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Abstract. We continue the studies of the Paper I and extend the results of this
paper to operators defined by restrictions on different scales, or by renormal-
ization transformations of different orders.

Introduction

In our study of ultra-violet stability for gauge field theories we will have to consider
propagators defined by some quadratic forms with restrictions of different scales
on disjoint subdomains of a lattice. In this paper we will continue the investigation
of the fundamental quadratic form {dA4, d4), and the restrictions are given by
averaging operators of different orders, introduced in the first part [4]. We will be
interested in the same properties as before, thus in local regularity properties and
in exponential decay, but we will have to relate them to many scales appearing in
the problem.

This paper is a continuation of [4] and we use all the notations introduced
there without further explanation. We refer to the results and the formulas of this
paper using its original numbering, for example Proposition 1.3, formula (1.81),
and so on. The only notation we would like to mention here is that a distance
between two points x, y € nZ%, n> (3, is given by the I*-norm of the vector x — y and

is denoted by [x—yl, i.e. [x—y|= ¥ |x,—y,|. This distance depends of course on
u=1

the scale of the lattice.

A. Operators Defined by Conditions on Many Scales

Let us begin with a generalization of the variational problem considered in Sect. D
of [4] and leading to the operator H,. At first we have to describe a geometry of

*  Research supported in part by the National Science Foundation under Grant PHY-82-03669



224 T. Bataban

domains on which we will consider the problem. We consider a sequence of
domains )

913923...391‘, QJC]-;’, ]=1,2,...,k, (2.1)
which satisfy the following conditions:
Q=B(QY), QYCTY  anditisasum of big blocks,

(En)~ ' dist(25,Q;.,)>RM, M is a size of big blocks and R is a big
positive integer which will be fixed later.

2.2)

Such sequences appear e.g. in the proof of the upper bound in [2]. The above
sets are subsets of T,, thus sets of sites of this lattice, but we will apply the same
notations to sets of bonds defined in the following way. If @ C T,, then we denote by

Q also the set of bounds |J st(x)={bonds bCT,: at least one end-point of b
xe
belongs to Q}. Let us define

A;=00\Q9 . j=1,..,k=1, 4,=0F, A=} (2.3)
for the sets of sites and the sets of bonds; thus we have

Q = j@l Bi(4), T= j@o Bi(4;), where B°(Ay)=4,. (2.9
Let us notice that we admit the case when some domains €; are equal to T,, for

example Q;=T, for j=1,2,...,], IZk.
The variational problem can be formulated as follows. We consider the

functional . ) .
A- 2 nl(04) (p)| 2.5)
p
for A fixed outside 2, and with fixed averages inside Q,, more exactly
A=B, on A,, Q;A=B; on A;, j=1,... k. (2.6)

The functional and the conditions are invariant with respect to gauge transfor-
mations A: A— A*=A— 04 such that

A=0 on A,, Q@A=0 on A;, j=1,..k. (2.7)
These gauge transformations form a group and we consider orbits of this group.
We want to find a minimal orbit of the functional (2.5) under the restrictions (2.6).
To solve this problem we have to fix a convenient gauge condition. We will use a
generalization of the gauge condition R0* 4 =0 defined and used in Sects. C and D

of [4]. This generalization can be defined in the following way: from each orbit of
the gauge group we choose a minimum of the functional
Z)(0* AN (O = Zn')(0*A) ()~ (D) (),
) ; . (2.8)
A=0 on A4,, QiA=0 on 4;, j=1,..,k.

If A, defines a minimum, then we have the equation
X n%(462) (x) (6*A4) (x) = (42,) (x)) =0, 29)
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where A, 04 satisfy (2.7) and besides this J4 is arbitrary. Let us denote
N(Q)={A: A satisfies (2.7)}, (2.10)

and let R be an orthogonal projection in the space I*(T;) onto the subspace
AN(Q"). Equation (2.9) implies 44, =R0* A, and this equation has exactly one
solution because the Laplace operator 4 is positive on the subspace N(Q"), hence it
is invertible on this subspace. More exactly we have the inequality

k
ddyzn ¥ (B2 X pYla)l?,  AeN(Q), 2.11)
j=1 xeBJ(Aj)
as it follows from [3, 2.26, and 2.27]. Thus the functional (2.8) has exactly one
minimum on each orbit. This miminum satisfies the equation

RO*A4* =0, or Ro*A=0 if we take A% as A. (2.12)

Now we will obtain a representation of the operator R similar to the represen-
tation obtained in Sect. C. According to the definition a value Rf of the operator R
acting on a function f defined on T, is equal to A4, where 4 is a minimum of the
functional

AeN(Q), - gn”lf(X)— (42) (%)= ) nf )= (AP, (2.13)

and where 4, =4+ Q"*aQ’ and the operator Q"*aQ’ is given by the quadratic form
G QI = X % aft QNP @19

The numbers a; satisfy the recursive equations a;. ; =aa;/al”*+a;, a, =a (see [1,

2.13 and 2.157), and we assume that (Qg4) (x) = A(x), x € A,. To find this minimum
we consider the function

9(2, @) =3 X 0’| f(x) = (4.4 ()P +<,Q'A), 2.15)
k .
where @.0D= 3 3 (Efo0) @A)
S0 yed,
Extremal points of this function are given by solutions of the equations
5g _ ’ 7 % — 5g — 71 —
5i= A(f—4. )+ 0% 0=0, &U—Qi—o. (2.16)

The first equation gives A= 4, }f — 4, 20*w = G’f — G’*Q"*w, from the second we
get QA=Q'Gf—Q'G*Q*w=0, hence w=(Q'G*Q*)"'Q'Gf and A=GTf
—G?Q*(Q'G*Q*)"'Q'Gf. Of course Q’4 =0, hence

Rf=Ad=A, 0= f—GQ*Q'G?*Q*) 1Q'Gf. .17)

The operator G'= A4, ' is a well defined, positive operator because 4 satisfies the
inequality (2.11) for all A, with min{a;, n*} instead of n* and the index j running
from 0 to k on the right-hand side. This implies that G'* and Q'G’*Q"* are positive
operators, hence (Q'G*Q'*) ™ ! is well defined and positive also. We will investigate
later properties of these operators, and the operator R.
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Now let us come back to the variational problem (2.5), (2.6) with the gauge
fixing condition (2.12). We will prove that there exists exactly one critical
configuration, which is of course, a minimum of the functional (2.5). By definition it
is a value of an operator H at the configuration B. To investigate this operator it is
convenient to express it in terms of a properly chosen Green’s function of some
elliptic difference operator in a manner similar to the formula (1.103). To prove the
above statements we apply again the Lagrange multipliers method and we
consider the functional

h(A, 4, w)=34<{A, 4,AY —%a{B,By — {4, R0*A)—{(w,QA—B), Ri=1, (2.18)

where

4,=0%0+0R0*+ Q*aQ=4—0Po*+Q*aQ, (2.19)
and the operator Q is given by
(QA) (b)=(Q;4)(b) for bed;, (QoA)(b)=A(). (2.20)

Of course the functional 4 is equal to (2.5) for configurations A satisfying (2.6),
(2.12). The operator Q*aQ is defined by a formula similar to (2.14) with a; replaced
simply by a, the other changes are obvious. To find the minimal configuration A
we have to solve the equations

Sh i
51 =2aA—0RI=Q*0=0,
Sh Sh @2D)
= —RI*A=0, < =_(QA—B)=0.

