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Abstract. We carry out Monte Carlo simulations of the 4d SU(2) lattice gauge
theory. The standard action and the Symanzik tree-improved action are used.
Results for the string tension, glueball masses, and energy-momentum
dispersion are reported. In case of the standard action our results are a finite
size study extending previous investigations.

I. Introduction

Symanzik [1, 2] has pointed out that corrections to continuum theory stemming
from finite lattice spacing can be systematically diminished by use of a judiciously
chosen lattice action. A number of Monte Carlo (MC) studies [3] have been
carried out using Symanzik improved action. In this paper we report high statistics
results for 4d SU(2) lattice gauge theory.

In the continuum limit each physical quantity is proportional to an appropri-
ate power of the correlation length (inverse mass gap) ξ with an universal
coefficient. For non-zero lattice spacing αφO this "scaling" is violated by non-
universal terms of order (a2/ξ2)\n(a/ξ~). Symanzik improved actions allow us to
reduce these violations to order (a2/ξ2)2\n(a/ξ\ to all orders of perturbation
theory, by including in the lattice action suitable chosen irrelevant terms.

In principle the coefficients of these irrelevant terms can be calculated up to
any given order of perturbation theory. For 4d SU(w) lattice gauge theories the
tree-level improved action (TIA) has been determined [4—6]. A motivated ansatz
[5] for the improved action includes Wilson loops up to length 6 and the result
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[4,6] for the TIA becomes

STI= --ϊ\ ^ΣRe(TrD)-- Σ Re(Trm) (1.1)

Here D~H represents the planar rectangular double plaquettes of size 1x2.
We carry out a high statistics MC simulation using
a) the standard action (SA) on an 84 lattice,
b) the TIA on 53 8 and 84 lattices.
We are mainly interested in calculating the glueball mass spectrum1 for both

actions. We use a variant of the MC variational (MCV) method, which was
pioneered in [8-10]. The Wilson loops involved in our calculations are numerated
in Fig. I.I. Following the classification of [11] we construct states in various
irreducible representations of the cubic group. For more details about the glueball
calculations see Sect. Π.2.

#26 #27

Fig. LI. Wilson loops as used in this paper

For some operators we also calculate the energies of momentum eigenstates
and consider the relativistic energy-momentum dispersion. In the 2dO(3) non-
linear σ-model such an analysis was previously carried out in [12]. Improvement
was found for the 1-loop improved action, but not for the TIA. In the present case
the TIA behaves even worse than the SA.

1 For a recent review of glueball calculations in lattice gauge theories, see [7]
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In case of the SA a scaling window for the 0+ glueball (mass gap) was first
obtained in [8]. The MCV method was used on a 43 16 lattice, leading to the
estimate

m(0+H(170±30ML. (1.2)

In this paper we present a finite size study of this and other results [10] obtained on
small lattices. Previous [13, 14] investigations on an 84 lattice are improved and
corrected. Our final m(0+) estimate is well consistent with the estimate (1.2).

As a byproduct we obtain high statistics data for Creutz [15] ratios up to
χ(4, 4). This allows an improvement of previous string tension estimates (for
instance [15, 16]) which were mainly based on χ(3, 3). Creutz ratios χ(7, J) are not
stable under increasing (/, J) from (3,3) to (4,4), and the string tension has a
decreasing tendency. The potential analysis of [17] on a 154 lattice and
measurements of Polyakov loop correlation functions [18, 19] indicate that this
process continues also beyond the estimate one obtains from χ(4, 4).

In the case of the TIA we have assembled very large statistics on a 53 8 lattice,
on which our glueball estimates are based. This improves previously reported
results [20]. It has to be emphasized [21] that the TIA has severe problems with
the transfer matrix. The transfer matrix is not positive definite, not even symmetric.
It connects three time-layers. Therefore, the MCV method has problems, and the
smallest distance, where we can expect to get meaningful results is t = 2.

As in [12] we distinguish in this paper scaling in the general sense and
asymptotic scaling. Scaling in general means scaling with respect to the (unknown)
lattice β-function, and asymptotic scaling means scaling with respect to the
universal part of the β-function. Asymptotic scaling implies proportionality of a
physical quantity with respect to a standard two-loop ΛL scale. The improvement
program [1, 2, 4-6] is made for general scaling. Interesting quantities are mass
ratios for which we have

MI Λ*2Y (a\ (a2\2

Λ (a\
— -\j2 ln (-Γ -> hϊ ln h- L3

up to the considered order of the coupling g2. In Eq. (1.3) we have introduced the
"relevant range of interaction" [7] ξr = aξ. The parameter α should be adjusted,
such that the proportionality constant in (1.3) is numerically close to 1. Typically
α^4 for 4d lattice gauge theories. This emphasizes the meaning of the correlation
length ξ as a counting parameter for (a2/ξ2) corrections to scaling and indicates
that improvement may already work at a correlation length ξ<ί.

The string tension for the SU(2) TIA was first studied in [22, 23]. The MC
statistics of these investigations, particularly of [22], is rather poor. Therefore, we
did a calculation with a more reasonable MC statistics on an 84 lattice. We obtain
results for Creutz ratios up to χ(4, 4). Also improved Creutz ratios [6] are studied
and found to converge better with respect to the loop size. This indicates nicely
that improvement is sensible in the considered β = 4/#2-region. However, the po-
tential analysis [17] indicates again a further lowering of the string tension
beyond the result as obtained from χ(4, 4).

Our paper is organized as follows : Section II contains our SA results, Sect. Ill
the TIA results, and finally, summary and conclusions are presented in Sect. IV.
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Table Π.l. Rectangular Wilson loops

β
Sweeps (Eq)

Measurements
(Bins)

Hii

W12

W22

1̂3

W14

W2,

W24

^33

W34

^44

2.20

40,000
(1,200)

20,000
(20)

0.56928
+ 0.00008

0.34126
±0.00012

0.13644
±0.00013

0.20682
±0.00013

0.12562
±0.00012

0.05716
±0.00011

0.02426
±0.00007

0.01747
±0.00008

0.00554
±0.00005

0.00137
±0.00005

2.25

60,000
(1,200)

24,000
(20)

0.58619
±0.00008

0.36385
±0.00012

0.15767
±0.00014

0.22862
±0.00012

0.14403
±0.00011

0.07192
±0.00010

0.03330
±0.00007

0.02518
±0.00007

0.00915
±0.00005

0.00271
±0.00003

2.30

60,000
(1,200)

24,000
(20)

