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Abstract. The proof of the results on the KAM theory of systems with short
range interactions, stated in [6] is completed. Estimates on the decay of the
interactions generated by the iterative procedure in the KAM theorem are
proved, as well as the modification of the theorems of [2—3] needed for results.

1. Introduction

In a previous paper [6], hereafter referred to as I, we presented results on a KAM
theory of systems with short range interactions. The proofs of those theorems are
completed here. In referring to results from I, we shall precede the equation or
theorem number by I, e.g., (I.1.1) refers to Eq. (1.1) of I, and Theorem I.1.1 to
Theorem 1.1 of the same work. For a general introduction to the problem, and
references to previous work in the literature, the reader should see 1.

2. Decay Estimates

A sequence of lemmas is proved which in turn imply Proposition 1.4.1. The first is an
easy application of the chain rule.

Lemma 2.1. Suppose g is analytic on some domain 9 = C*N and satisfies
dg 2
0x;
for some positive constants C;, C¥, and «(i,j=1,...,2N). Here, 4(,j)=
lilmod N) — j(mod N)|. Suppose X is a holomorphic map from 2’ — & satisfying
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for some constants C}; and C2;.

Then
0
Sup o] Hge X)X = (23)
and
2 P
SUP | ,(gox)(x’) < Cem 0D, 2.4)

for some constants C and D,, i = 1,...,N.

Proof. By the chain rule,

|25

m=1

Then (2.4) follows if we take D; = Z C,CL,. (We will usually estimate D; by
N sup |C,,CL..) Inequality (2.4) follows 1n the same fashion, and we find

N
_sup<z CaChil + 3. IChChi cl)

i,j m mn=

< Nsup|C,Ch;l + N? sup [C%,Ch.Cail.

m,i,j m,n,i,j

Proposition 1.4.1 follows by combining Lemma 5.1 with the three following
lemmas:

Lemma 2.2. On W(p,/4, &, — 36; Vo),

2 : (!"_/ 242|i—jl(80p61)(1—nk)(l—ﬂk)lhﬂ
< 24(30)06 1)(1 —m(1— Zﬂk)li—jl’ (2'5)
0z; )
ap 2| S g tealegpy 1) 7m0 20, (2:6)
J

0%z 19 7B, 11 —me)(1 =2
527w L) S2ONTGE po)(eopi T2, @7)
az A )| S5 ealoop )T, (28)
0z ., SN — 1\(1 = m(1 — 2B~
aI/aI/ (I _) §(Pkpo) C3(80p0 )( e * ]9 (2'9)
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for B some fixed constant. Also, ¢, — c3 may be chosen O((eopg *)*), for some constant
a.
Lemma 2.3. On W(p,/4,&, — 36; V),

7 (l/, Z') _ 5ij < Cl(gop()_ 1)(1 =M (1 _Zﬂk)li_ﬂ’ (2‘10)
Jj
a; . — 11~ m)(1 = 2B
az/ (_I_’Z) §p0c2(80p0 ) e * jﬁ (211)
j)
i RPN B — 1y(1 = m(1 — 2Bl
011611 (lag épk C3(Sopo) e b ]’ (212)
vty
___021'” Iyt 51 = 1y(1 = m)(1 = 2 r)li—jl
alcazl.(laé) = Pk " polcaleopg 1) ™ I (2.13)
iU
azlm T, ~—1 2 = 1Y(1 = m)(1 = 2fx)li—jl
azl_az/'(lal = Pk " pocs(Eopo )T I (2.14)
iUz

where the constants c; may once again be assumed to be O((gopo 1),
Let f4=)I,z) and f*2)(I, z) be the functions defined in (1.3.16). To simplify our
notation slightly let x; = {I; if 1 <i< N and z;_y if N <i<2N}.