SA ow

One of our main results will be that the operator 4, is bounded from below by a
positive constant, hence the first equation implies

A=GORA+GQ*w, G=4;'. (2.22)

The second and third equations can be written as
RO*GORA+RO*GQ*w=0, QGORA+QGQ*w=B. (2.23)
We investigate these two equations, and especially the operators R6*GoR and

RO*GQ*.

At first we will write an integral representation of the operator R, analogous to
the representation (1.27). By the formula (2.17) and properties of Gaussian
integrals we have

e V2R o= 1211 (Z =1 [ g5(Q/ A)e 211/~ 42117 =1 (2.24)
or
QUSRI = /=1 [ 4)S(Q/A)e ™ V21144112 +<41. 2> (2.25)

Let us denote by ¢ a covariance of the Gaussian integral on the right-hand side
above. Thus we have

R=4%4. (2.26)
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It is easy to see that
g — G/2 _ GIZQ/*(Q/GIZQ/*) - IQ/G/2 . (227)
This formula, the equality (2.26) and the equalities Q'4=%Q* =0 imply the
representation (2.17).
Let us consider the operator RO*GJR. We have
e1/2<f,R6"‘GaRf> =Z— 1 J’dAe— 1/2¢A,42A4) +{f,R*4)

=Z "1 [dAe 12110417~ 1/2all Q4|12 ~ 1/2[|*4]| >+, Ro*4)
. Z/—l(j‘ dlé(Q//{)e—1/2||6*A*Al||2)'1 . (2.28)

Applying the Faddeev-Popov procedure we change the Gaussian gauge fixing
term in this integral into the d-function dx(RO*A). Let us recall that J; is a
o-function at the origin of the real, finite-dimensional Hilbert space R. We have

ldet(4 Tyo)! § dA'6(Q'A)Sr(RO* A+ AX) =1 (2.29)

(see the proof of the formula (1.46) in [4]) and we insert the expression above into
the integral in (2.28). We change the order of integrations [dA[dJ ...
=[dA'[dA..., next we make the gauge transformation 4—A* = A—0/’, and we
again change the order of the integrations. Because Q’A’=0, hence QA* =QA4
—0,0'2'=0QA, and we get

e1/2<f,R*GIRS>
=Z""|det(A1yg)IZ' | dAe™ 12141 120104175 (R )
. fd/l’é(Q’).’)e_ 1/2[|0*A— AN ||2+{f, RO*A— 42" (j dié(Q’l)e‘ 1/2||6*A—A/1'—A}.||2)—-1
=Z " |det(d [yg)|Z [ dAe™ /210417 112al1041% 5, (Ro* 4)
. j‘ dVS(Q'V)e™ 172|427 || 2+ CA0*A4,2") —<Af, 27> (j dlé(Q//l)e‘ 1/2 ||AA||2+<A3*A,}.>)— 1
=Z " |det(4 [y )|Z' [ dAe 12104112~ 1/2a10411%5  (R* 4)
.o CAPAGAS) +1/2KAS,9AS) — o124, RS | (2.30)

The last equality follows from the identity (2.26) and from the presence of the
o-function dx(R0O*A4). Thus

RO0*GOR=R. (2.31)
Now we consider the operator R0*GQ*. We have
R*GQ*=Z 1[dAe 124 4aDRo* A0 A . (2.32)

Applying the same operations as in (2.28)+2.30) we get,
RO*GQ*=2Z"|det(4 rN(Q’))lZ/j dAe™ 12104112~ 1/2a]| Q4]
- OR(RO*A) [ AN S(Q'N)e 11214~ 42X (Ro* 4 — A))Q A
. (I dAs(Q'2)e” 1/2||6*A—AA||2)—1
=Z"'|det(A [y )|Z [ dAe 12110417~ 17241104175 (RG* 4)
FANS(Q A ye MRIANIX(_ A} — A9 A0* A)Q A
~(fdAd(Q A)e 12441 ¢, (2.33)
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We have applied the translation ’—1'+%40* A4, and the same for 4, to get the
second equality. The last follows again from (2.26). Hence we have

RO*GQ*=0, QGOR=0. (2.34)

The equalities (2.31), (2.34) are generalizations of the equalities (1.97), (1.95) in [4]
and can be applied now to Egs. (2.23). The first equation is simply RA=41=0, and
the second is QGQ*w = B. The operator G is positive, hence QGQ* is positive also
and an inverse is a well-defined and positive operator. We get w =(QGQ*) ™ !B, and
from (2.22) we obtain finally

A=HB=GQ*(QGQ*) 'B. (2.35)

Thus we have proved that there exists exactly one solution of the equations (2.21),
hence exactly one critical configuration of (2.5) satisfying (2.6), (2.12), and given by
(2.35). The only assumption we have used was the positivity of the operator 4,,
a>0, or G. This will be proven later. We have obtained the same representation for
the operator H as in (1.103), hence properties of this operator are related to
corresponding properties of G. We have also the representation (1.107) for the
projection operator P.

The variational problem (2.5), (2.6), (2.12) can be solved also in a different way.
We use the fact that the configuration A4 is fixed outside 2, by the conditions (2.6),
thus we should obtain a solution of the problem using operators chosen arbitrarily
there, especially operators with arbitrary boundary conditions outside 2,. Let us
take a neighbourhood 2 of the domain 2,. We assume that it is a sum of big blocks
of the lattice T;. For example we may take Q = {a sum of big blocks of the lattice T;
with distances to 2, < RM}. We will consider operators with Dirichlet boundary
conditions on Q. For the quadratic form (2.5) we have by (2.6),

(A, 0%0A) =1 A, Q0*0QA)Y +{ A, Q0*0Q°B) +5(B, Q0*3Q‘B) ,

hence the Lagrange function can be taken as equal to

h(A, 4, 0) =LA, QA,QA> + (A, Q*0Q° B> +4(B, Q°0*00°B)

RA=4, ®=0 on Q°. We may take also R defined by operators with Dirichlet
boundary conditions on Q°. Solving critical point equations for h(4, 4, w) and
denoting G(Q)=(4,15) ' =(24,2)" ", we get

A=G(Q)Q*(QG(R)Q*) ™ 'B+G(Q)Q*(QG()Q*) ' QG(Q)0* 0B
— G(Q)0*0Q°B .

