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The KAM Theory of Systems with
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Abstract. The proof of the results on the KAM theory of systems with short
range interactions, stated in [6] is completed. Estimates on the decay of the
interactions generated by the iterative procedure in the KAM theorem are
proved, as well as the modification of the theorems of [2-3] needed for results.

1. Introduction

In a previous paper [6], hereafter referred to as I, we presented results on a KAM
theory of systems with short range interactions. The proofs of those theorems are
completed here. In referring to results from I, we shall precede the equation or
theorem number by I, e.g., (1.1.1) refers to Eq. (1.1) of I, and Theorem 1.1.1 to
Theorem 1.1 of the same work. For a general introduction to the problem, and
references to previous work in the literature, the reader should see I.

2. Decay Estimates

A sequence of lemmas is proved which in turn imply Proposition 1.4.1. The first is an
easy application of the chain rule.

Lemma 2.1. Suppose g is analytic on some domain

d29 , ,

C2N and satisfies

sup sup (2.1)

for some positive constants Ch Cg^ and κ(ij = 1,...,2AΓ). Here, δ(ί,j) =
\i(modN) — j(modN)\. Suppose x is a holomorphic map from 2' -+3ι satisfying

sup (2.2)
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sup
d2xn

for some constants Cjj and C^ 7 .
Then

sup
dx'i

and

sup

(2.3)

(2.4)

for some constants C and Dh i = 1,..., N.

Proof. By the chain rule,

Then (2.4) follows if we take Dt = ^. (We will usually estimate Dt by
m l

Nsup |CmC4 t |.) Inequality (2.4) follows in the same fashion, and we find

c = sup ( t\cmc2

mij\+ Σ \CLcLclji
i,j \ m= 1 m,n= 1

^ iVsup \CmC2

m!j\ + N2 sup I C L C ^ - I .
m,ί,j m,n,ί,j

Proposition 1.4.1 follows by combining Lemma 5.1 with the three following
lemmas:

Lemma 2.2. On W(βk/4, ξk - 3δ; Vk),

ι-βk)lι-iί

δ2zn

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)
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for B some fixed constant. Also, c1—c3 may be chosen Θ((εopo 1)α), for some constant

a.

Lemma 2.3. On W(pk/4, ξk - 3δ; Vk),

dl,

d2lm

d2h

= Pk

<n~1n2r (P n~= Pk PθC5\εθPθ
-2βk)\i-j\

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

where the constants Cj may once again be assumed to be (9({εopo

 1)α).
Let fkί-\L,z) and fkί-\Lz) be the functions defined in (1.3.16). To simplify our

notation slightly let xt = {/f if 1 g i ^ N and z^Niϊ N<i^ 2N}.

Lemma 2.4. On W(pk,ζk-2δ;Vk),

-(Is)

-(Is)

(Li)

(2.15)

(2.16)

(2.17)

(2.18)

We can take Q = 232LkN if l<Li^N, and C; = 232LkpkN
B for some constant B if

i>N. In (2.17) and (2.18) we can take CiJ = 2εopo1NB if i and j are both less
than or equal toN.If 1 ̂ if±N,N<j^.2N, or vice versa let Cη = 2NBε0, and finally
if both i and j are greater than N take C i ; = NBεopo.

We now prove Proposition 1.4.1. By (1.3.5),

fk+1(Γ,ϊ) = Hk+ί(Γ,ϊ) - hk+1(Γ) = f\ΐ,i) + f'(Γ,U + fIΠ(r,ίl (2.19)

where fι - fnι are defined in (I.3.19)-(I.3.21). Let x\ = {/; if 1 S i S N and z[-N if
JV < i S 2N},

xi(x') = {Ii(l',z')tfl^i^N and z^^Γ,^)HN <i^2N}. (2.20)

If we set 2 = W(βk/2, ξk - 3δ; Vk) and &' = W(pk+1 ,ξk+1; Vk), x is a holomorphic
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map from & into Si. Then,
32 rill

(2.21)

Combining the bounds of Lemmas 2.2-2.4 with Lemma 2.1 (where we take g =
/ [ - ] ) we obtain

sup

32 ////

(2.22)

where cΠI may be taken to be ε op o

 1 (εopo *)", for some constant α if i and j are both
less than or equal to N, £oPo(soPo X) a ifz a n < i 7 a r e both greater than or equal to N, and
εo(εoPo" 1 ) α iϊ ί<N and j^N or vice versa.