0.60215
±0.00008

0.38575
±0.00013

0.17976
±0.00017

0.25049
±0.00014

0.23071
±0.00013

0.08848
±0.00015

0.04424
±0.00011

0.03505
±0.00011

0.01437
±0.00008

0.00501
±0.00005

2.35

60,000
(1,200)

20,000
(16)

0.61690
±0.00011

0.40646
±0.00017

0.20186
±0.00022

0.27173
±0.00019

0.18228
±0.00018

0.10626
±0.00020

0.05691
±0.00015

0.04683
±0.00010

0.02140
±0.00010

0.00855
±0.00008

2.40

60,000
(1,200)

20,000
(20)

0.63025
±0.00008

0.42551
±0.00014

0.22315
±0.00021

0.29178
±0.00016

0.20082
±0.00016

0.12436
±0.00020

0.07057
±0.00017

0.05992
±0.00018

0.03003
±0.00013

0.01363
±0.00011

2.50

60,000
(1,200)

20,000
(20)

0.65241
±0.00005

0.45733
±0.00008

0.25971
±0.00014

0.32594
±0.00010

0.23325
±0.00011

0.15706
±0.00016

0.09683
±0.00015

0.08566
±0.00018

0.04867
±0.00015

0.02613
±0.00015

II. The Standard Action

In this section we report our MC results as obtained with the SA. We use the
icosaeder SU(2) subgroup [24], our simulation is carried out on an 84 lattice. Our
main interest is concerned with the glueball spectrum. Therefore, we concentrate
on a few important β-values and collect at each β-value very high statistics, as is
obvious from Table 11.1. As in [11] we use random upgrading and a sweep is
defined by upgrading each link once in the mean. After two sweeps (β ̂  2.30), three
sweeps (β ̂  2.35) measurements are performed. As analyzed in [11] this is expected
to save computer time as compared with calculating up to a similar accuracy by
doing measurements after each sweep. We have used the Metropolis method with
5 trials per upgrading. A typical acceptance rate for 5 trials is 70%.

For each measurement we select a time direction (which is cyclically rotated for
the next measurement etc.) and calculate in each t = const plane the vacuum
expectation values for all Wilson loops up to length 8 and additionally for the
rectangular loops up to size 4 4.The Wilson loops are numerated in Fig. I.I. Our
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Table Π.2. Creutz ratios

2.20 2.25 2.30 2.35 2.40 2.50

*(U)

rtU)

*(2,2)

X(U)

X(l,4)

*<2,3)

X(2,4)

*(3,3)

K(3,4)

*(4,4)

0.5634
±0.0002

0.5117
±0.0003

0.4051
±0.0005

0.5008
±0.0003

0.4986
±0.0004

0.3693
±0.0007

0.3583
±0.0011

0.3154
±0.0023

0.2910
±0.0044

0.251
±0.029

0.5341
±0.0002

0.4769
±0.0002

0.3594
±0.0004

0.4646
±0.0002

0.4620
±0.0002

0.3205
±0.0004

0.3084
±0.0006

0.2649
±0.0011

0.2421
±0.0018

0.2115
±0.0081

0.5072
±0.0002

0.4453
±0.4453

0.3181
±0.0004

0.4317
±0.0003

0.4287
±0.0003

0.2769
±0.0005

0.2640
±0.0006

0.2169
±0.0008

0.1979
±0.0015

0.1657
±0.0046

0.4830
±0.0002

0.4172
±0.0003

0.2827
±0.0005

0.4027
±0.0003

0.3993
±0.0003

0.2390
±0.0006

0.2251
±0.0007

0.1778
±0.0007

0.1586
±0.0011

0.1350
±0.0042

0.4616
±0.0002

0.3928
±0.0002

0.2526
±0.0005

0.3773
±0.0003

0.3736
±0.0003

0.2074
±0.0005

0.1929
±0.0007

0.1456
±0.0009

0.1242
±0.0011

0.0992
±0.0028

0.42708
±0.00007

0.35526
±0.00011

0.21058
±0.00027

0.33871
±0.00014

0.33460
±0.00016

0.1643
±0.0004

0.1491
±0.0005

0.1032
±0.0007

0.0818
±0.0007

0.0563
±0.0015

notation for expectation values of rectangular loops of size / J is Wu and our
normalization is lim Wu(β) = 1. We obtain high precision expectation values for

β^oo

these loops. The results for rectangular loops are collected in Table 11.2. In most of
the cases the statistical analysis is done with respect to 20 bins considered as typical
"independent events". This means that a typical "independent event" is an average
over 1000 measurements done over 2000-3000 sweeps.

At β~2.2, 2.3, 2.4, and 2.5 some values can be compared with those of [16],
where the full SU(2) group and the heat bath method was used. Within statistical
errors (Table 5 of [16], where all Wilson loops (including timelike directions) were
measured after each sweep (systematic upgrading), has to be used) we find
agreement up to β = 2.4. At β = 2.5 a small systematic lowering is observed. Using
the measured Wilson loops we obtain high statistics results for the string tension
relying in Creutz ratios. These results are presented in Sect. ILL

For each measured Wilson loop (in each t = const plane) we construct various
irreducible representations of the cubic group (see [11] for details) and keep on-
diagonal correlations up to distance ί = 2 for excited states and up to distance t = 3
for the 0+ state. For some operators we also calculate momentum p Φ 0 eigenstates
(see Sect. II.5). Our spectrum results are presented in Sects. IL2-Π.4: The m(0+)
mass gap in Sect. II.2, excited glueball states in Sect. II.3 and finally the energy-
momentum dispersion is studied in Sect. Π.4.
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X(3,3)

62
22 2.3

Fig. II.l. String tension estimate (in units of Λ|A) from Creutz ratios

ILL The String Tension

From our measured rectangular Wilson loops (Table II.l) we obtain high
precision results for the Creutz [15] ratios

(11.1)

up to 1 = J = 4. These results are listed in Table Π.2. Previous MC investigations
(for instance [15,16]) had only a sufficient statistics for obtaining reliable results
up to χ(3,3) and led to continuum estimates of the string tension of order

(II.2)

We have now a nearly 100 times larger statistics than in [16]. The new very precise
data for χ(3,3) are within statistical errors consistent with the early data. In Fig.
Ill we plot our present results for χ(3,3), χ(4,3), and χ(4,4) in physical units of ΛL.
On the detailed scale of this figure we realize clear deviations from asymptotic
scaling for χ(3,3). The situation is improving for χ(4,3) and χ(4,4). Within
statistical errors the χ(4,4) data are consistent with asymptotic scaling and lead to
the continuum estimate

(II.3)
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There are, however, evidences that the string tension is in fact lower. The first one
comes from a measurement of Wilson loops on a 154 lattice [17]. Fitting the
potential to a Coulomb plus linear form, results in a considerable lowering of the

string tension estimate. The final j/K estimate is

As asymptotic scaling deviations are also reported, the meaning of this number for
the continuum limit is, however, obscure. Further, clarification is desirable.