We have to notice only that the equalities (2.31), (2.34) hold for the operator G(R)
also. If B=0 outside Q,, then the above representation simplifies and we get (2.35)
with G(Q) instead of G.
All the reasonings and the results of this paper hold, with minor and obvious
changes, for the operators G(22). We choose Q= T, for simplicity of notation.
Let us make a remark about the formulation of the problem (2.5), (2.6), (2.12)
and the geometric setting (2.1), (2.2). Such problems arise in a natural way when the



Propagators for Lattice Gauge Theories. IT 229

so-called “large-fields regions” are considered, see the paper [2]. We will use them
also systematically as a convenient way of providing boundary conditions for
operators such as 4,. If we are interested in a Green’s function for this operator
considered on a domain QC T,, we have to introduce some boundary conditions.
We can do it taking a sequence (2.1) with 2=, and smallest possible domains
B/(4;), and considering the operator 4, defined by (2.19), (2.20) for this sequence.
Boundary conditions of this type can be interpreted as obtained by building an
effective mass on the domain 2,\Q,, starting from O(1) on Q, up to + oo outside
Q,. They are technically much more convenient than the usual local boundary
conditions, like Dirichlet or Neumann boundary conditions, which give un-
pleasant singularities connected with sharp edges of the domain Q.

The main goal of this paper is to investigate the properties of the operators G,
G, Q'G?Q'*, 0GQ*. We will apply the methods and the results of the previous
paper. The basic tools are the generalized random walk expansions. Each set /4;isa
sum of big blocks of the size M En(A,;C T34, or of the size M if A; is scaled to unit
lattice. We cover B’(A;) by a sum of cubes [ of the size 2M Iy, each cube being a
sum of 2¢ big blocks with a center y € A;(more exactly it belongs to the boundary of
this set also). Taking these covers for all j from 0 to k we get a family & of cubes [

of different sizes and such that T,= |J 0. We will identify this family of cubes
Oe2

with the set of centers of these cubes. We construct also the corresponding
family of functions & described in (1.118), and rescale them to proper scales.

They satisfy
> hh=1. (2.36)

Oe2

B. Operators Defining Gauge Conditions

Let us consider at first the operator G'. We construct a random walk expansion of
it in a similar way as in [3]. We define

0= %:huG/(D)hna (2.37)

where G’([J) is an inverse of A, with some boundary conditions on the boundary of
0, e.g. with Neumann boundary conditions as in [3]. Repeating the calculations
in the paper we get

A.Gy=I— Y K(hg)G(D)hy=I—R, (2.38)
]

where

(K(mA) (x)= besZt(x) (9h) (b) (92) (b) — (4h) (x)A(x)

—a B > LOR) (L, )X

x' e BI(yI(x))

if xeBiA). (2.39)

The derivatives above are on n-scale. Let us estimate one term in the sum over [J in
(2.38). Let us assume that [ is a cube connected with a I/y-scale (i.. a cube of the
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size 2MEn) and intersecting maybe the domain B'**(4;,,). Rescaling all the
expressions in K(hg)G'(O)hga to L i-scale, we get
(K(hp)G(O)hg ) (Enx)
= 3 (3" 'hg) (b)(@"'G(O)hgd) (b)— (4" 'hg) (x) (G(D)hgA) (x)

best(x)

—a; Y L@ hg) (R,¢) (G(Dhgd) (x)

! x' e BI(yJ(x))

if xeB(A)CT,-,, (2.40)

or the last term above is replaced by a term defined in the same way but with j+ 1
instead of j and with the additional factor L2 if x € B'* (A, ,)C T, -,. Of course
the operator G'(0) is defined on L /-scale, hence

(G(Dhgh) (x)= T L7G'(0; x, xYhg(x)AUX) .
If CJ C B/(4;), then the necessary properties of G'(0) are described in Lemma 2.2
[3].If O intersects both domains B/(A;) and B'* (4, ,), then we express G'(0J) in

terms of operators introduced in the paper. On the basis of the formulas (2.12),
(2.13) [1] we have

et GO = 71 [ djexp[ — 1/2¢4, (A% "N+ Q*aQ’ 1 )AD + {4, £ )]
=Z"do!, exp[- /247 3 [(Q'e) (y)lz]

-fdiexp[—1/2a;|w—QAI> —1/2(A, 4 " MAy+<4, f>], (241)
where A=YNB(4;.,,) and w is equal to 0 beyond A. Further, we have after the
translation A—4+G}[0)Q*w

PRVEXTN L (miYp)
=Z'"""'[do! sexp[—1/2aL" *w, Q*Q'w)—1/2a;| 0|
+1/2a3{w, Q;G(O)Q*w) 4+ {w, @GS ]
JdAexp[—1/2¢4, (GHD) ™' A>+<4, ]
= PSEOD 7 [ dot sexp[—1/2¢w, (CP(D)) ™ o) +<w, Q;G(D)f ]
=exp[1/2{f, GO f >+ {f; G(QFCHDQ;G(T) £ 1. (2.42)

Properties of the operators G)(0), G}((1)Q;* and C§([J) are described in Lemmas
2.2, 2.4, Proposition 2.3 [3]. From these and (2.42) we get

(G(@H, 1@ G(D)D (RS 0(1)e™ szl (2.43)
This inequality and (2.40) imply
I(K(hg)G(D)hgd) ()| S O(M ™ 1)e™ %=1 (2.44)

if either supp A C B/(y) for y € 4;, or suppACB/*!(y) for y € 4, . The distance in
the above inequality is measured on L /-scale.

The inequality (2.44) implies an inequality for the operator R. To write it we
will introduce a new definition of distance, taking into account that natural scales
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are different on different subdomains B’(4;) of T,. Let us denote

B= U 4;. (2.45)
j=0
We will identify this set with the set of corresponding blocks. For an arbitrary
contour I' on the lattice T, we put |I'|=n#n, where n is a number of bonds the
contour I consists of. We will define a new distance between two points of B. We
consider a special class of contours I'. They have the property that a part of I’
contained in B/(A;) consists of bonds of the lattice 4; Now we define

d(y,y)= inf Z Em Ly nB(A)l,  y,yeB, (2.46)

Iy,y j=0

where the infimum is taken over all admissible contours described above, with end-
points, y, y’. We may extend this definition and define the distance for a pair of
arbitrary points x, x'eT, putting d(x,x")=d()/(x), yj'(x’)) if xeBi(A),

x"€ B/(4;). We need some bounds for the distance d(y, y"). It is convenient to
1ntroduce new notations. The domain €; is a sum of cubes of the size MLy. A sum
of faces of these cubes which are not contamed in the interior of Q; forms a surface.