Next note that

-f

xj

d2

dxn

Γ d2 ίdfk^ \1 )
dx'dx'Λ dx -{-> \~nλZ){>

(2.23)

where xj(x') = {x} + ίS/x') if 1 ̂  j ^ N and z/x') if > iV.}. Lemmas 2.2 and 2.3
bound derivatives of x* if we note that δxJ /SxJ — 5 f j = t(dxj/dx'i — δtj) iϊ j^N and
dStydxi = dXj/dxi if 7 > AT. Lemma 2.4 (combined with a dimensional estimate)
bounds derivatives of fkί-\x), so derivatives oίdf^-^/dx^x^x') (with respect to x')
may be bounded on W(pk + 1 ,ξk + ί;V

k) by Lemma 2.1. (In this case # = dfki-^/dIm).
Finally, derivatives of Ξm(x') are bounded by noting that dΞJdx^x') = dljdx'^x!)
— δmh and then applying Lemma 2.3, while Ξm(xr) is bounded by noting thatΞ^x')
= dΦk/dφm (Γ,φ(Γ,φ')) by (1.3.11) and then applying (1.3.6). Collecting all the
constants that arise in this process, bounding the sum over m by a factor of N and
noting most importantly that this process allows us to extract a factor of
(εoPoΨ~ηk)il~2βk)δ(Uj) from each term yields

sup
g2fII

dx[
(2-24)

where cu may be chosen to equal cuι in (2.22).
Finally,

: / \ δx^

δx'j\δxmδxn
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(2.25)

We bound .a m and its derivatives, and the derivatives of x* as we did just above.
Derivatives of hk(x) are bounded by (1.2.5), (1.2.6) and dimensional estimates. Then
Lemma 2.1 bounds derivatives (with respect to x') of d2hk/dxmdxn°x

t. Finally,
bounding the sum over m and n by 2AΓ, collecting all the constants that arise we find

,2/ Jδ2f
sup

with Cj chosen equal to cIΠ in (2.22). Finally noting that

(2.26)

and

sup

sup

2 jrk+1d2f

δ2fk

S NB' sup
2 rk+lδ2f

for some constants B and B\ we obtain Proposition 1.4.1 by adding estimates (2.22),
(2.24) and (2.26). We now turn to the proof of Lemmas 2.2-2.4. Their proofs depend
on the following two results.

Lemma 2.5. On W(βk/2, ξk - 2δ; Vk)

δ2Φk , ,
sup

sup

sup

2Φk
d2Φ

2Φk
d2Φ

(2.27)

(2.28)

(2.29)

Again, cγ - c3 are Θ((εopo ^

Lemma 2.6. // Misann x n matrix whose elements satisfy \Mtj\ ^ce~Ic|l"" /\ and c and
00

K are such that
J

satisfy

e~KJ ^ 1 and c < 1/4, then (ί —M)"1 exists and its matrix elements

I [(1 — M) 1 ] i j | ^ 232 | ! ;le κ | ί il. (2.30)

This is a straightforward lemma that may be proved in a number of ways. We
sketch a proof in the appendix based on ideas from statistical mechanics and field
theory [1], [5].
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To prove estimate (2.5) note that (1.3.8), (1.3.10), and the chain rule imply

dz ^ d2Φ dzi

δ z } ~ ' " lJ \ = ιdl'idzι~"~ dz'j-9'

with δ2Φk/dΓidzι evaluated at the point (/', z(Γ, z')). Note that (2.31) may be written as
a matrix equation

D=Λ+MD, (2.32)

where

D = —(I'9z') Λ = δ eiMΓ>-'\
13 dz'j lJ '

and

Thus,

D y = [ ( 1 - A f ) - M ] y = (1l - A i ) y M 7 J . (2.33)

We first note that (1.3.7) and (1.3.10) imply that on W{pJ2, ξk - 2δ; Vk\ suplΛ^I ^ 2.
By (2.28) we see that on W(pk/4, ξk - 3δ; Vk\

sup|My| ύ 2eξk'2δ c2(εopoψ~ηk)il~βk)]i-jl. (2.34)