The second evidence that the string tension is in fact lower than II.3 comes from
investigations of Polyakov loop correlations [18]. As a Polyakov loop wraps
around the whole lattice, this method gives a better estimate of the quark anti-
quark potential. After projection on zero momentum, the estimate, of the string
tension becomes very stable with respect to the distance between the two loops.
Results are consistent with asymptotic scaling leading to the estimate

Comparing our χ(4, 4) results with those of [17] (on a 154 lattice) we find agreement
except for β = 2.4, where finite lattice effects may well be important for a 4 x 4 loop
(our lattice is 84). For the other β-values finite size effects on χ(4, 4) are small.
Therefore, our scaling for χ(4, 4) might be a finite size effect.

77.2. The Mass Gap m(0+)

The aim of this section is to investigate the previous MCV mass gap estimate [8] 2

relying on calculations on a 43 16 lattice, with respect to finite lattice size effects.
Further, the use of a larger lattice will allow us to extend the scaling window
beyond β = 2.25 up to β = 2A. We project our 28 Wilson loops into the Aί
representation and measure on-diagonal correlations up to distance t = 3. For
each of these operators we define distance ί glueball masses by means of

In the infinite statistics limit all these numbers become upper bounds for the real
mass gap m(0+). Due to technical reasons (disk space and tape handling) we did
not measure off-diagonal correlations and therefore minimization in the sense of
[8-10] is not possible. In the spirit of minimization we take our final estimates
from the single operators, which give the lowest results for m^l, 0) (i = 1 , . . . , 28). By
definition these operators are called the "best" operators. In view of our experience
[8,11] that at distance ί = 2, for good operators, statistical noise is already
overwhelming the effect of minimization, we expect rather reliable results. To take
directly the smallest value m(2, 1) (i= 1, ...,28) is not correct, because we would
obtain a too small result due to statistical fluctuations. In fact, the pattern of
operators which give low results at distance t = 2 is rather unstable with respect to
j8, whereas it is stable at distance t= 1.

2 Similar estimates were obtained by other authors. For a review see [7]
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Table 113. w(0+) results from the best three operators

OP m(2,0)

2.20
2.20
2.20

2.25
2.25
2.25

2.30
2.30
2.30

2.35
2.35
2.35

2.40
2.40
2.40

2.50
2.50
2.50

6
13
21

6
13
21

6
13
21

6
13
21

6
13
24

24
25
27

1.79 + 0.03
1.78 + 0.03
1.79 + 0.03

1.69 ±0.02
1.68 + 0.02
1.71+0.02

1.64 + 0.03
1.63 + 0.03
1.65 + 0.03

1.73 + 0.03
1.72 + 0.03
1.78 + 0.03

1.80 ±0.03
1.78 ±0.03
1.78 ±0.03

2.03 ±0.03
2.06 ±0.04
2.11 ±0.04

1.75 ±0.07
.73 + 0.07
.73 ±0.06

.53 ±0.03

.54 ±0:03

.56 ±0.03

1.42 ±0.03
1.41 ±0.03
1.42 + 0.03

1.55 ±0.04
1.54 ±0.04
1.60 ±0.04

1.52 ±0.04
1.50 ±0.04
1.44 + 0.04

1.64 ±0.05
1.62 ±0.04
1.59 ±0.04

1.72±0.14
1.68±0.14
1.67±0.14

1.37 ±0.07
1.40 ±0.08
1.47 ±0.08

1.20 ±0.08
1.20 ±0.09
1.19±0.09

1.36 ±0.09
1.36 ±0.09
1.42±0.10

1.23 ±0.09
1.21 ±0.09
1.11 ±0.09

1.25±0.11
1.18±0.10
1.08±0.10

In Table II. 3 we have collected for the three best operators the results up to
distance t = 2. For all three operators the w(2,1) results are always identical within
statistical errors. Only for β^2A operators with length >8 are among the best
operators.

Previously a finite size study, also on an 84 lattice, was attempted by Ishikawa
et al. [13,14]. Unfortunately, these authors used "momentum smeared" wave
functions to improve the MC statistics, then the unknown p2-contribution was
subtracted by introducing one new parameter. In Fig. II.2 we compare their results

m(0*) [ΛL

300-

200

100
2.2 2.3 2.U *β

Fig. II.2. Our momentum p = 0 results (ξ) in comparison with results (J) from [13,14] as obtained
from "momentum smeared" wave functions
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Table II.4. w(0+) distance t = 3 results from the best three operators

OP m(3,0) m(3,1) m(3,2)

2.20
2.20
2.20

2.25
2.25
2.25

2.35
2.35
2.35

2.40
2.40
2.40

2.50
2.50
2.50

6
13
21

6
13
21

6
13
21

6
13
24

24
25
26

ISίll
l 94±o°3o

1.41 + 0.07
1.41+0.07
1.42 + 0.07

1.37 + 0.08

1.39 ±8'J?
1-45 ± 8: J?

1.27 ±0.05
1.25 ±0.05
1.24 + 0.05

1.36 + 0.06
1.36 + 0.06
1.35 + 0.06

i 87±J:ϋ

2.01±o°39

1.27±8'JJ
1.27 + 0.10
1.28 + 0.10

1.18 + 0.12
1 00_ι_0.16
l.Z2±0>12

1.00 + 0.09
0.98 + 0.08
0.97 + 0.09

1.03 + 0.09
1.01 + 0.11
0.98 + 0.10

2.oι±§:?8
2.08±g;ίi

2.35 + o°88

ι.i7±8:ϊί
1J4 + 0.24

U5±8:ii
0.96 + 0^

i.04 ±81S
ι.ιo±8:iϊ
0.78 + 0.22
0.76 + 0.20
0.83 + 0.21

0.80±0.23
0.84 + 0.23
0.88 + 0.23

m(0*)[ΛL]

400-

300

200

100

—190 ΛL

2.2 2.3 ZA

Fig. II.3. Scaling for the 0+ mass gap, obtained from m(l) (J), m(2) (§), m(2) (ξ), and m(3,2) @

(after <p2> subtraction) with our p = 0 zero results from the best operator of
length ^ 8. We do not take into account our length 10 operators, or t = 3 results, in
order to work in a similar approximation as the authors of [13,14]. In this
approximation we see no scaling beyond β = 2.3. We, therefore, attribute their
result of [13,14] to be due to the subtraction of the unknown <p2>.