We denote this surface by X; and we use the same notation for the set TONZ,; =4,
2. The surface 2; separates the sets B/(A;) and B/~ (4;_ ). Now let us consider
the deﬁmtlon (2. 46) Of course the infimum is attained at some contour I, .. Let us
assume that y € 4;, y' € A;. We will analyze a structure of the contour I, ,, and we
will obtain a bound for the distance d(y, y’). The contour I, , starts at y and
intersects either the surface 2}, or the surface X, ,, the first time at a point y,. Let
us denote the index of the surface by j;, so y, € 2 . A next portion of the contour
I, , starting at y, is contained in one of the domains B'(4;)), B/*~!(4; i 1), and

Ly
iﬁteyrsects one of the surfaces X; _;, X;, 2; ,; the first time at a pomt y7. If this
point belongs to X; , then we consider a next portion of the contour in the same
way and we denote by y] the last intersection point of the contour I, . with the
surface 2;,. More exactly it is such a point of the contour I}, that’ y1 €X;, the
portion I, . of the contour does not intersect any surface X; with j=j,, and it is
the last point of the contour with this property. If the point belongs to one of the
surfaces X; _, 2; 1, then we denote it by y, and we denote the index of the surface
by j,. For uniformity we take y; =y, in this case and we define I, ,, as consisting of
one point. Thus the portion I, ,, of the contour I, ,.connects the ‘surface X ; ;, with
the surface 2;, and is contalned in B"*(4;,,), j12 —mm{ J1,J2}, moreover |j; —j,l
=1. Now we consider the contour I, , and we apply the same analysis.
Continuing this way we obtain a sequence of points y, 1, ¥1, V2> Vas -+ +» Vs Vs ' O11

I, ., and a sequence of indices j, ji, j,, --.,jm» j* With the following properties:

I_)" y':[;',.vlu 19 (I—J"l ,VIUI—;H y1+1) Ym+1 =y/’ (247)

v yi€2;, I, , does not intersect any other surface X, j# ji,
r connects the surface X, with the surface X; ,, and is

YiYi+1 Ji+1
J
contained in B”“(An,1+1)> where j; ;. =min{j, j,4},

Uz_j1+1|=1-
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From this decomposition and the definition (2.46) we get
d(y, y)Z(En) L, 1+ Z (L)~ HE,
+ Z R DI | M
Z(Em~y—yil+ l; &~ y—yil

+ @) =yl (248)

Now let us come back to the inequality (2.44) and its consequences. One of
them follows from the equality (2.38) where the operator R was defined. We get

[RASOM™Y) 4], (2.49)

thus the operator R has a small norm in the space L* for M sufficiently large, and
we get

WU—-R'=Gy ¥ R
=X hg,G(Og)hg K(hg,)G(Ohg, ... K(hg,)G'(O)hg,, (2.50)

where
CO=(D0,|:|1,...,D,,), Die@, DinDi+1=t:®.

Both series above are convergent in the space L*, and in the Holder norm | - || ,
also. To investigate properties of G’, and especially an exponential decay, we will
use another bound for the operator R. From (2.44) and (2.38) we have

I(RA) ()| SOM~Ye Al if suppACB(y), yed;. (2.51)

Of course in the considered case the operator R is short-ranged and for many
points x and y the property (2.51) holds in void, but the point is that this property is
preserved under the composition of operators possessing it. A summation
preserves it also, so we will have it for the operator G’. Let us consider n operators
R, R,, ..., R, satisfying (2.51) with a constant O(1) instead of O(M ~ 1), and let us
consider the composition R=R,R,-...-R,. We consider (RA) (x) for x € Bi(y),
yeA;and suppACB/(y), y' € A;. We have

R (x)= 2 (Ry4(y1)R,4(y,) - ... - Ry— 1 4(yn— )R, A) (%),
Y1,¥2,.es¥n-1€B
2.52)
where A(y)=B/(y) if y € A;, hence

RGN0y 5 e dolbmp-dndnd. . g o).
V1,92, Vn-1€B (2.55)

The distances d(y;, y;+,) are determmed by some admissible contours I,

YisYi+1®

Taking the contour I , = U where y,=y, y,=)’, we obtain an

i Yi+1?
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admissible contour with end-points y, y’, hence by definition (2.46) we have

Ay, y)+d(y,y)+ -+ d(Ya-1,¥) 240, ¥) - 2.54)
This is of course the triangle inequality for our distance. It implies

I(RA) ()| SO(1)re™ (1 70%d0) 57 @7 o0l . g™ a%0dbn-1:9))
Virerosbne 168 (2.55)

with arbitrary O <o <1. To estimate the sum above we add a summation over
y' € B and we get

e—aéod@,yl), ,e—aéod(yn—uy’)é sup Z e~ #00d(y,¥") " (2.56)
yeB y'eB

Thus we have to estimate the sum on the right-hand side above for one exponential
factor. We use the inequality (2.48). From the condition (2.2) and from the
definition of the points yj, y;,;, more exactly from the fact that they belong to
different surfaces 2, we have

(B )~ yi= i1l > RM. (2.57)

The distances on the right-hand side of (2.48) are scaled to unit lattice and we
estimate e ~*?0:Y) ysing (2.48) and adding sums over all intermediate points y,, y;,
I=1,...,m, and over all possible numbers m. We get

k
Z e~ @00dy") — Z Z e~ %00d(v,y)

y'eB Jj'=0yedj
k ©
< e~%aéomRM
T /=0 m=max{|j=j'|-1,0} 2,20, 1= 1,00, 2m 1 1€ 24
. gt adols) —z1lp~tadolzi—ztl . | 53 adolzim—zmal
k ©

e—%aéomRM(co(l/za))d(2m+1) , (258)

J'=0 m=max{|j-j|-1,0}

where s(y) denotes a scaled image of y on unit lattice, and

4
co()= Y e ol <(l—e ®) 1< —.
zeZ “50

Now we require that RM is sufficiently large, i.e. we assume
2a6oRM >2dlogco(ka)+1. (2.59)

Then the sum over m can be estimated by
d 1 —4adoRM max{|j—j'| — 1,0} - -m d(1 —1i=7l
cozae > A Zoe Sbco(zo)e” V.