Since c2 ~ Θ((S0PQ 1)α), and ^ k ~ 2 < 5 = AΓβ, we can choose ε0 sufficiently small that the
hypotheses of Lemma 2.6 are satisfied, and we find

|(1 - M)yx I ̂  232 |ί^l(εo/9o ' ) ( 1 " ^ ^ " M / " ; 1 . (2.35)

Combining (2.33), (2.35) and our observation concerning A n yields (2.5).
If we again use (1.3.8), (1.3.10) and apply the chain rule to d2zJdz'idzr

j{Γ^\ we
obtain an expression which may be written in matrix form as

(2.36)

where D\f = d2zmldz'idz'j{Γ,ϊ\ M is the same matrix that appears in (2.32) and

f iδ ef
; λ ^ r ^ ΰ t

 ldm'e k dl'mdzt dz'j

« d2Φk δ2Φk dzn δZι

_• iAm f PΦk δzx δzm
lZme Ί£drdzdz'dz'dz'

(We have omitted the arguments of the functions on the right-hand side of (2.37) to
save space.) Lemma 2.5, (2.5) and a dimensional estimate imply that we may extract a
factor of (ε op^ 1) ( 1~" k ) ( 1~A c ) | i~ '1 from each term in the definition oϊΛ\f, giving a
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bound
\Λff\ ̂  213β^1

PoN
2e^2v^(εoPoψ-ηk)il-βm^. (2.38)

(We have taken a supremum of the right-hand side of (2.37) over W(βk/4, ξk — 3(5;
Vk).) By (2.36),

— — (Γ, z') = D\f = [(1 - M)~ γA ( 2 ) ] ; , . (2.39)
dz'idzj

Combining (2.38) and (2.35) then gives

^ (ft xP0)219N2eH\i- j\ + l)2v-\Wo-l\(l-ηk)(l-βk)V-jl

^ 219NB(pk-' Po)(εopό ψ-oov-vw-Λ, (2.40)

sup

for some constant B, and the supremum runs over W(pk/4, ξk — 3δ; Vk).
To prove (2.6) note that (1.3.8), (1.3.10) and the chain rule imply

— « z') + f —ί/ ' z Ά ϊ z')\ (2 41)

The proof follows the now standard procedure. Let D ( 3 ) be the matrix with elements
D{{ ] = dzi/dlp and Λ ( 3 ) the matrix with elements

Then (2.41) implies

(2.42)

BoundΛ\f by Lemma 2.5 and we use (2.35) to obtain (2.6), with cλ -
Inequalities (2.8) and (2.9) are now proved in exactly the same fashion. Let D be the
matrix with elements Dmj = d2zm/dz'idΓj(Γ,z') or d2zm/dΓidΓj{l\z'), depending on the
circumstances. Using (1.3.8) and (1.3.10) show that

Dmj = t(ί-M)-1Λlmj, (2.43)

for some matrix Λ. Then use Lemma 2.5, and (2.5) and (2.6) to show that \Άmj\
^(£oPo1)(1~ηk)(1~2βk)lι~J^ f o r all m Combining this observation with (2.35) yields
(2.8) and (2.9). We won't write all the details.

With Lemma 2.2 in hand, Lemma 2.3 is just an application of the chain rule. For
instance combining (1.3.12) with (1.3.11) we see that

2Φk
d2Φ

( 1 4 4 )
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on W(pk/2, ξk — 2δ\ Vk). Taking the supremum of the magnitude of both sides of
(2.44) over W(ρk/4, ξk - 3δ; Vk\ and using (L3.6), Lemma 2.2, and Lemma 2.5, we
obtain (2.10). (Note that if (Γ,zf)eW(pk/4,ξk-3δ;Vk% (l{ΐ,i\z(V,i))
ξk - 2δ; Vk\ so \zU',ϊ))\ < eξ\) Similarly,

^y f ^(Γ,z(Γ,z'))^a\z% (2.45)
ι=ιozidzι ϋZj

on W(pk/4, ξk — 3(5; Vk). Applying Lemma 2.2 and Lemma 2.5 plus (1.3.6) to estimate
dΦk/δzi9 we immediately obtain (2.11).

The last three estimates follow in exactly the same fashion—one applies the
chain rule to (1.3.12) and (1.3.11) and notes that Lemmas 2.2 and (2.5) allow one to
extract a factor of (εopo 1 ) ( 1 ~ l / k ) ( 1 ~ 2 / ? k ) | i ~ 7 ' 1 from each of the resulting terms.