With our high statistics we obtain also signals at distance t = 3. For the three
best operators these results are collected in Table II.4. In Fig. II.3 we exhibit at
each β-value distance t = 1,2,3 results for the best operator. Our results at distance
t = 3 extend the scaling window up to β = 2.4. A conventional continuum limit
estimate is

m(0+) = (190±30M!A.
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Table II.5. Critical length for a
deconfinement temperature
Te=43/l t

β Tc Lc r i t=l/Tc

2.1
2.2
2.3
2.4
2.5

0.42
0.33
0.25
0.20
0.15

2.4
3.1
3.9
5.1
6.5

Table Π.6. w(2 +) MC results from the best operator and m(2 +) SC results [26, 27] (last two orders)

β OP m(l) m(2) m(2) SC,0(w6) SC,

2.20
2.25
2.30
2.35
2.40

2.50

7
7
7

24
24

24

3.18 + 0.04
3.04 + 0.04
3.03 + 0.04
2.89 + 0.04
2.78 + 0.03

2.73 ±0.04

3.29 ±5>.45

2.72±° Ji
3.09 + g;i*
2.54 + g l'
2.38 + 0.10
0 74-1-0.30
^•/4 + o.l9

3.40 ±£93
2.40±8:iJ
3.15±Ji§
2. 18 ±851
ι.97±8:2S
2.75 ±gί?

3.42
3.37
3.33
3.30
3.26

3.20

3.17
3.09
3.01
2.93
2.86

2.70

This is slightly higher than the previous result m(0+) = (170 ± 30) Λ|A [8], obtained
on an 43 16 lattice. Even more notable finite size effects are found by
comparing correlations for identical operators on the 43 16 and the 84 lattice,
even at distance t = 1 clear discrepancies exist. This is argued to be due to the finite
temperature-like phase transition for the small spacelike part of the 43 16 lattice.
Indeed the estimate Tc = 43 Λsf [26] would give critical length scales as given in
Table Π.5.

The experience from string tension measurements shows, however, that more
accurate data at distance ί^3 would be very desirable. There is some hope to
achieve such results by using source methods (linear response together with the
Langevin equation [27], study of boundary effects [28] or a "cold wall"
method [29]).

IL3. Excited States

We have considered the excited spin states 0", 2+, and 1+. The irreducible
representations of the cubic group on the Wilson loops up to length 8 are classified
in [11]. According to this classification we have constructed the Aϊ(Q~), E+(2+)
and 7i+(l+) representations, whenever possible for a given Wilson loop.

In contrary to [14] our lowest excited state is the 2+ tensor. For this state our
results from the best operators are collected in Table Π.6. As before in Sect. II. 1 the
best operator is defined to be the one which gives lowest mass values at distance
t = 1. The w(2,0) and m(2,1) values are, of course, better upper bounds than the
m(l, 0) values. Within the large statistical noise it is, however, not possible to give a



Symanzik's Tree Improved Action 41

Table II.7. Mass ratios m(2+)/m(0+)

β m(l) m(2) m(2)

2.20
2.25
2.30
2.35
2.40

1.79
1.81
1.86
1.68
1.56

1.90
1.77
2.19
1.65
1.65

2.02
1.71
2.63
1.60
1.77

Table Π.8. Best results for 0 and mass ratios 0 /O

β OP m(l) 0~/0+(ί=l

2.20 21 4.42 +81$ 2.48
2.25 8 4.44 + g:^ 2.64
2.30 8 4.16 + g:ί§ 2.55
2.35 8 4.08 + 8:1| 2.37
2.40 8 3.88 + S }λ 2.18

Table II.9. Best results for 1+ and mass ratios 1+/0 +

β OP m(l) l + /0 + (ί=l)

2.20
2.25
2.30
2.35
2.40

13
10
8

21
21

5.04 ±8:fi
5.03 ±8:ϊf
5.00 + 0.13
4.82±8:ϊi
4.83 ±8:fi

2.83
3.05
3.07
2.80
2.71

reliable estimate of the expected lowering. Comparing the distance ί = 2 results for
β = 2.25, 2.30 and β = 235 we find that even with our high statistics we do not
obtain reliable error bars for these results. See Sect. III.3 for a related more detailed
discussion.

In Table II.6 we have also given the two last orders from the strong coupling
(SC) expansion [30, 31] in the character variable u. There is amazingly good
agreement between the SC u8 and the MC m(l) results, indicating that the E+ SC
series may - in contrast to the Af SC series - still be convergent in the considered
jβ-region or at least in part of it. As the cubic symmetry is an exact symmetry of the
lattice such a possibility exists. For the convenience of the reader we collect in
Table II.7 mass ratios m(2+)/m(0+) as obtained by dividing the best 2+ and 0+

results. If we optimistically assume that the 2+ state likes to scale for jδ^2.2 we
would obtain the order of magnitude
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Table 11.10. Considered momentum
eigenstates

nf

0

1
0
0

1
1
0
1
1
0

1

2
0
0

0

0
1
0

1
0
1

-1
0
1

1

0
2
0

0

0
0
1

0
1
1
0

-1
-1

1

0
0
2

1

2
3
4

5
6
7
8
9

10

11

12
13
14

from analyzing Table II.7. We have to emphasize that the low m(l)-ratios for
β^.2.35 are meaningless, because at these values the mass estimates for 0+ at
distance t = 1 are already in the spin wave region [8]. The order of magnitude (II.7)
is consistent with MC data of previous investigations [14] and also with results
[32] as obtained using Manton's action.

Finally, Table II.8 contains our best 0~ and the Table II.9 our best 1 + results.
Only m(l) values are given, because results at distance t = 2 are statistical noise.
We also give the corresponding 0 ~/0 + and 1 +/0 + mass ratios. Taking into account
β- values up to jβ = 2.30 we find the orders of magnitude

Even more than for the 2+ state, it is obscure whether these numbers have any
meaning for the continuum limit α(/?)->0.

II. 4. Energy-Momentum Dispersion

In this section we consider momentum states for the Af (0 +) and the E + (2 +) states.
In case of the A± representation we construct momentum eigenstates for all
Wilson loops up to length 6, whereas for the E+ representation we only take the

1-plaquette operator. In each case our momenta are K^ — -*- (L=8), with
2nL

nf = (nl, nf, nf), and i = 1, . . ., 14 as given in Table 11.10. As in [33] we construct the
considered irreducible representations of the cubic group on appropriate spacelike
cubes C7 (x, ί), and perform the Fourier transform for these cube operators.