e

The summation over j’ gives finally the constant 12cf(3a)=c,(x). For easy
reference let us formulate these results in
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Lemma 2.1. For the numbers o, 0 <o < 1, ¢, () = 12c8(3a), and RM satisfying (2.59)

we have
e~ 200d¥) < o~ b0 RMmax(|j=j'|~1,0} yed;, yed;, (2.60)
sup ¥ e ®<e (), (2.61)
yeB y'eB
hence
o~ W0d.y). e~ ®00d0m-130) < ¢ (ar)" (2.62)
V15, In€B
and
Z o~ 0d(y.y1) L e—-éod(yn—1,Y1)§cl(a)”e_(1 ~0%0d(y, ') (263)
Y15 ¥n-1€8

We apply these results e.g. for o« =1/2, then ¢, is an absolute constant and the
condition (2.59) on RM can be written as 6,RM > 16dlogc, + 1, so it is a condition
written in terms of absolute constants d,, ¢,. From the lemma and (2.55) we get

I(RA) ()| S O(1y'cie 4], xeBi(y), suppACB/(y). (2.64)
Applying this inequality to the n'™ power of the operator R in (2.38) we have
I(R") ()| S (O(M™ ey)e ™3 0dr), (2.65)
and this implies finally for x € Bi(y), suppAC B’ (y"),

(G'A) ()= éo [(GoR™A) (x)| = O(1) (En)*

. . e~ doIim~Hy=y"|
Y (L)~ y—y”|£2dM

- X (O(M ™ ey)re Hodon )
n=0
< O(1) (En)? e~ 4004} (2.66)

The similar inequalities hold for a derivative of G’A and for a Hélder norm of a
derivative, but with (Iin)? replaced by Iy and (Iin)! ~* correspondingly. Let us
formulate these results in

Proposition 2.2. If we have (2.1), (2.2) and M is sufficiently large, then the operator
G’ =4, Y(a=1) satisfies the inequalities
(GCHXN, FGH)I,  UGT*A) ()],
IKVGA.,  IEGV*Al,s  (AGA) (X)]
<O(1) [(En)?, En, En, (En)" (¢l +1¢D »
(En" (12D, 17+ e 7%y,
xeBi(y) or supp{CBi(y),
yed;, suppACB'(y), yed;. (2.67)

The random walk representation (2.50) is convergent in the norms defined by these
inequalities.
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Let us consider now the operator Q’G’?Q’* and its inverse (Q'G>Q'*) 1. The
inequalities (2.67) imply

Q'G*Q™) (v, V)
= "Z QG4()GQ™) (v,y)

< S 0(1) (n)?e 100403 (['g)2 (I ) e~ 10040"5)

yeB

é 0(1) (En)“' (Elyl) —d ”Z% e —%5od(}’yY")L2(j” —j)e——% dod(y, yv)e ~180d(y",y")
y'e
§ 0(1) (Brl)“‘(ﬂ'n)“d ’Z:m e —480RM max{|j” —jl— 1, Q}LZUH -
y'e
o 3004,y 3 d0d(y”,y’") <0() (Ljr,)4 (B’?) —d = 160d(,)") , (2.68)

where we have used the inequalities (2.60), (2.63) of Lemma 1.

Let us notice that the choice of powers (Ix)* and ()¢ in the inequality
above is purely conventional and we may change it into any other admissible
choice, for example (I/) ¢ and (I/'n)*, using the exponential factor ¢~ /490403
and the estimate (2.60).

The inequalities (2.67), (2.68) suggest that we should consider the operator
Q’'G*Q’* on a Hilbert space I*(B) defined by the scalar product

A A5 = JZ yGZ L)) Y). (2.69)
It is easy to see from the bound (2.58) that Q’G’*Q’* is a bounded operator on this
space; we have to use only the bound (2.61).

Now we will consider the operator (Q'G*Q'*)~'. Of course the operator
Q'G"*Q™* is positive definite, so its inverse is well defined. We will construct it and
investigate its properties using again a random walk expansion. Our consider-
ations are analogous to Sect. 5 of [3], concerning unit lattice operators. If we have
one scale, i.e. 4,=T®, then the operator is a unit lattice operator. The inverse
operator is constructed by taking an approximate inverse and then solving an
exact equation. The approximate inverse can be constructed by taking inverses of
the localized operators (Q'G*Q"*) 5 and glueing them together by the decompo-
sition of unity {hD} We change this prescr1pt1on a little bit; we take a second cube
(] containing [J in the middle and of the size 4M and we take an inverse of the
operator (Q'G/(())2Q*) | instead of (Q'G>Q"*)! 5. Let us define

Co=(QG(OY0MIn™", C= Z haCohg . (2.70)

At first let us find bounds on C. We assume that either [ C B/(A ;), or it intersects
B’*(4A;, ) also. We have for o defined on B[ (outside this set we put  equal
to 0)

(0, QGO0 qw)
= (0", 0jG"((1)*Q}0"*w)
= (U4 %0, GG OPQFQ 0y, E=LT. @)
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The scales of the operators were written explicitly and the last scalar product is on
the unit scale. The operator Q”is equal to I on A; [ and it is equal to Q' on
B(AJH)r\E] A. Let us denote w; =Q"*w, hence w, is on the unit lattice and
equals 0 outside (19, We have

(o1, Q6405 0,y = I GHENQF oy 7. 2.72)

By Bessel’s inequality the squared norm can be estimated from below by a sum of
squares of coefficients in a decomposition of a vector with respect to an arbitrary
orthonormal system. As the orthonormal system we take characteristic functions
of unit blocks 4=B/(y)c ). We get

IG4(ENQfF o, 117 2 2. [<4, GHO)QF o)

>

yedWw

Zwl(y)<Q el (m)lvjy o 1”>

(Q’G'g(D)Q’ B ||>

v

=Koy, QGO0 )P (2.73)

leog 12

Next we consider the quadratic form {w,, Q;G"%(C )Q*w, . Of course it is positive
definite and to bound it from below we use Eq. (2.42):

(01, QG HDNQFw,)
= {01, 9GO0}, + <o, (Q;G(DNQHCONQ;GHNQMw,
2 {w,, QG D)Q* 0, =<y, 0jGiQf 0, > + <y, QUGH D) — GO w; )
=<y, QiG0fF 0, > —0(l)e Mo, |2, (2.74)
where we have used the Theorem of [3], G denotes the operator (4%~ !
+a;Q07*Q7) ™" on the whole lattice L™/Z“. In [3] an explicit representation of this

operator was found and from this representation we get the following Fourier
representation of Q;G;Q*:

|uj(P/+ l)leo(P,) <

lu;(p’+ DI*4o(p")
do+)  \9%

; AP’ +D

+Ao<po>_ ,
(2.75)

p e[—n,n]% | was described in (2.45) [3]. From this representation and the
bounds (2.50), (2.51) of that paper it follows that