Lemma 2.4. On W(p,, & —26; V)),

a k(=]
‘ J(;x L 2)| = C, .
o izl
{ ]an (L 2)| < Cityo 219
aka[é] _ - = Br)li—ji
o ae (19| S Cijlegpg 7m0 A, &1
i J
aka[é] —1\(1 —m) (1 = Br)li—jl
(?x.éx,(LZ) = Cijleopo )™ e 219
i J

We can take C;=2*2"N if 1<i< N, and C;=232p, N5 for some constant B if
i>N. In (2.17) and (2.18) we can take C;j=2¢e,ps *N® if i and j are both less
thanorequaltoN.If 1 i< N,N < j< 2N, orviceversalet C;; = 2NBe,, and finally
if both i and j are greater than N take C;;= N®¢,p,.

We now prove Proposition 1.4.1. By (1.3.5),

fk+ l(ll,g/) — Hk+ 1(!’ Z,) _ hk+ 1(1/) — fl(l,a g/) + f”(ll, Z/) + fIII(l/’Z/), (219)

where f7— f!I are defined in (1.3.19)—(1.3.21). Let x} = {I;if 1 i< N and z,_y if
N <i<2N},

£5x)={I({I,z)iff1<i<N and z;_\I,z)if N<i<2N}. (2.20)
If we set 2 =W(p,/2,¢,—36;V,) and D' = W(py 41, Exs 13 Vi), X is a holomorphic
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map from 2’ into 2. Then,
aZfIII
0x; 0x; ()= 0x 0x;;

Combining the bounds of Lemmas 2.2-2.4 with Lemma 2.1 (where we take g =
f12)) we obtain .

(f*F=1e%(x). (2.21)

o2 f1uI
0x;0x;;

where c¢;;; may be taken to be g5pg ! (g0pg 1)% for some constant o if i and j are both
less than or equal to N, gqp,(ge0o 1)*if i and j are both greater than or equal to N, and
eo(eopo 1)*if i< N and j= N or vice versa.

Next note that

aZfII 1 N 6fk[<] oy aEm ,
sr=fa X 2% v | S

k=1 o= k(=1 025
+[57< (];m o X(x ))] T (x) + gx °oX(x'): ;a;’}(x')

J

2 [/afes
+[ax,.axj< (];xm °’—zt(f)>]5m@')}’ (2.23)

where xj(x') = {xj+tZx) if 1<j< N and z(x') if j> N.}. Lemmas 2.2 and 2.3
bound derivatives of X* if we note that 0%5/0x; — 0;; = t(0%;/0x; — d;)) if j < N and
0X%/0x; = 0%;/0x; if j> N. Lemma 2.4 (combined with a dimensional estimate)
bounds derivatives of f*=)(x), so derivatives of 8 f*(=1/0x,, o %(x) (with respect to x')
may be bounded on W(p, 1, &+ 1; V*) by Lemma 2.1. (In this case g = 0 f1=1/01,,).
Finally, derivatives of Z,(x') are bounded by noting that 0%,,/0x}(x") = 01,,/0xi(x")
— 0,y and then applying Lemma 2.3, while = ,,(x') is bounded by noting that = ,(x")
= 0D*/0¢,, (I',d(I',¢") by (L3.11) and then applying (I.3.6). Collecting all the
constants that arise in this process, bounding the sum over m by a factor of N and
noting most importantly that this process allows us to extract a factor of
(egpgy 1A ~mI1 =286 from each term yields

2 Il
p
0x; 0x;

where ¢;; may be chosen to equal ¢, in (2.22).
Finally,

aZfI N 1 s az azhk o _ . )
0x;} 6x mn2=1£d g {[6x/-0x <8x 0x,, ’ (x)>]u'”()‘c)u”()“c)

o[ en

[ax§<6xm8x el )>]( "'(x)>
o [ o s

{2t Srans S

/
0x;

sup S ()| S crlegpg 1) T2, (2.22)

()] S curloopy 0, (224

+

+
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0h* - ’E, . 0=, ,6 .02,
+6x 0x, Elx )<6x6 ’(_)H( ) ox; _) (x)
a_n o=, =,

We bound =, and its derivatives, and the derivatives of X as we did just above.
Derivatives of h*(x) are bounded by (1.2.5), (1.2.6) and dimensional estimates. Then
Lemma 2.1 bounds derivatives (with respect to x') of d2h*/0x,,0x,°%'. Finally,
bounding the sum over m and n by 2N, collecting all the constants that arise we find

