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Abstract. It is shown that the free-energy density of a large class of ferromagnets
satisfying the Lee-Yang property is to be connected with the limit characteristic
function of a suitably renormalized sum of independent and non-identically
distributed random variables. Using the canonical representation formulae of
such characteristic functions, various chains of inequalities are derived for the
Ursell functions.

1. Introduction

In spite of considerable efforts, only a few models have been exactly solved in
statistical mechanics. It is therefore of great interest to find general properties of the
free-energy density or other related variables at the thermodynamic limit. An
important contribution along this direction was achieved many years ago by Lee
and Yang [1,2]. lϊZN(β9βh) denotes the partition function of a d-dimensional Ising
ferromagnet with pairwise interactions (as usual, β is the reciprocal temperature, h is
the external field and N is the number of spins), they proved that the zeros of
ZN(β, βh) as a function of z = exp(2βh) all lie on the unit circle in the complex z plane.

A number of interesting results have been derived since using various forms of
the Lee-Yang theorem (e.g. [3-5]). Recently, J. De Coninck and Ph. de Gottal [6]
established a connection between the Lee-Yang theorem and the set of infinitely
divisible distribution functions (see below). This leads to various inequalities for the
Ursell functions of finite systems.

In this paper, we extend this analysis by showing that such a connection also
holds when the thermodynamic limit is considered. Before presenting our results, let
us recall some terminology ([8,9]).

Let (Xij)^ i,i^jύki be a double sequence of random variables that are mutually
independent for a fixed / and subject to the condition of infinite smallness, i.e. for
every ε > 0.

max P{ \Xnk\ ^ ε} -> 0 as n -• oo. (1)
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n

The set of distributions that are limits of the distributions of sums Σ Xnk of such
k=ί

random variables is the set of infinitely divisible distribution functions.
Iϊ(Xk)k>ί is a sequence of independent random variables and (αn)n> λ is a sequence

of positive constants such that the Xnk = Xk/an are infinitely small for k = 1,2,..., n,
the set of distribution functions which are limits of distributions of sums

(1/αJΣ Xk-bn, (2)
fc=l

where (^Jn>! is a sequence of real numbers, is the class L. In order that the limit of (2)
exists, the sequences (an) and (bn) must be suitably chosen.

Under the additional restriction that the random variables Xί9X2... have
identical distributions, the limit distributions of sums of the form (2) constitutes the
set of stable distributions.

We first consider the class of d-dimensional ferromagnets with pairwise
interactions, symmetric a priori free spin distribution with bounded support and
satisfying the Lee-Yang theorem. If the free-energy density exists at the thermo-
dynamic limit and is continuous with respect to the external field, we establish a
connection between this free-energy density and the logarithm of the characteristic
function of an infinitely divisible distribution (Sect. 2). Using the canonical
representation formulae of these characteristic functions, we derive various chains of
inequalities (including new ones) for the Ursell functions of the magnetisation
variable. In particular it is shown that the critical gap exponent ([10]) inequalities
zl 4 rg Zl 6 ^ ... are direct consequences of such representation formulae (Sect. 3).

Furthermore, we also prove that the free-energy density of these models is to be
connected with the characteristic function of a probability distribution which belongs
to the class L. Using the GKS ([7]) inequality, we also show that this characteristic
function cannot be stable. This means that, to each d-dimensional ferromagnet we
consider, we may associate the limit characteristic function of a suitably renormal-
ized sum of independent and non-identically distributed random variables. This leads
to some new inequalities for the zero-field Ursell functions above the critical
temperature (Sect. 4).

For d-dimensional Ising ferromagnets, we derive more restrictions on the
subclass of self-decomposable characteristic functions associated to the free energy
(Sect. 5).

We finally present in Sect. 6 some conclusions and perspectives.