C/K,ί)=ΣeίKxC/x,ί).
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0*, β = 2.2 , bent plaquette
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Fig. Π.4. Results for 0+ momentum states at β = 2.2

15

Different irreducible representations of the cubic group do not mix up to order
K2. This means we obtain good projections on Jp eigenstates for small momenta
and short distances. Otherwise, 0+ will finally win.

Let us define

m(K,ίH/E(K,ί,0)2-K2

and

(ILlOa)

(Π.lOb)

where E(K, ί2, *ι) is in analogy to Eq. (II.5) a finite distance definition of the energy
of the momentum K state:

>ί (11.11)
V ;

Using these definitions we find for the 0+ state restoration of Lorentz invariance in
the considered β-region (β^2.2). This is illustrated in Fig. II.4. From the now
considered operators the bent plaquette (operator #3 of Fig. 1.1) is the best
operator at β = 2.2. At distance ί = 2 and already t = 1 we find restoration of
Lorentz invariance for the 11 lowest momenta (i= 1, ..., 11 as defined in Table
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2*, β=2.2, 1-pL
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Fig. Π.6. Results for 2+ momentum states at β = 235

11.10). The horizontal line is the mean value calculated from these 11 momenta.
The last three momenta deviate due to the finite lattice spacing. Indeed replacing

ί=ι
(2-2cosKt) (11.12)

gives also consistency with Lorentz invariance for these momenta. [For the first 10
momenta the change under the replacement (11.12) is numerically very small.]

In Fig. II.4 momenta within vertical lines have identical K2 and hence identical

For all β we find their energies to be statistically rather independent. Therefore,
we may considerably increase the MC statistics by measuring momentum
eigenstates for the low lying momenta and by using Lorentz invariance. In the
present case we would win a factor < 11. Independently a similar observation has
been made in [34].

For the 2+ state the situation is depicted in Figs. II.5 and Π.6. Only distance
t — 1 correlations are sufficiently out of the statistical noise to allow clear
conclusions. At β = 2.2 we find consistency with Lorentz invariance only for the
first 4 momenta, whereas at β = 2.35 it is found for the first 10 momenta. The
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Table III.l. Rectangular Wilson loops on the 84 lattice
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1.5 1.6 1.7 1.8 1.9 2.0

w»

W12

W22

W13

W14

W23

W24

W33

W43

W44

β
β2^

0.5617
±0.0002

0.3118
±0.0003

0.1002
±0.0003

0.1744
±0.0003

0.0977
±0.0002

0.0337
±0.0002

0.0114
±0.0001

0.0070
±0.0001

0.0017
±0.0001

0.00012
±0.00015

1.45

0.856
±0.006

0.6003
±0.0004

0.3629
±0.0007

0.1437
±0.0008

0.2220
±0.0007

0.1362
±0.0006

0.0604
±0.0005

0.0258
±0.0003

0.0187
±0.0003

0.0060
±0.0001

0.0015
±0.0001

1.55

0.927
±0.013

0.6347
±0.0003

0.4114
±0.0006

0.1920
±0.0009

0.2707
±0.0007

0.1787
±0.0007

0.0959
±0.0009

0.0487
±0.0008

0.0390
±0.0007

0.0164
±0.0005

0.0059
±0.0002

1.65

0.937
±0.014

0.6629
±0.0002

0.4529
±0.0003

0.2381
±0.0003

0.3145
±0.0003

0.2193
±0.0003

0.1341
±0.0003

0.0769
±0.0004

0.0655
±0.0004

0.0333
±0.0004

0.0154
±0.0005

1.75

0.864
±0.013

0.6856
±0.0002

0.4866
±0.0004

0.2771
±0.0007

0.3512
±0.0005

0.2546
±0.0006

0.1688
±0.0008

0.1049
±0.0008

0.0929
±0.0009

0.0532
±0.0008

0.0289
±0.0007

1.85

0.777
±0.011

0.7043
±0.0001

0.5146
±0.0002

0.3101
±0.0003

0.3827
±0.0002

0.2853
±0.0002

0.1997
±0.0003

0.1310
±0.0003

0.1187
±0.0003

0.0732
±0.0003

0.0432
±0.0007

1.95

0.711
±0.012

horizontal lines are the mean values as calculated from the corresponding
momentum eigenstates. As the momentum K —0 2+ mass is rather high, we find
only small changes under the replacement (11.12).

III. Symanzik Tree-Improved Action

We now report our MC results as obtained with the TIA. As before we use the
icosaeder subgroup [24]. Our high statistics glueball calculations are done on a
53 8 lattice. Additionally, we calculate with a rather mode rate statistics the string
tension from Creutz ratios on a 84 lattice.

III.L The String Tension

At each β-value we have done first 200 sweeps without measurements for reaching
equilibrium and then 2000 sweeps with measurements. For the relevant values
1.5^/J^2.0, our Wilson loop results are collected in Table III.l. Error bars are
calculated with respect to 10 bins. Because of correlations between successive bins
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Fig. III.l. Conventional estimate of the string tension from Creutz ratios
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Fig. III.2. Relevant Creutz ratios on a precise physical scale: χ(3,3) J, χ(4, 3) £ χ(4,4)ξ, and
improved χ(3,3)Δ



Symanzik's Tree Improved Action 47

true error bars may be larger (see [1 1, 16] for a more detailed analysis). From W^ ±
we can easily calculate the specific heat by numerical differentiation. For the
convenience of the reader, we collect in Table IΠ.l also the specific heat as
obtained from neighbour β-values. The peak is reached at βκl.65.

Using Creutz ratios we give in Fig. IΠ.l a conventional plot for the scaling
behaviour of the string tension. A scaling window is found and the continuum
estimate is obtained from the envelope. The accuracy becomes much more obvious
from Fig. III.2. These data in physical units of Λ™ are plotted on a very precise
scale. By a similar interpretation as in Sect. II. 1 the χ(4, 4) results indicate the upper
bound

(111.1)

This is lower than the previous results ]fκ « 17.9ΛJ1 [22] and }fKπ 16 A Aτ

L

l [23].
On the other hand, the potential analysis of [17] finds again (asymptotic) scaling
deviations and a considerably lower value

12.5 All. (111.2)

Perturbative calculations [6, 35] of the Λ-ratio give
l s A

It is amazing to note that our results for ]/KTI/|/KSA and those of [17] are both
consistent with the asymptotic estimate of Eq. (III. 3).

A consistent string tension measurement using the improved action should
involve improved loop operators. To the tree level order, improved Creutz ratios
are given by [6]

X&J) = Σ Cmn ]*[W(I + m, J + n)-] . (III.4)
m,n

Here Cmn = Cnm and the non-zero Cmn are listed in the following:

:_!_! = l-3.y, (IILSa)

3> c-1-2 = 2y, (IILSb)

c 0-!=-l. (IILSc)

y is a free parameter. (Note that the standard Creutz ratios are obtained with
c00 = l, Co_ι = -l, £ ? _ ! _ ! = -!, and all other cwπ = 0.)