ZfI
0x;0x;

sup (x)| S elegpg )t T 00D, (2.26)

with ¢; chosen equal to ¢;;; in (2.22). Finally noting that

aka+1 2 k+1
I, z)| < N®B I,
sup | Zrggy L 2)| SNsup 55— _)l
and
62 k+1 , 2 rk+1 L
sup | 5T (12 Vs | S, )l

for some constants B and B, we obtain Proposition I.4.1 by adding estimates (2.22),
(2.24) and (2.26). We now turn to the proof of Lemmas 2.2-2.4. Their proofs depend
on the following two results.

Lemma 2.5. On W(p,/2, &, —26;V,)

azd;k
I < = 1\(1 = me)(1 = Br)li—jl )
Sup aziazj (_ s Z) = p0C1(80p0 ) s (2 27)
R
SUP |30z, [>2)| = caléopo T AN, (2.28)
ROk o
sup 6['6[' (I/ ) < po_ 1 CS(SOp(; 1)(1 —m)(1 = Bili—ji. (229)

Again, ¢, — c5 are O((gopo 1))

Lemma 2.6. If M isann x nmatrix whose elements satisfy |M ;| < ce™ "7, and c and

o0
K are suchthat Y e™* < 1andc < 1/4, then(1 — M)~ exists and its matrix elements
j=0

satisfy
I — M)~ 2320 e, (2.30)
This is a straightforward lemma that may be proved in a number of ways. We

sketch a proof in the appendix based on ideas from statistical mechanics and field
theory [1], [5].
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To prove estimate (2.5) note that (1.3.8), (1.3.10), and the chain rule imply

0z, N o2k 0z

I/, n o 5 iAI,z") I/ 7 1
a'( )= oe %2 o s ) 5
with 02@*/01.0z, evaluated at the point (I, z(I’, z)). Note that (2.31) may be written as
a matrix equation

(I,2)e 40, (231)

D=A + MD, (2.32)
where
lJ a /(_I.I _,) A = 6ijeiAi(I',g’),
and
, 0> DF y
P ’ 1 7 l (I z)
Mu tal,a (r, z(I',z))e
Thus,
DU=[(1] —M)_IA]”=(1] _M)i;lAjj. (233)

We first note that (1.3.7) and (1.3.10) imply that on W(p,/2, &, — 26; V}), sup|A ;| < 2.
By (2.28) we see that on W(p, /4, & — 30; V),

sup|M,j| < 2e52%-c,(gpg 1)L ML=, (2.34)
Since ¢, ~ O((gopg 1)), and €%~ 2° = N2 we can choose ¢, sufficiently small that the
hypotheses of Lemma 2.6 are satisfied, and we find

|1 - M)l; 1 < 232'i_j'(80p5 1)(1 M1~ pro)li—jl. (2.35)

Combining (2.33), (2.35) and our observation concerning A ;; yields (2.5).
If we again use (I.3.8), (1.3.10) and apply the chain rule to 8°z,,/0z;0z}(I', Z'), we
obtain an expression which may be written in matrix form as

D =A@ 4 MD®), (2.36)
where D = 0°z,,/0z;0z)(I',z'), M is the same matrix that appears in (2.32) and

) o> ¥ 0z N 2@k 0z
@ = _i5 oidm. L_is )
A iOnse z; 1,0z, 62 Z‘ '.02; oz,
gidm. i 0Pd* 9ok 0z, 0z
Li=1 01,0z, 61 0z, 62 0z}
Y 0F 0z oz,
yi=1 0I,,0z,0z, az 82

i

— iz, et 4m- (2.37)

(We have omitted the arguments of the functions on the right-hand side of (2.37) to
save space.) Lemma 2.5, (2.5) and a dimensional estimate imply that we may extract a
factor of (gopg ') ™1 A= from each term in the definition of AP, giving a
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bound
IA }f’l < 213571 o N2e82li=(g, po 1)L ~mad ==, (2.38)