2. Infinitely Divisible Distributions

Let us consider a lattice Zd at each vertex; = {j1,... Jd) of which we associate a spin
variable Sj taking the values σ7- with the a priori free spin probability distribution p.
The Van Hove sequence of blocks (Λn)n>{ will be defined by

0^\jk\<n for k= l,...,d}. (3)

The energy of a given block configuration will be taken as (free boundary conditions)

EΛn(σ1,..., σ[Λ ,) = - £ Jkfk°i ~ h Σ σ*> (4)
j,keΛn keΛn



Infinitely Divisible Distributions 375

where Jtj ^ 0 is such that the thermodynamic limit exists (see for instance ref [7]).
The joint probability distribution function of a fixed configuration is given by the
finite Gibbs state:

dμΛn(
σi > > σ\Λn\) = ZΛ^(β> βh) exp { - βEΛn(σ1,..., σ | Λ ,)} Π dP(σk\ (5)

keΛn

where ZΛn(β, βh) is the partition function normalizing the Gibbs state. The random
variable magnetisation Mn is defined by

Mn= Σ Sk. (6)
keΛn

Let us consider the moment generating function of this random variable with
respect to the corresponding finite Gibbs state at zero external field. It is easily
shown that for any real ί,

<exp(ίMn) > = ZAn(β, t)/ZΛn(β9 0). (7)

In the following, we shall restrict ourselves to symmetric free spin probability
distribution with bounded support (i.e. 3 a, b e R: V ε > 0: p(a — ε) = 0 and
p(b + ε) = 1) satisfying the Lee-Yang theorem ([4,5]). This ensures that the zeros of
<exp(ίMM)> are purely imaginary numbers. Using elementary properties of
probability distributions, the following result has been proven in [6].

Lemma 1. For the class of d-dίmensίonal ferromagnets with pairwίse interactions, if
the free spin distribution is symmetric, has a bounded support and verifies the Lee-
Yang property, then there exists an infinitely divisible characteristic function φn such
that for any real t.

> = l/<£B(ί). (8)

Remarks.

A characteristic function/(ί) is said to be infinitely divisible if, and only if,
for every positive integer q there exists a characteristic function fq(t) such that

2) ([6]) Formula (7) also holds for random variables of Newman's type if ([14]),
in particular for the φ4 lattice field theory.

At the thermodynamic limit, one is interested in the following quantity:

w(ί)=lim<exp(ίMn)>1/ |Λ"L (9)

Using (7), one gets

w(ί)= lim exp-j^,—ZΛn(β,ή-—lnZΛn(β,O)l (10)

)}, (11)

where g denotes the free-energy density at the thermodynamic limit, i.e.

βg(β,t)=-lim^-\nZΛn(β,t). (12)
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(We implicity assume here that the interaction Jtj is such that (11) indeed exists.) On
the other hand, using Lemma 1, one has that

w(t)= lim l/lφn(t)lmnl. (13)
An\J.d

Since φn(t) is infinitely divisible, one knows that [</>„(£)]1/!Λnl is also infinitely divisible
for any n ([9]). Using the continuity theorem on the convergence of a sequence of
characteristic functions, one has that, if the free energy density exists at the
thermodynamic limit and is a continuous function of the external field, then there
exists an infinitely divisible characteristic function φ such that for any real t

exp { - βg(β, t) + βg(β, 0)} = l/φ(t). (14)

Indeed, if a sequence of infinitely divisible characteristic functions converges to some
characteristic function, then this last one is also infinitely divisible ([8]). This allows
us to formulate the following.

Theorem 1. For d-dίmensίonal ferromagnets with paίrwίse interactions and a free
spin distribution p satisfying the hypotheses of Lemma 1, if, at the thermodynamic limit,
the free-energy density exists and is a continuous function of the external field t, then
there exists a bounded non-decreasing function G(x) such that:

βg(β,t)-βg(β9θ) = + f Ccos(ίx)- 1]±+£-dG(x). (15)
— oo X

The function under the integral sign is defined to be equal to —12/2 for x = 0.

Proof Straightforward using (14), the Levy-Khintchine canonical representation
(e.g. [8]) and the fact that g(β, t) = g(β, - t).

Let us now introduce the Ursell functions for infinite systems. As usual, they are
defined by

«Mh) = lPfih(-βg)Wh) (16)

for a fixed temperature β~1. One of the main interests of the representation (15) is
that the external field dependence of the right-hand side is very simple (the
temperature dependence is to be found in the G function). Moreover, if the variance
of the random variable associated to φ(t) in (14) is finite, i.e. u2(0) < + oo, then we
may use the Kolmogorov canonical representation ([8]) which leads to the
following:

Theorem 2. For d-dimensional ferromagnets with pairwise interactions and a free
spin distribution p satisfying the hypotheses of Lemma 1, if, at the thermodynamic
limit,

a) the free-energy density exists and is a continuous function of the external field,
b) u2(0) < + oo for some temperature β'1,

then, there exists a non-decreasing and bounded function K(x) such that, for this
temperature β'1,

βg(β, t) - βg(β, 0) = + f [cos(ίx) - 1] dK(x)/x\ (17)
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where the function under the integral sign is defined to be equal to — t2/2 for x = 0 and
where K(+ oo) = w2(0).