We tried three choices :

(a)y=-i, (b)y = 0, (c)y=-±. (111.6)

(a) and (b) are close to the standard Creutz ratios and (c) avoids W44, which is the
noisiest Wilson loop. Together with χ(3, 3) and χ(4, 4) we collect the results for
χ(3,3)(a,b,c)inTableIIL2.

There is ^-independence up to an excellent precision and the χ(3, 3) values are
well compatible with χ(4, 4). This shows that the improvement works in a consistent
way. In Fig. III.2 the triangles are mean values from our three considered χ(3, 3)
definitions, and there is good consistency with asymptotic scaling.



48 B. Berg, A. Billoire, S. Meyer, and C. Panagiotakopoulos

Table III.2. χ(3,3), χ(4,4), and improved string tensions χ(3>3)

1.6 1.7 1.8 1.9 2.0 2.1

X(3,3)
*(4,4)
*(3,3)(a)
*(3,3)(b)
X(3,3)(c)

0.3052
0.2837
0.2669
0.2689
0.2607

0.2058
0.1625
0.1670
0.1671
0.1666

0.1416
0.0987
0.1043
0.1054
0.1010

0.1020
0.0566
0.0634
0.0640
0.0613

0.0799
0.0440
0.0468
0.0480
0.0429

0.0726
0.0346
0.0414
0.0420
0.0398

Table III.3. Rectangular spacelike Wilson loops on a 53 8 lattice

β W1 W2 Sweeps

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.90

2.00

0.5412
±0.0001

0.5613
±0.0001

0.58125
±0.00008

0.6003
±0.0002

0.61888
±0.00008

0.63599
±0.00008

0.6513
±0.0002

0.6643
±0.0002

0.68617
±0.00004

0.70446
±0.00007

0.2864
±0.0002

0.3112
±0.0002

0.3371
±0.0002

0.3628
±0.0002

0.3891
±0.0002

0.4141
±0.0002

0.4369
±0.0003

0.4560
±0.0003

0.48824
±0.00006

0.5152
±0.0002

0.0818
±0.0002

0.0997
±0.0902

0.1206
±0.0002

0.1437
±0.0003

0.1698
±0.0002

0.1968
±0.0002

0.2227
±0.0004

0.2443
±0.0004

0.2811
±0.0001

0.3121
±0.0003

40,000

40,000

122,000

80,000

164,000

160,000

42,000

40,000

160,000

40,000

111.2. The Mass Gap m(0+)

Our glueball calculations are carried out on a 53 8 lattice. In view of the double
plaquette involved in the Symanzik TIA a 53 8 lattice seems to be the smallest
feasible lattice. As in [11,20] our MC calculation is based on 21 Wilson loops Wi

(i= 1, ...,21) of length ^8. We only measure spacelike Wilson loops. In Table III.3
we give mean values for the considered rectangular loops. As is obvious from this
table we have collected a very high statistics of up to 160,000 sweeps at some
β-values. This was mainly done for hunting the 2+ state (see next section). We have
done first 1200 sweeps for thermalization and carried out measurements after
every second sweep.
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Fig. III3. Scaling for the 0+ mass gap

1.7 1.8 1.9

Finite distance glueball masses and best operators are defined as in Sect. 11.2.
We only consider correlations up to distance t = 2. In Table III.4 we have for the
three best operators collected the mass results. These three operators give always
nearly identical numerical values. As depicted in Fig. III. 3 we find a window
1. 45 ̂ β^ 1.70, where our distance t = 2 data are in agreement with asymptotic
scaling. The data of Fig. III.3 are always taken from the best operator of
Table III.4.

As discussed in the introduction, the MC V method is in trouble 3 in the case of
the improved action. This may be illustrated by the lowest order SC expansion for
connected plaquette-plaquette correlations in the A± representation of the cubic
group. Up to a positive proportionality constant one obtains4 the following
leading behaviour:

<D(0)ϋ(ί)>c =

(l/ϊ/4)4 (ί=l)

(ί = 2)
(ί = 3)
(ί=4)

(III.7)

and <D(0)Π(t)>c=const,

(Cl/?)2(c2/02(c2/02K(ClJ8)2,
'~Vιβ)2, t = 2K,

with cί=^ί c2= ~T2 (const>0).
For ί-> oo we obtain from the absolute value of the correlation the leading order

glueball mass

(ΠI.8)

3 In the case of Manton's action the negative eigenvalues of the transfer matrix are not a severe
problem for a MCV calculation [32]
4 We would like to thank G. Mύnster for clarifying discussions on this subject
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Table III.4. w(0+) results from the best three operators

OP m(2) m(2)

1.45
1.45
1.45

1.50
1.50
1.50

1.55
1.55
1.55

1.60
1.60
1.60

1.65
1.65
1.65

1.70
1.70
1.70

1.75
1.75
1.75

1.80
1.80
1.80

1.90
1.90
1.90

2.00
2.00
2.00

8
10
21

6
8

21

6
13
21

6
13
21

6
13
21

6
13
21

6
7

13

6
7

13

6
13
21

5
6

13

2.17±0.03
2.19 + 0.03
2.19±0.03

2.07 + 0.03
2.05 + 0.03
2.03 ±0.03

1.89 ±0.02
1.89 ±0.02
1.89 ±0.02

1.80 ±0.03
1.80 + 0.03
1.82 ±0.03

1.73 ±0.02
1.72 ±0.02
1.77 ±0.02

1.73 ±0.02
1.72 + 0.01
1.79 ±0.01

1.89 ±0.04
1.94 ±0.04
1.89 ±0.04

2.03 ±0.04
2.08 ±0.04
2.01 ±0.03

2.22 ±0.02
2.20 + 0.02
2.29 ±0.02

2.31 ±0.04
2.34 ±0.04
2.32 ±0.04

2.29 + 81?
2.26 ±81}

9 1 <_ι_0.14
^•^±0.11

2 12 + °'13

1.86 ±0.05
1.87 ±0.05
1.87 ±0.05

1.78 ±0.06
1.78 + 0.05
1.81 ±0.06

.59 ±0.04

.51 ±0.03

.64 + 0.04

.55 ±0.03

.54 ±0.03
1.60 ±0.03

1.74 ±0.06
1.74 ±0.06
1.73 ±0.06

1.91 ±0.09
1.88 ±0.07
1.89 ±0.09

2.06 ±0.05
2.04 + 0.05
2.14 ±0.06
2 i5_|-θ.i4
2|| ~^_QΛ2

2.12±θ'.12

2.33 + 8l!
2.30±g;tί

2 23 + 0<5°
228 + 0'26

222 + ° 26

1.83±0.11
1.85±0.12
1.84±0.12

1.77 ±0.1 3
1.77±0.13
1.81+0.13

1.46 ±0.08
1.46 ±0.08
1.50 ±0.09

1.38 ±0.07
1.36 ±0.06
141 ±0.06

1.60 ±0.14
1.54±0.14
1.57±0.14

1.78±81J
1.68±81g
1.76±81I

1.91±0.11
1.87±0.10
1.99±0.14

ι.89 ±8: }f
1-91 ±8:ϊ!