It now remains to prove Lemmas 2.4 and 2.5. First note that the method used to
prove (1.3.25) easily bounds |/*c-](J,z)l by L(εopoN)(2εopoψ~ηk)Lk + 1+
2Lk + 2Nεkpke

i2ln2-2δ)iMk + 1)l on W(pk,ξk;Vk). Estimate (2.16) then follows via a
dimensional estimate.

sup I / « ] ( L z) I ̂  £ εkpke-W g 22NεkPk2
L\ (2.46)

where the supremum runs over W(pk, ξk — δ; Vk). The first inequality used the fact
that (1.2.4), plus Cauchy's theorem implies sup|/*(/)| ^ εkρke~iξk~m, and then the
sum over v is bounded just as in (1.3.6). Combining (2.46) with a pair of dimensional
estimates yields (2.15). The two remaining estimates of Lemma 2.4 as well as those of
Lemma 2.5 are proved with the help of

Lemma 2.7. Suppose \gv\ ̂ m i n ί c ! * - * 1 ' 1 ' " ^ 2 * - ^
and κ2^2ln2, then

Σ \9y\ ̂  4JV(c12
| ί-Λ<Γ I C l | i--Λ + c22

lί-jle~K2li-jl). (2.47)
V

Proof. Σ W ^ Σ φ\2e-Ki]t-*e-m

v v:rf(suppv)^|i-;|

+ Σ c 2 | y | 2 e- K 2 d ( s u p p v ) e- d Ί i l . (2.48)
v:φuppy)>|i-j|

Estimate the number of terms in each of the sums with |y| = M and d(supp v) = L by
N2L22M. Then sum from L = 0 to \i -j\ and M = 0 to oo in the first sum in (2.48), and
L = \i — j\ + 1 to co, M — 1 to oo in the second sum in (2.48). Summing the resulting
geometric series yields (2.47).

Next note that

-6jz~{Ll)= Σ fϊD(^jkV(^jl (2.49)
OZiCZj _veXk

(We are assuming that |Ϊ -j\ ̂  l/2(3/2)fc since (2.17) and (2.18) can be obtained by
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combining (2.46), and the remark that precedes it with a dimensional estimate
otherwise.) Note that the expression for d2fkί-^/dzidzj is exactly the same except that
the sum runs over vφXk. Also, all terms on the right-hand side of (2.49) vanish un-
less both i and j are in supp y. Thus, define gγ = sup\fl(Γ)(vivJ)zγ/(zizJ)\ if ί and j are
in suppy,0y = O otherwise. This supremum is over W(pk,ξk — δ; Vk). By (1.2.7),
|^ v |^ε o p o (ε o po 1 ) ( 1 - / / k ) ί ί ( s u p p - v ) |v | 2 β 2 ^~ < 5 L v | . Since rf(suppy) ^ \i-j\ for all non-
zero gv the hypotheses of Lemma 2.7 are satisfied with c1 = c2 = εopoe

2ξk,δ' = δ
and fc1 = fc2 = ( l - ^ k ) l n ( ε o p o 1 ) Since |d 2/ k [^/d*A/l and \d2fki^/dzidzj\
are both bounded by £ # v , (2.47) implies both (2.17) and (2.18) in the case

V

z. = χi+N and Zj = χj+N, where we used the fact that 2 4Ne 2k 2 l i~ /l(εoPo ψ k l i ~ j Ί ^ 1
if Ii —y| ^ 1/2(3/2)*.

Now consider

d2fkί=1 dfk

-£ΊΓ&* = Σ ifmwfo. (2.50)
Once again d2fk[-i/dzidlj is given by the same expression but the sum runs
over vφ\k. Define ^ = sup|(δ/y/5/J )(/)(vi)z7^il if iesuppy (the sup runs over
W(pk,ξk- δ; Vk)\ zero otherwise/By (1.2.7), \gv\ ^ ε o e & ( ε o p ό ψ - ^ ι ^ \ v \ e - ^ On
the other hand (1.2.7) and a dimensional estimate also imply \gv\ S

(1~7/k)d(suppv)|vk~5|"l Combining these two bounds we find
^ 1 " ^ 1 " " ' ^ have again as-

sumed that \i —j\ ̂  ^( |) k for the reason stated above.) Thus, we can apply Lemma 2.7
with C l = εoe

ξ\ κγ = (1 - ηk\ c2 = εo(εoPo Ψ~m)(1 ~βk)]ι~\ and κ2 = ψJ2)\\nBopZ\
and (2.17) and (2.18) follow in the cases 77 = Xj and zt = xi+N, or vice versa.