These theorems establish the connection between the free-energy density at the
thermodynamic limit and the logarithm of the characteristic function of an infinitely
divisible distribution function. In the following, we show how non-trivial inequ-
alities for the Ursell functions at zero external field follow as direct consequences of
the representation formula (17). To that effect, one obviously has to assume that the
Ursell functions exist and therefore, if there is a critical temperature Tc = β~1 defined
by

βe = mp{β:limu1(t) = O}, (18)

one has to distinguish between the two regimes β> βc and β < βc. This will be
developed in the following paragraph.

3. General Inequalities

a) Below the critical temperature. Since for β > βci

1()^u1(t)9 (19)

the characteristic function φ(t) is not differentiable at the origin so that the
corresponding moments, and in particular M2(0), do not exist. Below the critical
temperature, one has therefore to use the representation formula (15). A typical
example of such behavior is given by the well known Cauchy distribution which is
expected to hold as β -» oo at least for d-dimensional Ising ferromagnets (see also
below):

! = exp(- |t |), (20)

where the Levy-Khintchine spectral function is given by

G(χ) = (1/π) arctg x + 1/2. (21)

b) Above the critical temperature. Above Tc, it is expected that u2(0) < + oo, though
it does not follow from our definition (18). Nevertheless, if we assume that w2(0) will
be finite for any β <βc and, moreover, that the other cumulants u2n(0) also exist
for n = 2,... then

u2nΦ) = (-l)n~1 fx2n~2dK(x). (22)
- OO

By considering

H(x) = K(x)/u2(0) (23)

and using essentially Schwarz's inequality, one gets the following.

Proposition 1. For d-dimensional ferromagnets with pairwise interactions and a free
spin distribution p satisfying the hypotheses of Lemma 1, if, at the thermodynamic
limit,
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a) the free energy density exists and is a continuous function of the external field,

b) the Ursell functions u2n{0) exist for n = 2,3,... and for any β < βc,

then they will satisfy the following chains of inequalities

(24)

1 / 4

 (25)

(26)

), (27)

ttf(ί) ^ l«2»1(0) w2»2(0)l, where nt + n2 = n. (28)

Proo/. Equations (24) and (26) are straightforward using (22), (16) and (17).
Equations (27) and (28) may be derived by use of Schwarz's inequality starting from
(17). Equation (25) is another way of writing Liapounov's chain of inequalities for
H(x) (see for instance [11], p. 229).

Let us now introduce the gap exponents Δ4,Δ6 As usual, we shall write
f(x) - xω to mean that

limln/(x)/lnx = ω. (29)

Therefore, if for β < βc the cumulants behave as ([10])

u2n(0)~(T-Tc)~y-2Z2

Δ2\ (30)

it follows from (28) that (see also [10])

Corollary 1. With the hypotheses of Proposition 1, if the cumulants u2n(0) behave as
in (30), then

^.... (31)

Such inequalities (24-28) and (31), among others (see in particular ref [6]), are
direct consequences of the Kolmogorov representation theorem. We have proven
so far the validity of Theorems 1 and 2 using essentially the Lee-Yang theorem
but the equivalence between these theorems remains an open problem which may
well prove fruitful to investigate.

In order to obtain results more precise than the general ones derived until now,
one needs a better knowledge of the spectral functions G(x) and K(x).