At small distances t the fall-off of the correlation function is, however, rather
different.

As TIA and SA are in the same universality class, one expects the problem to be
less important in the continuum limit β-+co. In our β-region we find for all
considered operators positive correlations at distance t = 1,2. At our low β-values
(β = 1.45,1.55) m(2,0) results are systematically higher than m(l, 0) results. Because
of the interaction range going over two lattice spacings, one should discard the
m(l, 0) results for the purpose of estimating the mass gap. Our selection of best
operators is based on distance t = 1 correlations, and one may now doubt this
procedure. But our high MC statistics allow us also to select directly the lowest
m(2,0) result. With only one exception (β = 1.75) we obtain always one of our three
best operators (Table III.4), and at β = ί.75 the result we find remains within
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Table III.5. m(2+) results for the best two operators

51

β OP m(2) m(2)

1.45
1.45

1.50
1.50

1.55
1.55

1.60
1.60

1.65
1.65

1.70
1.70

1.75
1.75

1.80
1.80

1.90
1.90

2.00
2.00

2
7

7
8

7
8

7
8

7
8

5
7

5
7

5
7

5
7

5
7

3.35 ±0.06
3.34 ±0.04

3.18 + 0.06
3.16±0.04

3.12±0.03
3.15±0.03

2.94 ±0.03
3.00 ±0.03

2.93 ±0.03
2.98 ±0.01

2.93 ±0.03
2.89 ±0.03

2.90 + 0.04
2.86 ±0.04

2.94 ±0.04
2.91 ±0.04

2.81 ±0.02
2.82 ±0.02

2.76 ±0.03
2.81 ±0.03

4.55 ±;°.44

oo

3.19±£42

00

3.i4±81i
3-49 ±J;ii

2.84 + 0

)i°_

2.95±8:lί
2.93 + 0.24
3 13 ι 0.38

9 fii 4.0.13
Z.O1 ±0.10

272 + ° 16

2.68 l8 f?
2-92 + 81J

2 75 + °'31

0 7Q _|_ 0.37
2 '°±0.21

2.60 ±0.09
2.72±0.10

2.50 ±8;}g
2.57±o>;i!

5.75 ±J34

oo

3.20±o°88

oo

3.i5±8:2?
3.83 ±1:I4

8

2.73 + 8*30
2.90+ 8: Jί
2.934-0.50

328 ±8:J2
229 ±8:1?
2-55 ±8:27

2-46 + g;3

5^

2.99±8:§2

2.57 ±851
2.65 ±8:J?
2.39 + 0.18

2.6i±8:?S
2-25 ±8il
2.32±8:S8

statistical errors unchanged. In summary, our procedure is consistent up to
distance t = 2. From Fig. III. 3 our final estimate is

m(0+) = (50±5MΓ. (ΠL9)

Comparing this with Eq. (II.6) gives us the Λ-ratio, rmg&3.%, in good agreement
with universality.

III.3. Excited States

As for the SA we consider 0~, 2+, and 1+ states. The warnings from Sect. III.2 with
respect to the MCV method apply again. Within our practical restrictions we
obtain results as presented in this section. Our lowest state is again the 2+ tensor.
For this state mass values from the best two operators at each β are collected in
Table III.5, and results obtained from the best operators are also graphically
depicted in Fig. III.4. There is no signal for asymptotic scaling, hence also no signal
for scaling of the mass ratio m(2+)/m(0+). Up to β = 1.8 distance t = 2 results are
(within their errors) even well compatible with the t = 1 results. After drastically
increasing the MC statistics our previous [20] indication of asymptotic scaling in
this j8-region (from t = 2 correlations) disappeared.

We illustrate this by drawing "continuum estimate" lines into Fig. III.4, which
are very different from those of [20]. This demonstrates the arbitrariness, but does
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Fig. III.4. 2+ state results

not rule out the previous estimate. In particular, it should be mentioned in this
connection, that the finite temperature phase transition is around β& 1.6-1.7 (see
also [17]).

Results of [20] are based on 40,000 sweeps at each β-value. We added new
β-values and increased the statistics up to 160,000 sweeps at some selected
/?-values. Independently of the total number of sweeps we calculate at each β error
bars by dividing our complete set of data into 20 bins. Even in the range
40,000-160,000 sweeps the m(2) and m(2) error bars do not obey the asymptotic

1/j/A/sweeps behaviour. This indicates the existence of correlations in computer
time over an enormous number of sweeps and/or very rare but important events.

For the convenience of the reader we collect in Table III.6 mass ratios
m(2+)/m(0+) as obtained by dividing the best 2+ and 0+ results. m(l) ratios are of
particular interest because of their statistical reliability. The reached maximum is
lower than in the case of the SA. (See the corresponding Table II.7.) Also the
maximum is reached at a much smaller correlation length, because the m(0+)
scaling window is shifted to a smaller correlation length as compared with the SA.
The correlation length l/m(0+) as obtained from our mass gap estimates (II.6) and
(II.9) is given in Table III.7 for the relevant β-values of both actions. Assuming that

Table III.6. Mass ratios m(2+)/m(0+) Table III.7. Correlation for SA and TIA

β m(2) m(2)

1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.90
2.00

1.54
L.56
.65
.63
.70
.68
.51
.45
.28
.19

00

00

1.69
1.60
1.84
1.77
1.69
1.47
1.27
1.16

00

00

1.72
1.54
2.01
1.88
1.90
1.51
1.28
1.13

SA

β

2.20
2.25
2.30
2.35
2.40

ξ

0.69
0.79
0.89
1.01
1.14

TIA

β

1.55
1.60
1.65
1.70
1.75

ξ

0.53
0.60
0.68
0.76
0.86



Symanzik's Tree Improved Action 53

Table III.8. m(0 ) results from the best operator

OP (Γ/0+ (ί =

1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.90
2.00

21
21

6
21

6
21
6
6

21
21

4.78±g ϊi
4.32±oio
4.21 ±0.13
4.12 + 0.11
3.91 ±0.06
3.93 ±0.06
3.78±0.13
3.45±0.12
3.60±0.05
3. 59 ±0.08