Q612 ()=

0iGi07* 2 2y0; (2.76)
7o 18 a positive, absolute constant (a=1). For M sufficiently large we obtain
(01, QGA(DNQFw;> Z yo oy || 2.77)

The inequalities (2.73) and (2.77) together with the equalities (2.71) and (2.72) imply
{w,Q'GHD)*Q*w) 2 y5llo. 1> =31 Q* 0> 23 [w] 2. (2.78)
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Of course we have also a bound from above and an exponential decay of the kernel
of Q'G*%({1)2Q"* with the decay rate 6,. Hence the operator C%; is bounded from
above and below by absolute constants. We can use the theory developed in Sect. 5
[3] to conclude that it has an exponential decay with a decay rate §; depending on
0o and the bound y,. Another way to prove it is to consider the operator
e 0'G4(0)2Q*e™ <7, and to prove that it is almost equal to the operator
without the exponential functions, the difference being of the order O(|al), for a
small vector a € R%. This gives a bound for this operator almost the same as (2.78),
which implies an exponential decay. Thus we have

[CE(y, YIS O(1)e 2Pl (2.79)

for y, y’ belonging to BN rescaled to unit scale. From (2.71) we obtain the
following scaling law for the operators C:

Co, y)=En =~ *Ca(@m 'y, En) 1Y), (2.80)
hence
ICo(y, VISO(1) (L)~ 4~ @™ =yl 0y y e B0 (2.81)

Now we will proceed in the same way as in Sect. 5, (5.12)5.17) [3]. We will show
that Q'G?Q"*C is a good approximation of identity. We have

Q'G*Q*C= = Q'G?Q*hg Cphp = Lho(0Q61 0)*0*0)Cohn
—Xlho, 0Q'6(0)*0*01Cahy
2 DQ(G(0)*~G*)Q*hgCohy
R YN Gl Dht, Q'G?Q*hyChg

0,0+
=I— ¥ Ry Cohg=I-R, (2.82)
0,0’

with an obvious definition of the operators R .. We have to estimate the norm of
R in the space I?(B). For example let us consider the operator Ry .Chg, with
= 0" A kernel of this operator can be estimated as follows

(O =DOhE0) X EWUQ'GC?Q™) 1,y (y)Cay, yIhg (V)

y" esupph

éO(l)(Er])4 > e*%ood(y.y")cl(ﬂ"n)—d—4e-61(Lf'n)"Iy”—y’l

y"esupphp
<0(1) (E'n)‘t(ﬂ”n) —4 , 4k dod(y,supph o) — 61d(y,y')(E",7) —d
= O(1) e F0M 401 g~k oRMmax{li=J'|=1,0} , = 01d(3,y") [ ) =4

SO(1)et2oMe 210 I'y) 4, (2.83)
where we have used the fact that y ¢ [1’, and all the properties of the distance d(, ).
From this inequality it follows that

IRg. 0 Cohg Al S 0(1) e #90Mg=201a(@, 00 3y (2.84)
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so for M large enough the norm is small. Similar inequalities hold for kernels of the
other operators forming R, for example the operator with G'(C])>—G'? is small
and an estimate has the factor e ~° because of the usual estimate of the type (1.12)
[3] connected with a change of a domain. This estimate follows from the random
walk representations (2.50) for the operators G’, G'(C]). An estimate of the terms
with the commutator is even simpler and gives a factor O(M ~'). Now we can
estimate the norm of R either using the estimates of the type (2.84), or using an
estimate of the kernel R(y,y") of the operator R following from all the partial
estimates of the type (2.83). It can be written as

RO, MISOM ™ e (L)~ ,  y,yeB, yed;, (285
and by Lemma 2.1 we get

Proposition 2.3. An inverse of the operator Q'G’*Q’* is given by the convergent
expansion

(Q6*Q%) ' =CU-R)"'= ¥ CR’

= ZhDoCDohDoRDthCDthz Teeet RDzn—l,DchElznhDZn’
)

(2.86)
and it satisfies the estimate
Q'G?Q™*) ™ (1, Y)I S OL) (E)~*(Lm) ~%e 22140
y,y'eB, yed;, yed;. (2.87)

Finally let us consider the kernel of the operator 0P0* appearing in 0RO*,
R=I—P given by (2.18). We have from Lemma 2.1, Proposition 2.2 and (2.87),

[(0P*),,(x, x)| =1(0,G'Q*(Q'G"*Q™*) " 1Q'G'0¥) (x, x')|
<o) E',,,e - %5od(y,y1)(E1n)—4e*% 6xd(y1,yz)(ﬂ’zn)—d

y1,y2€B

. g "190d(y2, y)E’?<0(1)(E”I) 2(E ) dp =024y, ) (2.88)

where x € BI(y), x’€B/(y), ye A, y' € A, and 6, is determined by &, J,. The
choice of factors is again arbitrary and may be changed into any other admissible
choice.

C. Basic Operators

Now we are ready to consider the operators G and (QGQ*)™!. We start with a
construction of a random walk expansion analogous to the expansions (1.123) and
(2.50). We use the partition & and the partition of unity {hg}g.o as in (2.50). At
first let us define operators G for the cubes [J € 2. Let us take a cube [J
connected with a Iy-scale, i.e. either (J C B/(4)), or it intersects also B/* (4, ). A
cube [ is obtained from [J by taking a sum of 4“ big blocks (of the size M when
rescaled to the proper scale) with distance to [J equal to 0. In the same way a cube
(12 is formed, with (] instead of [ and built of 6 big blocks, next a cube [13, and
so on. We take the cube 12 and identify it with a torus, denoted by T, imposing
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periodicity conditions. On this torus we define operators R, 4, as in (2.17), (2.19),
but only two scales are present now. We define

Bi(A)=02nB"* (4;,,), (2.89)

and we take Q"*aQ’, 0*aQ equal to Q7% ;a;,1Q}. 4, QF:1aQ;., on B/(A4), and to
Q/*a;Q}, QFaQ;on Ty\B/(A). Let us denote by P the projection operator in (2.17)
deﬁned by the above Q*aQ’, and

Go=(4—0PL0* +Q*aQ) ! (2.90)

Both operators are defined on the torus 7. We form an approximation of G taking
as usual

GO= Z hl:IGl:lhl:I'
Oe2

Using the formulas (1.126)—(1.128), we get

4,60=I1— % Kp,oGohg=I-R, 291
O0,0'e2

where
(Ko, gd)u(x)= \ 2 (Ohg) () (9A4,) (b)—(4hg) (x)A4,(x)

est(x)

+a(En) ~2(SF(0hn)Q;4),(x) — a(ln) ™ *(QF S (6hp) A) (x)
+({a(0Po* —0P53*)hg A),(x)

+({(oPg,1(0hg)A)(x). (2.92)
if x € B/(A;) (we replace the index j above by j+1 if x e B'*1(4,,,)),
(Kg, o A)(x)=(hE(1—{5)0Po*hy, A),(x) (2.93)

if J # [J". The operators S;, Py, 1(0hg) = [0P10%*, hy] were defined in (1.120). The
function { is of the same type as h, butitis equal to 1 on a cube containing [J and
with a boundary having the distance 1/3M to the boundary of [J, and it is equal to
0 outside a similar cube with 1/3M replaced by 2/3M.