(We have taken a supremum of the right-hand side of (2.37) over W(p,/4, &, — 36;
V,).) By (2.36),

2
;ZZ'; (I,z) =D =[(1 = M)"'A@];;. (2.39)
ivej

Combining (2.38) and (2.35) then gives

2

T < (5L po)21ONZed(|ii — jl + 1)2F Hggpg 1)L~ = A=

a2

sup |[=—=~

S2UNE(py t po)(eopg 1) T 2R, (2.40)

for some constant B, and the supremum runs over W(5,/4, &, — 36; V,).
To prove (2.6) note that (1.3.8), (I.3.10) and the chain rule imply

oz, | PO ok G
i 1/, Ne iAi(l',z') I/ r 1/ / 1
o2 = e { arer L2t Z ot 2 e,

The proof follows the now standard procedure. Let D® be the matrix with elements
DY = dz,/0I,, and A the matrix with elements

(L ’)}- (241)

; 0> d*
A £3) = — Z;elAl(!',Z'). —— (l/a Z(_I_I, Z/))
! o101,
Then (2.41) implies
Zir,) = D =[(1—M)"'AP],. (2.42)

81’

Bound A} by Lemma 2.5 and we use (2.35) to obtain (2.6), with ¢; ~ O((eopo 1y,
Inequahtles (2.8) and (2.9) are now proved in exactly the same fashion. Let D be the
matrix with elements Dm_, = 0%z,,/0zj0I(I',Z') or 0%z, /0101 '{I',z'), depending on the
circumstances. Using (I.3.8) and (I.3.10) show that

D,;=[(0—M)"'A],,; (2.43)

for some matrix A. Then use Lemma 2.5, and (2.5) and (2.6) to show that |A mjl
~ (gopg 1)t ~md =2b=1 for all m. Combining this observation with (2.35) yields
(2.8) and (2.9). We won'’t write all the details.
With Lemma 2.2 in hand, Lemma 2.3 is just an application of the chain rule. For
instance combining (I.3.12) with (I.3.11) we see that
a 7 A a ’ r 8 ! ’ A
ar L z) =0y = 01’ —(l,z )0—(1 «(I',2))
0’ "
+izfl, 2) (I' zl,2))
J
2hk

N 0‘o
+iY z(I, g’) (I’ z(I', z' )57(1’ z'), (2.44)
1=1
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on W(p,/2, & — 20; V,). Taking the supremum of the magnitude of both sides of
(2.44) over W(p,/4, &, — 36;V,), and using (1.3.6), Lemma 2.2, and Lemma 2.5, we
obtain (2.10). (Note that if (I',2)e W(3/4, & —35; V), (U2, 2(L',2)e W(py/2,
& —26; V), so |z, 2))| < e*<.) Similarly,

al, 0z; oD
i 1/ r — i l Ir ! ! [,
a Iz laz;("g) o, ', zI',2)
N G2k 0z,
iz(I' . I 7 I/ ’ .
HIELZ) Y 5 o 02 0, (245)

on W(p,/4, &, — 30; V). Applying Lemma 2.2 and Lemma 2.5 plus (1.3.6) to estimate
0®*/0z;, we immediately obtain (2.11).

The last three estimates follow in exactly the same fashion—one applies the
chain rule to (I.3.12) and (1.3.11) and notes that Lemmas 2.2 and (2.5) allow one to
extract a factor of (gopg 1)~ ~260li=Jl from each of the resulting terms.