4. Class L Distribution Functions

To study the properties of the spectral functions involved in (15) and (17), let us first
consider finite systems (\Λn\ < + oo). In that case, one knows that at zero external
field

tyή)-1 (32)
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for any real t; (ί/);>:i *s a n infinite family of real numbers such that 0 < tί ^ t2 S
00

with Σ(l/tj) < + °o This is a particular case of Proposition 2 of [4] and has been

proven in [6]. As before, let φn denote the characteristic function corresponding to
the left-hand side of (32). Since the factors in an absolutely convergent product may
be taken in any order [18], one gets that for any 0 < α < 1 and any real t:

φn(t) = φn(*t) hn(*9t)9 (33)

where

hn(a,ή=f[l(ή + a2t2)/(ή + t2)l (34)
1

Since each factor of the right-hand side of (34) is an infinitely divisible characteristic
function when 0 < α < 1, it follows, using the continuity theorem and Theorems 2
and 3 of [8], p. 26, that hn(oc, t) is also an infinitely divisible characteristic function.
With the help of the following:

Lemma 2 ([8]). A distribution function F(x) with characteristic function f(t)
belongs to the class L if and only if corresponding to every 0 < α < 1 there exists a
characteristic function fa(t) such that

= f{at)'fa{t\ (35)

one gets that the distribution function associated to φn belongs to the class L.

Remark. It is not difficult to prove that (33) holds in particular for the φ4 lattice field
theory.

Going over to the thermodynamic limit, one may reproduce the same kind of
arguments as those developed in Sect. 2 to obtain

Theorem 3 For d-dimensional ferromagnets with pairwise interactions and a free
spin distribution p satisfying the hypotheses of Lemma 1, if, at the thermodynamic
limit, the free-energy density exists and is a continuous function of the external field,
then for any 0 < α < 1 and any real ί, there exists an infinitely divisible characteristic
function φ^ such that (cf. (14))

) = φ(at)'φa(t). (36)

Equivalently, (36) means that

( t ^

(37)

is an infinitely divisible characteristic function for any 0 < α < l . Using this
elementary property, we are led to new inequalities for the Ursell functions above the
critical temperature.

Let us indeed assume that the Ursell functions u2n{0)(n =1,2,...) exist above the
critical temperature. It is then straightforward to show that the cumulants Ka2n of
φa may be written as
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Since φa is infinitely divisible, we may use the Kolmogorov representation formula
to get

In φjt) = + f Ccos(ίx) - 1] dKa(x)/x\ (39)
— oo

where Ka(x) is the Kolmogorov spectral function associated to φa(ή(Ka(+oo) =
Ka2). Introducing the function

HJLx) = KJ[x)/Kat29 (40)

one gets
+ 00

|JWK«,2l = ί x2n~2dHM (41)
— oo

Since for any 0 < α < 1, (for instance)

+oo[ |

J x2dHa(x) £ ί xUHM (42)
— oo j

one gets (43)

where

Dα = ( l - α 6 ) ( l - α 2 ) / ( l - α 4 ) 2 . (44)

Choosing the minimum value of Cα, it leads

«J(0)^(3/4)M 6 (0) II2(0), (45)

which is a slight improvement of

ul(0)^u6(0yu2(0) (46)

obtained in (25). Other inequalities may obviously be derived using the same
method.

Among the class L are the stable distributions. Their characteristic functions,
when symmetric, may be written in complete generality ([8]) as

φs(t) = εxp(-c\t\λl (47)

where 0 < λ g 2 and c is some positive constant. Using the GKS inequality ([7]), we
prove in the following that the Cauchy characteristic function (λ = 1) is the only one
which may appear as a solution of (14) for the class of d-dimensional ferromagnets
we consider.

We may first notice that u2(h) (h φ 0) is non-negative as follows easily by use of
the GKS inequality ([7]). This implies that uγ(h) is a non-decreasing function of its
argument. Therefore for any real tγ and t2 such that tx > t2 > 0,

U J t 2

 Ul{h) dh ^ J ux(h) dh + t2uγ{tγ) (48.a)
o o

^\ (48.b)

(48.c)
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As a direct consequence of this inequality (48.c), one gets that for any real ί,

(49)

By successive applications of this result, we show that for any integer n and any real t:

(50)

which proves that a stable characteristic function with exponent λ < 1 cannot be a
solution of (14). On the other hand, since the free spin distributions we consider have
a bounded support, there exists some positive constant R such that Iŵ /OI ^ R for
any real field h. This leads therefore to

(51)

which achieves the proof since this last inequality excludes the λ > 1 cases.
We have thus proven the following.

Theorem 4. For d-dίmensional ferromagnets with pairwise interactions and a free
spin distribution p satisfying the hypotheses of Lemma 1, if, at the thermodynamic
limit, the free energy density exists and is a continuous function of the external field,
then the characteristic function

φ(t) = exp\βg(β,t)-βg(β9θ)l (52)

is the limit characteristic function of a suitably renormalised sum of independent and
non-identic ally distributed random variables (expect possibly for the Cauchy case).