To estimate the operators Ko 5.Gghy and R we have to understand
properties of the operator G. We may assume that B/(A4) = 02nB/* (4, ) *0,
because otherwise the operator G is simply equal to the operator G; on the torus
T. These operators were thoroughly investigated in paper [4], and their
properties described in Proposition 1.2. We will prove that in the general case the
operator G has the same properties. Unfortunately the situation is more
complicated now because of the presence of the two scales. To prove these
properties we will have to modify some arguments, as we had to in the case of
operators G'(LJ). At first we rescale G from n-lattice to L™/ -lattice. Of course we
have

Gl (Linb, Linb) = (Lin)~*2G4(b,b), b,b'e ToCLIZ4,  (2.94)

and correspondingly for derivatives of G. This follows from the scaling laws for
the operators defining G that G is defined by the same formula (2.90) with
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replaced by ¢ = L/, For simplicity of notation let us omit ¢ and (I in the formulas
below.

To investigate the operator G we will express it in terms of known operators in
a way similar to (2.41), (2.42). Thus we have

D =71 [ dAexp[ —3{QA,aQA> —1{A,(4—0PI*)AY+{A4,J)]
=Z '[dAexp[—1<QA4,aQA4> —1{A, AAY+{A,T)]
(Z' 71§ dAS(Q A)e 2 llerA-arlzy =1
fdw [16(Q10) I_[ 04x(Q;4+0,0)Z7" Ly d/{/é(Q;'/y)ei%“a*A_M’”z

Jdo' 1 48(Q10) TT 8 4x(QA+0,0)Z; T [ dXS8(Qi3) e~ 1744717
ved’ (2.95)

where we have used the identity (1.27) valid for this operator P also. The
configurations o, w” are defined on A and from the definition of § ,, we have

fdw'l 46(Q @) y];[ll 0 4x)(QjA+0,0)=1. (2.96)

Such an identity was used already in the change of gauge formula (1.23). The
quotient in the last line of (2.95) was introduced to change the gauge fixing term in
the integral by the Faddeev-Popov procedure. Let us apply (2.96) and (1.27) to the
denominator. It defines the gauge fixing term introduced in Sect. C of [4], with
blocks uniformly of order j. Let us denote the corresponding operator by P;. We
have

PEC
=Jdo! ,0(Q1)Z " [dAexp[ —3a X 1(Q;A) (D))*—3aLl™? ¥ [(Qj+14) ()
beAc ced’
—3 10412 =3I —Pa*A|*+<{4, J>]
: H 0 4x(Q;4 + 010))2}_ 'y dl’é(Q}ﬂe ~HllorA-ary?

{2 das(@Rge A A @97

Our next step will be to make a gauge transformation in the integral { dA4... which
will transform the functions 0 4,,,(Q;4 +0,®) into 6 4,(,)(Q;4). We want to make a
gauge transformation which does not change the quadratic form in the first
exponential function above. At first let us find gauge transformations A4 which do
not change the last term in the quadratic form, i.e. for which

I(I—Ppo*A*|2= I~ P) (0*A—A2)|*= I~ P)o*A|>. (2.98)
This equality has to be satisfied for all A, hence for 4A=0 we get the equation
(I—Pp4i=0, or AA=P;AA. (2.99)

If this equation is satisfied, then the equality (2.98) holds for all 4. The function 44
is orthogonal to constant functions, hence P;44 is given by (1.26) and we have

Ad=A"1Q/*(Q\A™2Q%) 14~ 44 (2.100)
J J J J
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We may assume also that 1 is orthogonal to constant functions because a constant
component of 4 does not influence the gauge transformation defined by d4, hence

A=ATQHQATIOM H,  n=Qjh. 2.101)

Thus the gauge transformations satisfying (2.98) are parametrized by functions u
defined on the unit lattice and orthogonal to constant functions, and are given by
the formula (2.101). The functions y satisfy = Q4. Let us consider this formula
more closely. It is easy to see that it defines an operator which is connected with the
integral

Zy [ drs(Q — e Hl4x I (2.102)

in the same way as the operator H, was connected with the integral (1.47). It gives a

solution of the variational problem  inf £||44’|2. Let us denote the operatorin
QA =p
(2.101) by H}, so A= H/ju. From the m%mentum representation of (2.101) we may
get easily that His a bounded operator with an exponential decay, the bound and
decay rate depending on d only.
Let us come back to our problem of finding gauge transformations leaving the
quadratic form invariant. The transformations given by 4 = Hu are the only ones
leaving invariant the third and fourth terms in the quadratic form. For the

averages in the first two terms we have

(241 () =(2;4) (0)— (QiA) (b)) — (Qi4) (b)) = (Q;4) (b) — (9,1 (b)
(Q5+14%) () =(Q;+ 1) (=L (Qj4 1D (¢ +) = (Qj+ 1) (c-))
=(Qj+14) ()= (0"Qim) (o), (2.103)

where the equality QA= Q;Hu=u was used. Hence these terms are invariant if
and only if &, u=0 on A° and 0“Q’ =0 on A". This is possible only if x is constant
on A°and Q] is constant on A’ and the constants are equal. But we have assumed
that uis orthogonal to constant functions, so the constant is equal to 0 and we have

u=0 on A°, Qiju=0 on A'. (2.104)

This matches our needs exactly because the unit lattice gauge functions w
appearing in the integral (2.97) satisfy the above conditions. Let us make a gauge
transformation in the integral | d4... defined by the function A, = H i, A—>A—04
= A—0Hjw. This transformation does not change the measure d4 and in the first
exponential only the term {4, J) is changed into (4 —0Hw, J). According to
(2.103) the d-functions 6 4,(Q;4+0;w) are changed into 0 4,(,)(Q; A). In the first
integral [ dA'... we get the expression 0* A% — A)'=0* A— A(X'+ ,), and we make
the transformation A’—A’—A,. After the transformation we obtain the same
integral with the 6-functions 6(Q;A") replaced by 6(QjA"— Qj4o) = 6(Q;A’— w). In the
last integral in (Z'~* [dJ...)”! we make the same transformations, only now in
d-functions we get Q'A—Q'Ag, and QAo =Qilg=w=0 on A, and Q'4,=Q/. 1,
=(Qjw=0on A’ Thus this integral is not changed by the transformation. Taking
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into account all these changes we get

oHI.GT>

=Z" ! I dA yle—/Il’ 5Ax(y)(QjA) exp[—% <QA9 (lQA>
—3(A,(4—0P0%) Ay + (A, T)]
J oo 48(Qw)Z; 1 [ dNS(QjA — w) e HITA~a¥ 12 g~ O 1)
VAR () PR L B (2.105)