It now remains to prove Lemmas 2.4 and 2.5. First note that the method used to
prove (1.3.25) easily bounds |2 L, z)| by [(sopoN)(2eopg 1)L MLt 4
2Lt 2N, 0, 210272000t D] on W(p,, &, V,). Estimate (2.16) then follows via a
dimensional estimate.

sup|f k[g](l, z)| £ Z ExPr€ M <IN kaksz’ (2.46)

veXk
v#0

where the supremum runs over W(p,, &, — &; V¥). The first inequality used the fact
that (1.2.4), plus Cauchy’s theorem implies sup|f*(I)| < g e ™ @~ ", and then the
sum over v is bounded just as in (I.3.6). Combining (2.46) with a pair of dimensional
estimates yields (2.15). The two remaining estimates of Lemma 2.4 as well as those of
Lemma 2.5 are proved with the help of

Lemma 2.7. Suppose |g,| < min(c e ™ ¥y =M, ¢, e ~F2d6uppi)|y|2o =01 [f §' > 6
and K, = 21n2, then

Z lg,) =4N(c, Qli=llg=rali= 4. c22“‘f‘ e~ X2li= j|)‘ (2.47)
Proof. Y gl < T cyyPe Rl
Y v:d(suppy) |t
+ Y colyffemredeurerem o, (2.48)

v:d(suppy) > |i—ji

Estimate the number of terms in each of the sums with |v| = M and d(supp v) = L by
N282°M Then sum from L = 0to |i — jland M = 0 to co in the first sum in (2.48), and
L=li—jl+1to oo, M =1 to o in the second sum in (2.48). Summing the resulting
geometric series yields (2.47).

Next note that

(-)2 fk[él
L= Y fADw )z /zz). (2.49)

0z;0z; sl
v¥0

(We are assuming that |i — j| = 1/2(3/2)" since (2.17) and (2.18) can be obtained by
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combining (2.46), and the remark that precedes it with a dimensional estimate
otherwise.) Note that the expression for 82 f*21/9z,0z; is exactly the same except that
the sum runs over v¢X,. Also, all terms on the right-hand side of (2.49) vanish un-
less both i and j are in supp v. Thus, define g, = sup|f’;(1)(vivj)g2/(zizj)| ifiand j are
in suppy,g, =0 otherwise. This supremum is over W(p,, &, —6;V,). By (1.2.7),
19, < eopoleopg 1)L ~mdeurpY)|y 2028 =9 Gince d(suppy)=|i—j| for all non-
zero g,, the hypotheses of Lemma 2.7 are satisfied with ¢; = ¢, = gopoe**, 8’ =0
and k, =k, =(1—n)ln(eps ). Since |0°f*=1/oz,0z;| and |0**=)/0z,0z;|
are both bounded by ) g,, (2.47) implies both (2.17) and (2.18) in the case
z;=i+y and z; = y;,y, where we used the fact that 24Ne2&li~Jl(g oo 1yAli=il < |

if i —j| = 1/2(3/2)".
Now consider

it il ork
o201, (Lz) -—yelek oI, (D(vi)z¥/z;. (2:50)
v#0
Once again 9*f*21/0z,01; is given by the same expression but the sum runs
over v¢X,. Define g, =sup|(df%/dI)(I)(v)z"/z| if iesuppy (the sup runs over
W(py, & — 0; V), zero otherwise. By (1.2.7), |g,| < ege™(eopg 1) ™™V y|e M. On
the other hand (1.2.7) and a dimensional estimate also imply |g,| <
26005 1poe i (egpy 1) TmMGuPPY)yle =M Combining these two bounds we find
lgvl § SO(SOP(; 1)(1 —me)(1 = Pr)li—| X (SOPO_ l)ﬂk/Z(l —nk)d(suppy)|21e~6ly|' (We have again as-
sumed that |i — j| = 3(3)* for the reason stated above.) Thus, we can apply Lemma 2.7
with ¢; = gge®, 16, = (1 — 1), ¢; = go(eopo ) 7™ AN, and 1, = (B,/2)[In gopg ',
and (2.17) and (2.18) follow in the cases I; = x; and z; = X, y, OI Vice versa.
Finally
it ho
G 2= X 5 g 02 s
v#Q

and a corresponding expression holds for 82 f*=1/0I,01 ;, with the sum running over
véX,. Let g, be the supremum over W(p,, ¢, —&;V¥) of the summand. By
(12.7)  we see that |g,| Seopg Heppo T Me = and  |g,|<
deopopr Heopg 1) ~mdbupPYo =S Combining these observations with the fact
that we may assume |i — j| = 1(3)*, we find

|gyi < (809(; 1)(80/)5 1)(1 ~m)(L — Bl —jl 5 (Sop(; l)ﬁk/2(1 ~Mi)d(suppy) o —dlvl (252)