Finally

δ2 f^1 d2 fk

Ίm7«-ύ-Lφ™ (251)

and a corresponding expression holds for B2fkί-^/dIίdIj, with the sum running over
vφXk. Let gγ be the supremum over W(pk,ξk — δ; Vk) of the summand. By
(1.2.7) w e " see that |0V | ^ ε o p ί W ί T ~ I f k ) | I ~ ' l e ~ & l ! f l , and \gv\^
4soρoρk

2(εopoψ-ηk)disuppv)e-ξk^. Combining these observations with the fact
that we may assume \i —j\ ̂  ^{f)k, we find

W M^oPό'JίβoPo ψ-**1-™'-* x (εopo 1 ) / ? k / 2 ( 1 " I Λ W β u p p ϊ ) e - a M . (2.52)

This allows us to apply Lemma 2.7 and the remaining cases of (2.17) and (2.18)

follow.
The last task is to prove Lemma 2.5. It is very similar to the proof we just finished,

ytO

Just as before we will assume that \ί— j\ ^( i ) ( | ) k . Let gv equal the
supremum of the absolute value of this summand over W(pk, ξk — δ; Vk) if
veXfc and both ί and j are in suppy. Let gy = 0 otherwise. Then by the
estimates above, plus (1.3.2), \gv\ ̂  2Cεopoe

2ξke2Lk(εopQψ-ηk)d(suppv)\v\2eiδ-3/m
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Since d(supp v) ^ \i —j | , and δ > (§) + 6 we may apply Lemma 2.7 and (2.27) follows.
Next note that

(2.54)

ΎΨQ

Let #γ equal the supremum of the integrand over W(βk, ξk — δ; Vk) if veXfc, v Φ 0, and
iesuppv and zero otherwise. Remark that

dl',

-iΛ(i-inc)|ι -j||.,u-(a-3/2)ω

o Ψ ~Vk)(1 ~βkW~jK^oPo ψk/2)(1 ~^M(suPPv)|^|β-(<5-3/2)|vj

by our observations above, and (1.3.2). If we note that ((dωk/dΓj)(Γ\v) =
N

(d2hk/dΓjdIΰ(Γ)vι, then combining (1.2.5), (1.2.6), (1.2.7) and (1.3.2), we obtainX
dωk

. j
^ 23C2sopoe

ξke2Lk(εoPoo ψ "

These two bounds result in a bound on gy, and allow us to apply Lemma 2.7 to
obtain (2.28).

Our last bound is on (d2Φk/dΓίdΓj)(Γ,z). Once again one just writes out the
expression for this quantity using (1.3.3). Each term is bounded using (L2.4)-(I.2.7),
and (1.3.2), and one then applies Lemma 2.7. This is a straightforward exercise and
we leave the details to the reader.

3. The Proof of Theorem 1.2

Large parts of the proof of Theorem 1.2 are identical to the proofs of the main
theorems in [2] and [3]. We need, however, a better estimate on the amount of phase
space lost at each step in the inductive procedure used to prove the theorem. This
improvement results from the short range property of the initial interactions.

We will construct an infinite sequence of canonical transformations, which at
each stage reduce the size of the perturbation of the Hamiltonian, resulting finally in
an integrable system. Consider the Hamiltonian H°C(l,z) = H°(L,z) = fio(Γ)-\-
f°(Lz) constructed in Theorem 1.1.1. If

sup
δl

sup
dl

sup
ί δp γ1

\dLdL

(3.1)

(3.2)

(3-3)



KAM Theory of Systems with Short Range Interactions, II

and

di iUlj

341

(3.4)

then (1.1.16)—(1.1.20) insure that we can take έ0 = po(εoPo T> E0 = 2E0,
and p0 = pkΰ, where k0 = [(lnΛOflnS/^)"1] + 1, and pka is defined inductively by
(1.2.8). Here, the quantities with no hats (e.g., εo,po) refer to the Hamiltonian
H(L,z) of J. Also, sup| f(/) |^(2 2 JV)- 1 and sup|(l -δtj)(dώ?/dlj)\ ^ ( e ^ o 1 ) 1

