to be
replaced by "real" and Tf replaced by r/^real. Instead of the indices I, II, III to
label the 3-jet variables we use again 1, 2, 3. Then we obtain

G G

+ In2yί2 — 21n2y + 41n>>lny13-|-41n}>ln}>23 — 41n<ylny 1 25

.-=-i-!+lny.

This completes the calculation of the real contributions with the invariant mass
constraint y.

4. Cross Sections

Adding (3.15) to (3.5) it is evident from (3.6) and (3.8) that the infrared and collinear
singularities proportional to ε~2 and ε"1 cancel. The remainder in the sum gives
the 3-jet cross sections for the three polarizations A = U + L, L1? and L3.They are
written in the following form in which the lowest order contribution is also
included:

' (4.1)

where

-2ln2y+4lnyln(y13y23/y12)+gA,

and the functions hA and gA appearing in (4.2) have the following form:
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h,=

-2r(y12,y13) + 2^r(y12,y23),
J13

3π nyί2 2y12 2y12(y12 + y13) 2y12(y12 + y23)

, y23), (4.3)

+ 2r(y12,
l 9

^^r(y12, y23) ,
JΊs

with r(x, y), 0(y13, y23) and #(y13, y23) defined as in [6]:

r(χ? y) = Inx In y — Inx ln(l — x) — In y ln(l — y) — L2(x) — L2(y)+^π2,

O ι » ι»2 1

+lny 13

+lny23

[
2y13 y13y23

_yi2+y 23 yi2+y 23 (^12+^23) _
4yi2 , 2y23 y13y23

-2r(y12,y13)

3^12 + ^13

);12+3;23

+lny23 4

+ ——— +

^12 + ̂ 23
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1.0

Fig. 3. Three-jet cross sections l/σdσu+Ldxmax and l/σdσL/dxmax for y = 0.04 and y = 0.01 together
with the Born cross section (0(αJ) as a function of xmax for αs = 0.16

These formulas contain all results which are known up to now about 3-jet cross
sections with invariant mass resolution. The result for d2σu+L agrees with our
earlier calculations [4]. We have included it here since it makes it easier to
program all three cross sections simultaneously when used for analysing
experimental data.

In order to get an idea about the amount of corrections originating from the
higher order terms we have plotted in Fig. 3 ί/σdσL/dxmajί as a function of xmax for
y = 0.04 and y = 0.01 together with the 0(αs) curve. xmax is the 3-parton thrust
equal to the maximum of xi9 x2, and x3 where x~ 1 —yjk (ijk cyclic). We have
Nf = 5 and αs = 0.16, which is a realistic value obtained from analysis of
experimental distributions of σu+L with O(α^) corrections included [2]. We see
that for y = 0.04 the O(α^) corrections to the xmax distribution are quite small. In
average they amount to an increase of 6% if compared to the 0(αs) curve. The
larger deviation above xmax = 0.95 is in the two-jet region and is caused by the
cut-off y = 0.04. For y = 0.01 the corrections are very large. But y = 0.01 lies outside
the perturbative region as was already observed in connection with σu+L [4]. For
comparison the xmax distribution l/σdσu+L/dxmaκ is also shown for y = 0.04 and in
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0(αs). Here the correction caused by the O(o^) terms are somewhat larger, near
25% in average.

The results given here are valid only as long as terms 0(y) can be neglected. So
one must choose y small enough for using these formulas. In case one wants results
for larger y's where our approximation might be questionable one always can
choose first a small y and correct for the difference numerically by adding the 4-jet
contribution in the desired y bin with two partons lying in this bin averaged over.

Appendix

In our earlier paper [6] we discovered the following printing errors: In (4.10) the
second line reads

In (4.19) J2 and 73 are:

= Ncln -In2- -In2 - -r(y^y23)- y+
J>12 ^13 )>23 6 18

-
6 y12 y12 y13 y13

References

1. Kramer, G.: Theory of jets in electron-positron annihilation. Springer tracts in modern physics,
Vol. 102. Berlin, Heidelberg, New York: Springer 1984

2. Wolf, G.: The determination of αs in e+e~ annihilation. Talk presented an the XIVth Intern.
Symposium on multiparticle dynamics. Lake Tahoe, CA (June 1983) DESY-report 83-096
(1983)

3. Kramer, G., Schierholz, G., Willrodt, J.: Q CD predictions for jets in e+e~ annihilation: angular
correlations and asymmetries. Phys. Lett. 78 B, 249 (1978), Erratum Phys. Lett. 80 B, 433 (1979)

4. Fabricius, K., Kramer, G., Schierholz, G., Schmitt. I.: Higher order perturbative QCD
calculation of jet cross sections in e+e~ annihilation. Z. Physik C11, 315 (1982)
Gutbrod, F., Kramer, G., Schierholz, G.: Higher order QCD corrections to the three-jet cross
section: bare versus dressed jets. Z. Physik C21, 235 (1984)

5. For the infrared finiteness of the sum of 3- and 4-jet cross section in the limit of zero jet
resolution see: Ellis, R.K., Ross, DA, Terrano, A.E.: The perturbative calculation of jet
structure in e+e~ annihilation. Nucl. Phys. B178, 421 (1982)

6. Lampe, B., Kramer, G.: Application of Gegenbauer integration method to e+e~ annihilation.
Physica Scripta 28, 585 (1983). Some misprints in this paper are corrected in the appendix

7. 't Hooft, G., Veltman, M.: Regularization and renormalization of gauge fields. Nucl. Phys. B 44,
189 (1972)

8. Hearn, A.C.: REDUCE 2, a system and language for algebraic manipulation. Comm. ACM 14,
511(1971)

9. 't Hooft, G., Veltman, M.: Dimensional regularization and the renormalization group. Nucl.
Phys. B 61, 455 (1973)

Communicated by G. Mack

Received August 30, 1984