This allows us to apply Lemma 2.7 and the remaining cases of (2.17) and (2.18)

follow.
The last task is to prove Lemma 2.5. It is very similar to the proof we just finished,

AN Sz
aziazj €9= yeZin<@k(ll),Y.>(ZiZj). @53)
y¥0

Just as before we will assume that |i—j=(3)3)* Let g, equal the
supremum of the absolute value of this summand over W(p,, & —d;V,) if
veX, and both i and j are in suppy. Let g,=0 otherwise. Then by the
estimates above, plus (1.3.2), |g,| < 2Ceopoe?se?ti(gopg 1) ~muPPY|y |26 32N



340 C. E. Wayne

Since d(suppy) = |i —jl, and 6 > (3) + 6 we may apply Lemma 2.7 and (2.27) follows.
Next note that

ofx o
- { e <*§f« (l’>,z>fv(£)<v,.>zv}
C2=2 \RoOva ' Wahwrs )

0z; 01, o
v¥0

Let g, equal the supremum of the integrand over W(py, & — 6; V,) if ve X, v # 0, and
iesupp v and zero otherwise. Remark that

of%
or;
280CeékeLk(80p6 1)(1 —m)(1 — Br)li ~jl(80pg 1)(ﬂk/2)(1 —mad(suppy) l"le —(6—3/2) ),

< min(zlgoceikeLk(sopg 1)(1 —nk)li—JlMe—(é =3/2)l

Iz /(i ML),y >)

by our observations above, and (1.3.2). If we note that {(0w*/I)I'),v) =
N

Y. (9*h*/0I'9L)(I')v,, then combining (I.2.5), (1.2.6), (1.2.7) and (1.3.2), we obtain
=1

dawk
‘ < (;f’. (L)’2>fy(1/)(vi)év/(i<(£)k(l’)’2>)22i‘

3,2 2L — 1\(1 = m)(1 — Bre)li—Ji
<23C%, poeé"e “(oP0 )~ Bro)li=jl
X (Eopa 1)(l3k/2)(1 - rlk)d(suppy)|l,|e —(©@=3)

These two bounds result in a bound on ¢,, and allow us to apply Lemma 2.7 to
obtain (2.28). ;

Our last bound is on (3>@*/0I;0I)(I', z). Once again one just writes out the
expression for this quantity using (1.3.3). Each term is bounded using (I.2.4)—(1.2.7),
and (L.3.2), and one then applies Lemma 2.7. This is a straightforward exercise and
we leave the details to the reader.

3. The Proof of Theorem 1.2

Large parts of the proof of Theorem 1.2 are identical to the proofs of the main
theoremsin [2] and [3]. We need, however, a better estimate on the amount of phase
space lost at each step in the inductive procedure used to prove the theorem. This
improvement results from the short range property of the initial interactions.

We will construct an infinite sequence of canonical transformations, which at
each stage reduce the size of the perturbation of the Hamiltonian, resulting finally in
an integrable system. Consider the Hamiltonian HeoC(I,z) = H(I, z) = h°() +
7°(, 2) constructed in Theorem I.1.1. If

of°l | ._1lof° N~ &
sup{'% +pot % }éso, (3.1)
oh°
sup v §E03 (32
ai‘lo -1
- <A
sup (WJ | (33)
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and

0*h° 6 0 o o
31,41, D)= =01+ D)+ 1 —0;)—— a,

then (1.1.16)—(1.1.20) insure that we can take &= po(eopo )Y, E,=2E,,
and po = py,, Where ko =[(InN)(In3/2)" ']+ 1, and p,, is defined inductively by
(1.2.8). Here, the quantities with no hats (e.g., &y, po) refer to the Hamiltonian
H(L,z) of I Also, sup|g)()]<(2°N)™! and sup|(1 —4;)(@d}/dI))| < (eopo ')
(gopo HM/®-1 and all suprema are evaluated over the region W(p,, Ey; V), where
V =V*~1 From the proof of Theorem 1.1.1 we see we may pick &, = 1. Define
inductively the sequence of parameters