(εopo

 1)<1/8>I'-Λ, and all suprema are evaluated over the region W(p0, ςo; V), where
Ϋ = F* 1 0" 1 . From the proof of Theorem 1.1.1 we see we may pick <f0 = 1. Define
inductively the sequence of parameters

Ck = (i+k2)C0,

ζft+1 = ζk ~ 4θfc,

έk,

(3.5)

=βJ2ΊNEkCkNik,
rN+l?-(N+l)

k dk

y '

with Co a constant to be determined later. Defining pk = 23pk+1, we construct a
sequence of regions Ϋ => Vo => Ϋ1 Set

R{k,fik; Pk.1) = {l\leVk-1;\(ωk(I),v>\ <Ck\v\N for some v with 0< |v| < M j .
(3.6)

(By convention take Ϋ^ί = Ϋ) Then

and Vk = y S(L ρkβ\ with dist(/, /') = |/ - Γ\.

Following [2] or [3] one constructs canonical transformations

where both transformations are defined on W(ρk/2f ξk-2$k; Vk) and map

mft/4, ξk - 34; Vk) into W(βk/2, ξk - 2$k; V
k). Defining

H\ϊ^) = / F - ^ - H / ' , / ) = ί*d') + /*(/', ̂ ), (3.8)

one has

sup dl

sup

and
\dldLJ

sup

(3.9)

(3.10)

(3.11)
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The conditions which guarantee that the iterative procedure of (3.7)—(3.11)
may be arbitrarily repeated can be combined in the single inequality

ε0
(3.12)

where ff{N) = (JV!)~ 4ΛΓ 1 0 JV 1 5 2 J V and B2 is some small (<^ 1) constant. (This is
essentially inequality (3.58) of [3] and we do not repeat its derivation.) Given this
sequence of canonical transformations we must estimate the value of Co which
insures that not too much phase space gets thrown away. We will need the fact that
the integrable parts of the Hamiltonians constructed above are given by

vol (Vk -1 \ Vk) ^ vol 8 + vol R(k, B; Vk _ x

As in I note that

with

As in Sect. 5 of I,

It is easy to show that βk/βk ^ 2" 4(1 + fc^AΓ^-^

vol£^ 2~2N2-N(ί + k^-^ioCo)-1

Since ώk(Γ) is single-valued (a fact we verify below),

vol Ϋ.

w\{R{k,&;Ϋk-ί))= J det
dl

dω.

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

Bound ! by 2 3 using (L5.5)-(L5.10), with c1 = %. Since ώk(Γ) =
k-l

Φ°(L) + Σ (SfJ

0/dΓ)(Γ), verifying that the matrix O defined there has diagonal

J f c - l

entries bounded by cλN
 x + 2 ^ εjβj \ and off diagonal entries bounded by

j=o

^oPo1)^1 is a n e a s Y exercise. Definitions (3.5) and inequality (3.12) imply
εφjx ^ (έ 0 C 0 ) ( 1 / 1 6 ) ( 3 / 2 ) J , and we then bound the sum over; by a geometric series in
(έ0C0). The single-valuedness of ώk follows by noting that (1.5.7) implies
|ωo(Γ) - ώ°(/)| ^ (i)|/ - LI while the argument of Appendix H of [3] guarantees
that

fe-1

J = 0

Thus,

- ω\Γ) - ώ\L)\ ̂  |ω°(/) - ώ°(Γ)\ -
£t> a/ dl ^(4)IΓ-ίl, (3.19)
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and

) < 2 3 \ dω
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(3.20)

where || || is the ordinary Euclidean norm and τ is defined below. This estimate
follows by noting that (1.5.12) implies || ω°(f) - ώ°(0) || ^ (1 + 22/JV)r for all Je V. By
the estimate of [3] used above,

fc-1
<? *\ I TI \ ' A Λ — 1

For any vector x, \\x\\ ^ |x| S N\\x\\, so for any /eR(/c,/zfc; Vk_γ\

k~iaa<n-d4®, ?o dl
τ)r, (3.21)

with τ = 22/N + 3AΓ
fc-1

A simple geometrical argument gives

f dω^ C^πiN-1)/2lr(l + +(JV-

Also, vol K ̂  (1 - /I) vol F = (1 - /l)
(AT - l)/2) ^ 22[(N/4) + 1] 1 / 2 , so

+ N/2), and Γ( l + Nβ)/Γ{\ +

K (3.23)

where the last inequality used the fact that p0 < r. Combining (3.16), (3.20) and (3.23)
we find