Obviously, a precise determination of the class of characteristic functions φ(or φa)
should in principle lead to a better knowledge of the field governed properties of our d-
dίmensional ferromagnets.

As an intriguing by-product of our analysis, one may reformulate the scaling
hypotheses of the free energy density in terms of characteristic functions. In
particular, at the critical temperature, if

W l (/z)~|^sgn(/z), (53)

where the symbol ~ has been defined previously (cf. (29)) and δ is greater or equal to
1 ([20]), we see that

φ(ί)~exp(-φ|1 + n (54)

where c is some positive constant. This means that φ(t) is "nearly" stable in the
vicinity of the origin, with characteristic exponent λ = 1 + 1/δ such that, as it should,
the first moment exists but not the second one ([19]).

It would therefore be interesting to find additional restrictions on the class of
possible candidates φ(i). Up to now, we have proven that they must belong to the
class L and satisfy the inequality (50). In order to obtain more precise restrictions, we
study in the following the cases of d-dimensional Ising ferromagnets (with the usual
up and down free spin distribution). For these models, we derive some new
inequalities for the Ursell functions above the critical temperature which, in our
opinion, are interesting by themselves and indicate the existence of additional
restrictions on the candidates φ.
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5. ^/-Dimensional Ising Ferromagnets

For the class of such models, one knows that the hypotheses involved until now are
indeed satisfied. Moreover, the GHS ([7]) inequality holds for such cases. The
concavity of the magnetisation leads us to the following inequalities:

(1/2)^(0 ^ } u^h) dh ^ tux(t)9 (55)1

o

where u1(t)= — φ'(t)/φ(ή. In terms of characteristic functions, one obtains the
following result:

(l/2)tφ'(t)^φ(t)lnφ(t)^tφ'(t). (56)

Since the characteristic function of an infinitely divisible distribution never vanishes,
this last double inequality holds for any real t. As yet, we do not clearly understand
the implications of (56).

Another way to get some more restrictions is obtained by the study of the
cumulants of φ(t). As explained previously, one has therefore to consider the β < βc

regime. Many inequalities have already been obtained by Newman ([4]). However,
for d-dimensional Ising ferromagnets, it is possible to derive additional results.

Let us indeed consider the characteristic function of the magnetisation variable
when |ΛJ < + oo. Using (32), one gets for any real t

(exp(ίtMn)) = f[(l-t2/ή). (57)
1

Since the spins take the values plus or minus one, one also has

<exp(/ίMJ> = Σ/7vcos(vί), (58)
v

where the v are the values taken by Mn with probability pv. It is therefore easily seen
that if tj is a zero of (57), it is also the case for tj + 2π, tj + 4 π . . . . Introducing the
Ursell functions for finite systems at a fixed temperature β~1:

\βh = 0, (59)
one obtains

Proposition 2. For finite d-dίmensίonal Ising ferromagnets, the Ursell functions at
zero external field may be written for any k = 1,2,3,,...

( - 1)* ~X U2k(0) = 2Γ(2k)/(2π)2k £ ζ(2k, tj/2π), (60)
. 7 = 1

where 0 < tj/2π < 1 and C(2fc, x) is the generalized Zeta function (see for instance refi
[13]).

Proof. This follows from the absolute convergence of the product involved in (32)
and from the definition of the generalized Zeta function.

n = 0

1 We are much indebted to D. B. Abraham for explaining to us this consequence of the GHS inequality
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Corollary 2. First lower bounds for the Ursell functions. For d-dίmensional Isίng
ferromagnets, one has that for any k = 1,2,...

(-l)k-1U2k(0)^\Λn\2Γ(2k)/π2k (61)

Proof If tj is a zero of (57), then by symmetry 2π — t} is also a zero. On the other
hand, since

ζ(2k, x) + C(2/c, 1 - x) ^ l/x2k + 1/(1 - x)2k

for fc = 1,2,... and 0 < x < 1, one obtains (61) using the convexity of the function
l/x2k.

This result also holds at the thermodynamic limit for β < βc. In particular, this
implies that the susceptibility χΓ at zero field [17] satisfies the following inequality:

Xτ^2β/π2 (62)

Corollary 3. Second lower bounds for the Ursell functions. For d-dimensional I sing
ferromagnets with β < βc, one has that for any fc = 1,2,...