6;=Eo/16(1 +j?),

Ck =(1+ kz)éo,
€k+1 = Ek - 45k,
Evir=E, +4,
e 1 = Al + 4N?H 80, 1),

M, =256, 'In(¢,C,oM) ", (3.5)
ﬁk+ 1= ﬁk/27NEkékMka
ék+ 1= (ékck)(3/2)kEk(Eka)MkN+ 15;:(1“ 1),

with C, a constant to be determined later. Defining p, = 23p, . ,, we construct a
sequence of regions ¥ >V, >V, .... Set

Rik, B W) = {I| Ie P*~ [ ¥(D), v > | < Clyl™ for some v with 0 < [v] < M,}.
(3.6)

D, (3.4

(By convention take V_, = V) Then
Vo= {11, _y; dist(I, 0P, ) 2 Bb\R(k, B, By ),
and V= U U, ,/2), with dist(I,I) =L~ I|.
Follov(zslir;lkg [2] or [3] one constructs canonical transformations
C(.2) (L2, Ch(L2)~T.2), (3.7)

where both transformations are defined on W(By/2, & —25; V¥ and map
W(B/4, & — 36, V%) into W(5,/2, & — 26,; V). Defining

HY(I', )= A* 1o C*— (I, 2) = hI) + U, 2), (3.8
one has
k
sup|——| < Ey, (3.9)
aZﬁ‘k -1
<
and
af* 07"
. <2
sup{' ol + Or 6(1) <é. (3.11)
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The conditions which guarantee that the iterative procedure of (3.7)—(3.11)
may be arbitrarily repeated can be combined in the single inequality

8o <Cq 32’15 2(POEO 1)Z(Eoco) 164 (N). (3.12)

where §'(N) = (N!) 4N 1%~ 152N and B, is some small (< 1) constant. (This is
essentially inequality (3.58) of [3] and we do not repeat its derivation.) Given this
sequence of canonical transformations we must estimate the value of C, which
insures that not too much phase space gets thrown away. We will need the fact that
the integrable parts of the Hamiltonians constructed above are given by

=R+ 3 70 (3.13)
=
As in I note that
vol(P*~ 1\ 7%) < vol B + vol R(k, 1%, V;._ ), (3.14)
with
B={I|IeV* ! and dist(,0V* 1) < p,}. (3.15)
As in Sect. 5 of I,
vol B |1 — (1 + p/p)Vl. (3.16)

It is easy to show that j,/p, <27 *(1 + k?) "N~ 12"NE,C,) L. Thus,
vol B<272N27M(1 + k?)~YE,Cy) "t vol V. (3.17)
Since @*(I) is single-valued (a fact we verify below),

o\ 1
det< ol )
Bound |det(8cﬁ"/5l)‘1| by 2* using (1.5.5)~(L5.10), with ¢, = (). Since &*(I)=
&°() + Z 0f% 5/01)(I), verifying that the matrix [ defined there has diagonal

do. (3.18)

vol Rk, A% V)= |
S RUK 0, _ 1)

entries bounded by ¢, N~ 1 +2 Z £;p; ", and off diagonal entries bounded by
j=0

(s0po )N~ is an easy exercise. Definitions (3.5) and inequality (3.12) 1mp1y
Jp 1 < (89C,) 119G/ and we then bound the sum over j by a geometric series in
(8,C,). The single- valuedness of @* follows by noting that (1.5.7) implies
|0°(I') — &°()| = (3L — I'|, while the argument of Appendix H of [3] guarantees
that

k—1 5f1 (I’ fo (I

k—1

3T _ZO Ep; =@
I=

Thus,

—OMI) — M| 2 |0°(D) — 0°T)| — af 0

) —

19 J
‘ ];Q (1)>(4)|I’ I, (3.19)
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and

<23% j dow, (3.20)
VFO Ko<y VD
lo—o* QI =r1+7)

where || is the ordinary Euclidean norm and t is defined below. This estimate
follows by noting that (I.5.12) implies || @°(I') — @°(0) | < (1 + 2%/N)r for all Ie V. By
the estimate of [3] used above,

k=179 f{) 0 f{_;