2.20
2.13
2.23
2.29
2.27
2.28
2.00
2.34
2.06
1.88

Table III.9. m(l+) results from the best operator

OP

1.45
1.50
1.55
1.60
1.65
1.70
1.75
1.80
1.90
2.00

11
19
13
21
13
13
19
21

8
9

5.53 + SIB
c 17 i o.'ao
3-1 > ±0.23

5.07 + 0.14
4.91 ±0.12
4.92 ±0.11
4.76 ±0.08
4.46 ±0.1 5
4.70 ±0.1 5
4.54 ±0.09
4.36 + 0.12

2.54
2.55
2.68
2.73
2.86
2.77
2.36
2.34
2.06
1.89

the rather smooth behaviour of m(l) ratios up to the maximum at ξ^0.68 gives an
indication about the continuum limit behaviour, we would obtain for the TIA

m(2+)^1.6m(0+) (III.10)

as compared with w(2+)^1.8w(0+) in case of the SA.
In Tables III.8 and III.9 we give our m(l) results from the best operators for 0~

and 1+ states. For these states distance t = 2 results are noise. We also give the mass
ratios 0~/0+ and 1+/0+. By taking into account ratios up to the maximum at
β = 1.65, we find the order of magnitude

m((Γ)«2.2m(0+), (III.ll)

m(l+)^2.8m(0+). (111.12)

As for the 2+ state these ratios are somewhat lower than the corresponding ratios
(II.8) and (II.9) in case of the SA.

Ill A. Energy-Momentum Dispersion

In this section we consider momentum eigenstates for the Af(Q+) and the E+(2+)
states. Details, in particular the considered operators, are as described for the S A in
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Fig. III.5. Results for 0+ momentum eigenstates. (Equation 11.12 is used for K2)

Sect. Π.4. For ί= 1,..., 14 the momenta are defined in Table 11.10. Of course, we
have now L=5 and the MC statistics of Table III.3.

As compared with the SA the energy-momentum dispersion is not improved.
Typical results for the 0+ state are depicted in Fig. III.5. As L= 5 is rather small, we
always replace K2 by means of Eq. (11.12) for the figures of this section. For all
considered higher momenta the relativistic energy-momentum dispersion is
clearly violated at distance ί=l. This has to be seen in contrast to the
corresponding SA results of Fig. Π.4. We attribute the bad behaviour of the TIA to
the already discussed problems with the transfer matrix, implying strong
reservations against all distance t= 1 results. At distance ί = 2 we find restoration
of Lorentz invariance within the statistical errors.

The 2+ state results, as for a typical example depicted in Fig. III.6, look similar.
At distance ί = 2,2+ data are, however, so noisy that no clear conclusions are
possible. The lack of Lorentz invariance at distance t= 1 is particularly ugly, if one
thinks about using higher momentum eigenstates for improving the 2+ state MC
statistics at distance t = 2. In contrast to the S A no self-consistent procedure would
be possible. For both actions calculations of the 2+ state using momentum states
may suffer from the 0+ mixing.

IV. Summary and Conclusions

Within the limits of our approximations we obtain the following results:

]/K^69Λs

L

A (Π.3), m(0+)*190ΛiA (11.6) for the SA and }/Kπl5.5ΛΎ

L

l (III.l),
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Fig. III.6. Results for 2+ momentum eigenstates. (Equation 11.12 is used for K2)

(111.9) for the TIA. This gives for the Λ-τaύo r = ΛΎ

L

l/Λl^ = 4.13
[6, 35] the MC estimates ry& « 4.5 and rm(0+)« 3.8 in consistency with universality.

Results for the excited states 2+, 0~, 1+, due to lack of clear scaling signals, are
rather inconclusive. Very tentative orders of magnitude are: m(2+)
«1.6-1.8 m(0 +), m(0~)«2.2-2.5m(0+), and m(l+)^2.8-3.0m(0+). The lower
values corresponds always to the TIA and the higher value to the SA.

Finally, we have calculated energies for momentum eigenstates. In case of the
0+ state we find the relativistic energy-momentum dispersion restored for both
actions. The SA behaves nicer than the TIA, as the restoration of Lorentz
invariance already happens at distance t= 1. This allows us to establish such a
result also for the 2+ state.

A future MCV calculation of the glueball spectrum should be based on
important operators only, and use - at least for the lowest state - restoration of
Lorentz invariance for improving the MC statistics. For the different actions and
states the important ("best" at some values of β in the notation of Sects. II and III),
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Table IV.l. Important operators

SA,0+:
SA,2+:
SA,(Γ:
SA,1 + :

TIA,0+:
TIA,2+:
TIA,(Γ:
TIA, 1 + :

6,
7,

8,
8,

5,6,7,8,
2,5, 7,8,

6,
8,9,

13,

10, 13,

10, 13,

11, 13,

21,24.
21,24.
21.
21.

21.

21.
19, 21.

Table IV.2. Size of scaling windows

]/K,SA
m(0+),SA

]/K,ΎlA
m(0+),TIA

2.20a

2.00b

1.5
1.45

2.50a

2.4 [2.25 b]

1.9
1.7

0.69
0.42

0.47
0.42

1.47
1.1 4 [0.78]

1.24
0.76

2.1
2.7 [1.9]

2.6
1.8

a Incorporates also results of [16]
b Relies on [8], where a 43 16 lattice was used

operators are collected in Table IV.l. (The numbers are defined by means of Fig.
LI.) Doing a more detailed analysis, particularly emphasizing the 0+ and 2+ states,
we find in conclusion everything well covered by measuring only correlations of
the operators 6, 7, 13, 21, and 24.

The crucial question is, of course: does the improvement work? In Table IV.2
we collect approximate estimates for the beginning and end of the scaling
windows obtained so far. Scaling (with reservations coming from [17]) of the TIA
string tension sets on at a smaller correlation length than for the SA. Otherwise,
scaling windows, if compared on similar lattices, look similar. Therefore, from a
practical point of view, the improvement is modest. An important consistency
check is, of course, the observation that the improved definitions [6] of Creutz
ratios work well (see Sect. III.l).

For spectrum calculations the SA has the decisive advantage of a positive
definite transfer matrix. Together with the greater computational simplicity, this is
an important feature in favour of the SA.
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Note added. After finishing the manuscript we became aware of an extension [36] of the work
of [22].
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