\u2k(0)\^2Γ(2k)[u2(0)/4f. (63)

Proof. This follows easily by use of Chebyshev's inequality [12], which states that

l2π2U2(0)/\Λ J]* = Γ 1/μj'!' ζ(2, tjlπ)!

|Σ
1

Moreover, since for 0 < x < 1

ζ(2,x) = Σ(x+jy2S 1/x2 + 7 (y - Ψ2dy ϊ 2/x2,
0 1+x

one obtains

l2π2U2(0)/\Λn\f ί l(2π)2k\U2k(0)\/(2Γ(2k)\Λ J)] 2*.

As / l J Z d , one gets (63) using [10].
Using Theorem 2 of ref. [12] p. 37, it is not difficult to extend this result. In

particular, one gets

l"2 + 4... + 2»(0)l ^ Cn|w2(0) u4(0)...u2 π(0)|, (64)

where

Cn = Γ(n2 + n)/l22n~ XΓ(2)Γ(4)... Γ(2n)]. (65)

The main difficulty is of course to find how these restrictions may help to select some
of the characteristic functions of the class L.

As a first attempt to solve this problem, we indicate in the following some idea
which may well prove to be fruitful.

Using (60), one has that

\Λn\

[2Γ(2/c)/(2π)2fe] U2k(0)/\Λ n\) = 1/|Λ J £ C(2fe, tjln). (66)
1
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inction Dn defined

Dn(θ) = <

f

0
V\Λn\

2/μj

1

[2Γ(2k)/(2π)2kW:

by

for

for

for

for

iMI\Λ

0^θ< tJ2π,

tjlπ ^θ< tjlπ,

t2βπ £ θ < t3βπ,

θ^tlΛJ2π,

n\\ = \ζ{2k,θ)dDn{θ).
0

J. De Coninck

(67)

one gets

Since the {Dn)n>λ constitutes a sequence of non-decreasing functions which are
uniformly bounded, one knows by use of Helly's first theorem ([11]) that there exists
at least one subsequence which converges weakly to some non-decreasing function
D. Going over to the thermodynamic limit, one has by use of the corollary 8.13 of ref
[19] that

} ζ(2K x) dD(x) S [2Γ(2fc)/(2π)2fe] |u2k(0) |, (68)
o

provided that, for β < βc, the Ursell functions exist. Moreover, one also gets

[2Γ(2/c)/(2π)2fc] |u2fc(0)| ^ } (l/x2k) dD(x), (69)

which, if the density of zeros Q)(x) indeed exists, leads to

[2Γ(2/c)/(2π)2fc] \u2k{ϋ)\ ̂  } (l/x2k)@(x) dx. (70)

That the left-hand side of (70) remains finite for any k = 1,2,... obviously suggests
the existence of the so-called Lee-Yang gap, i.e.

3ε> 0: V0 ̂  x < ε:@(x) = 0. (71)

Up to now, this has only been proven for sufficiently high temperature [14,15]
and for some particular models (e.g. [16]). This means that, at least for high enough
temperature, one has to select among the class L of characteristic functions those
which are analytic. This constitutes already a rather strong restriction.

Other results of this type would be interesting to understand which subclass of
the class L is to be connected with d-dimensional Ising ferromagnets.

6. Conclusions

The probabilistic approach of the d-dimensional ferromagnets has always been
considered as a problem of dependent random variables. In this paper, we have
proven that, at the thermodynamic limit, the free-energy density g(β, t) of such
models with pairwise interactions and for a large class of free spin measures, is such
that the function φ(t) = exp {βg(β, t) — βg(β, 0)} is the limit characteristic function of
a suitably renormalised sum of independent and non-ίdentίcally distributed random
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variables, whatever the temperature β~x (except possibly for the Cauchy case).
In particular, we have established additional restrictions for our characteristic

functions φ(t) within the class of d-dimensional Ising ferromagnets.
We have also shown how non-trivial inequalities between the Ursell functions

above the critical temperature (if it exists) are direct consequences of the canonical
representation formulae of such a characteristic function. This method also leads to
new inequalities.

So far, our proofs rest essentially on the Lee-Yang theorem but they may well
turn out to have a more general character. This aspect of the problem is currently
under investigation.
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