Y —51—(!) ——5[(9)

For any vector x, | x| <|x| < N|x|, so for any IeR(k,h*; V; _,),

kz%@) T ” <(+9r, (321

k—1
<31Y &5

14D — @O || = 12°(1) — 2°(Q) | +

k-1
with t=2%/N+3N ) §p; .
i=o
A simple geometrical argument gives
d@ § C; 17'E(N_ 1)/2[,.(1 + ‘L')]N_ 1[1—'(1 + (N _ 1)/2)] - 1|X| —(N+1)

K@l <Gt~ MY
iw - WOy < (1
liw - w (O =r(l +1) (3.22)

Also, vol? =(1—A)volV =(1— V¥ r1+N/2), and I'(1+N/2)/I(1+
(N —1)/2) £ 2*[(N/4) +1]'%, s0
do <21 — )" (1 + k2" INY2(p,Co) " tvol ¥, (3.23)

YFO oGy TN ED
o OIS +)

where the last inequality used the fact that p, < r. Combining (3.16), (3.20) and (3.23)
we find

kZ'o vol(V,_\P) < kZO {N2=WHI(1 4+ k%)~ HECop) ™!

+ 23N — )71+ k2) " INY2(poCo) ™V vol 7
<Jvol ¥, (3.24)
provided Cy 1 =234M1 — 2)"'N(poA)~ ™.
Finally we estimate the parameter #,. Writing (624°/0101) = (D — M)~ *, where
D is a diagonal matrix and M a purely off diagonal one, (I.1.18)—(I.1.20) allow one to
estimate the elements of D and M by |D,| > (1/2), and |M,;| < e,pg * respectively.
Using this information it is easy to bound sup |(82ﬁ°/6161)i; !| by 22 by estimating
the Neumann series for (D — M);;!. Thus,

6250 -1
(st

Inserting the expressions for #, and C, into (4.12), the inequality which allows

<22N2=4,. (3.25)

sup
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arbitrarily many canonical transformations to be performed becomes
8o < poBs(1 = 1) (poEq 1) (poEg 1)~ A1 TG(N), (3:26)

with §(N) = (N!)~*N ~1ONe = 190N Thjis yields inequality (I.1.21). Given that one may
iterate the canonical transformation arbitrarily often while losing arbitrarily little
phase space, the remainder of the statements in Theorem 1.2 follow word-for-word
from [2] or [3] and we don’t repeat the proofs here.

Appendix
By Lemma 1.1 of [1],

[(M-—M)"]= Y A,;"(]_[Aﬁ"“'”)><ﬂ]\7ls>. (A.1)
i—=j leL

Q- se2

On the right-hand side of (A.1), A ;;=1— M};, and  is a random walk on the
lattice L ={1,..., N}, i.e. a set of pairs {(il,zz) (i lks 1)} i€{1,...,N}. Each of
the pairs is referred to as a step, s, with | 2| the number of steps in the walk, and £2:
i—j means i; =i, iy, =j. Finally M;=Mg ,,,=(1=08_, )M, .. Isl=
li;+1 —i;l, and n( j, £2) is the number of times j appears as the first element of some
step in 2. Note that the matrix M is not symmetric here (not does it necessarily
have positive entries) as in [1], but this just requires us to keep track of the direc-
tion of each step in the walk . The hypotheses of Lemma 2.6 imply that each term
on the right-hand side of (A.1) is bounded in magnitude by (4/3)*! (/e LD
where L(Q) = Z |s|. If we note that every walk from i to j has L(€2) = |i — j|, and that

the number of walks starting at i, with L(2) = L,| 2| = M is bounded by 22, we
can bound the magnitude of (A.1) by

0

43) S S (8e/3Mte A2)

L=|i-j|M=0

Summing the geometric series yields (2.30).
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