Σ
fc=0

vol(F t_Λή)5Ξ

g Xvol F, (3.24)

provided Co"
x = 2 5 + i V ( l - ^ " ^ ( p o ί ) " 1 .

Finally we estimate the parameter ή0. Writing (d2fΊ°/dldΓ) = (D - M)~ 1

9 where
O is a diagonal matrix and M a purely off diagonal one, (1.1.18)—(1.1.20) allow one to
estimate the elements of O and M by \Da\ > (1/2), and | M 0 | < SQPQ1 respectively.
Using this information it is easy to bound sup |(d2£°/d/fl/)yx | by 2 2 by estimating
the Neumann series for (O — M ) ^ 1 . Thus,

sup (3.25)
\dldίj

Inserting the expressions for ή0 and Co into (4.12), the inequality which allows
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arbitrarily many canonical transformations to be performed becomes

with g(N) = (N\yAN~10Ne~190N. This yields inequality (1.1.21). Given that one may
iterate the canonical transformation arbitrarily often while losing arbitrarily little
phase space, the remainder of the statements in Theorem 1.2 follow word-for-word
from [2] or [3] and we don't repeat the proofs here.

Appendix

By Lemma 1.1 of [1],

\leL / \seΩ

On the right-hand side of (A.I), An = 1 — Mjj9 and Ω is a random walk on the
lattice L= {1,...,JV}, i.e. a set of pairs {(ί1J2%" ΛhJk^-i)}^ J,e{l,..., JV}. Each of
the pairs is referred to as a step, 5, with \Ω\ the number of steps in the walk, and Ω:
i^j means ί, = i9 ik + 1=j. Finally Ms = M{ίj,ίj + ι) = (1 - <5ijfi;+1) M ( / M / + l ) , \s\ =
\ίj+1 — ij\9 and n(j,Ω) is the number of times; appears as the first element of some
step in Ω. Note that the matrix M is not symmetric here (not does it necessarily
have positive entries) as in [1], but this just requires us to keep track of the direc-
tion of each step in the walk Ω. The hypotheses of Lemma 2.6 imply that each term
on the right-hand side of (A.I) is bounded in magnitude by (4/3)|β| + 1c | β |e~ κ L ( ί ? ),
where L(Ω) = Σ | s |. If we note that every walk from i toj has L(Ω) ̂ \i—j |, and that

seΩ

the number of walks starting at i9 with L(Ω) = L, \Ω\ = M is bounded by 2L2M, we
can bound the magnitude of (A.I) by

00 00

(4/3) £ Σ (8c/3)M2Le~κ L (A.2)
L=\i-j\M = 0

Summing the geometric series yields (2.30).

References

1. Brydges, D., Frohlich, J., and Spencer, T.: The random walk representation of classical spin systems

and correlation inequalities. Commun. Math. Phys. 83, 123 (1982)

2. Chierchia, L., Gallavotti, G.: Smooth prime integrals for quasi-integrable Hamiltonian systems. II

Nuovo Cimento 67B, 277 (1982)

3. Gallavotti, G.: 'Perturbation theory for classical Hamiltonian systems.' In: Scaling and Self-Similarity

in Physics, Frohlich, J. (ed.). Boston, MA: Birkhauser Boston, Inc., 1983

4. Pδschel, J.: Commun. Pure Appl. Math. 35, 653 (1982)

5. Symmanzik, K.: Euclidean quantum field theory. In: Local Quantum Theory Jost, (ed.), New York,

London: Academic Press, 1969

6. Wayne, C. E.: The KAM Theory of Systems with Short Range Interactions, I. Institute for

Mathematics and its Applications, Preprint Series No. 32 (1983). Commun. Math. Phys. 1984

Communicated by A. Jaffe

Received October 23, 1983; in revised form May 21, 1984