Let us notice that | do’'| ,6(Q10")8(Q/A’' — ") =(Q'L), and we use this formula in
the last integral above. The integrals over w’s and A’s can be written as

[dor ! 45(Q1w) | dX6(Qji — w)e™ X AX.0 = Cltyo
(F dor |43(Q1) ] A2S(QA— e)ye HI4aI s an )
=§ do fAé(in)e — 31l 4H 0|2 (K 4Hjw, 0*4) — (0Hj 0,7
. jdgfg(Q})g)e— AN |12+ 4R, 0% 4)
. (j dow’| ,0(Q)0)e -3 l4H} 0|2 y(4AH}o',0*4) f d)_g(Q31)e—%llAlllz+ <Al,6*A>)— 1
=fda) an(Qzlw)e»%m,A'j@ of @, HiA0 A~ HPoMT)
~(fdo'} 46(Q w)e T 4500 (o Hita0t Ay~ 1 (2.106)

where the second equality was obtained by the translation A’—A’+ Hw, and the
same translation in 4, and the operator 4 was defined by the second equality,

Ay=HPFA*H;, (2.107)

In momentum representation on the unit lattice the operator 47 is represented as
the multiplication operator by the function

o — 20 [ 1@+ DIPA50) |
)= 30 (3, 14T IS0 (2.108)
From this we get an exponential decay of 4%(y—)’) and the bound

colldoo|? <L, 4jw) ¢ 4o <y, llo]|? . (2.109)

For o satisfying Qjw=0 the quadratic form |4,0|*=|4,w+aQ*Qiw|?* is
bounded from below by y¢||w||* because the operator 4,+aQ7*Q} is bounded
from below by ;>0 (in fact we may get y,=n%*L?). Hence

Yool <o, jw) <yllo)? for ©:Qj0=0, (2.110)

with positive constants y,, y; dependent on d and L only. From the theorem on
unit lattice operators in [3] it follows that a covariance C% of the last Gaussian
integrals in (2.106) is a bounded operator with an exponential decay independent
of j and A. Calculating these integrals we get

exp[ — CH*40*A, CPHFO*T ) +3CH*0*J, COH}*0*])]
=exp[ — <4, JAH[COHPO*) ) +3<J, 0H,CPHF0*T)] . (2.111)
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This implies further

eI GIy _ 3 OH GO ) 7 1 z; 17
-JdBexp [ —%abZA . |B(b)|* —3al' 2 ZA 1(Q:B) (C)IZ} yl—g, 0 4x0(B)

-[dA8(Q;A— B) exp[ —3{A4,(4—0P;0%)4)

+<{A,J —04HCPH*o* )] (2.112)
In the last integral above we make the translation A— A+ H;B. The operator H;
may be different from the operator defined in Sect. D of [4], because there is the
exponential gauge fixing term instead of the J-function, but we will prove later that

they are equal.
The translation gives the factor

exp[ —3<H;B,(4—0P;0*)H,;B)+(H;B,J —0AH;CPH*0*J)] (2.113)
and separates the integral over A4:
§dA5(Q;A)exp[ —5<A,(4—0P;0%)A) +<A,J—...7]. (2.114)

Let us denote a covariance of this Gaussian integral by Gj, then the integral is
equal to
Ziexp[z{J—...,G(J—..))]. (2.115)
Let us notice also that '
exp[ —3<H B, (4—0P;0*)H;B)]
=Z;'[dA5(Q;A— B)exp[ —3(4,(4—0P;0*)4>], (2.116)

and that in the last integral we may replace the exponential gauge fixing term by
the d-function 6x(R0*A) using the Faddeev-Popov procedure. Then this integral
gives the factor

exp[ —3ll0H;B|*] 2.117)
by (1.47) and (1.64). Thus both factors are equal and in fact the quadratic forms are
equal to {B, 4,B) given by (1.66) and satisfying (1.67):

70ll0:B|I* <<B, 4;B><7v,[0,B|?*. (2.118)
These calculations give
061 = exp[$(J, OH,CPH 0%y
+3<{J—0AHCPH *0*J, G,-(J —0AHCPH *o*J))]
-Z""'{dB Il 0 4x»(B) exp[ —3<Q"B,aQ"B) —3{B, 4;B)
ye
+ (B, H¥(J —0AH;C’H*0*J))], (2.119)

where 4(Q”B, aQ’B) is equal to the quadratic form in B in (2.112). Now let us
consider the integral above. It is a Gaussian integral defined by the quadratic form
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(we take a=1)
IB14ell> +L721(Q1B) 1 alI* +<B, 4;B) (2.120)

on the configurations B satisfying
B(b)=0 for bcCI,,, xeB(y), yed. (2.121)

The form is bounded from above, and bounded from below by || B ,.||%. There is
also the bound (2.118), so let us consider the form

1B acll* +L721(Q1B) LarlI* + 70110, B2 (2.122)

We will prove that it is bounded from below by 7|/ B||* on the configurations B
satisfying (2.121). Let us consider at first the bonds bCB(y), ye A’. For
b={x,x+e,), we have

B(x,x+e,)=(B(x,x+e,)—B(x—e;, x—e; +e,))
+o B+, x5, 00 x0), 1L x4+ 1,000, x0)
_B((ybeﬂ ""xd)5 (yl’-x2+ l: sxd)))=2(alB)(p(xl))9

the sum is over the plaquettes p(x’) determined by the points x"e[(y,,
X5, ..., Xg), X] and vectors ey, e,, SO

IBCx, x+e,)* [x; — y4| 10, B) p(x)I* -
If we take a bond b=<{x, x+ e, then in the above bound we will have to include
the points

X/E [(yla Va2, X3, ~--axd): (y13x25x3a --'axd)]

also. For arbitrary j, 2<j<d, we have
|B(xax+ej)|2§(|x1_J’1|+-~+|xj—1_yj—1|)21(513)(l’(x,))|2,

the sum is over

X €[(W1s v Vim15Xjs o oos Xa)s V1o s Xjm 15 X s Xg) [UL . O[(V15 X2, 1005 %), X]

and the plaquettes p(x") are parallel to (e;_y,¢e;)), ...,(es,e;). We sum the above

inequalities over x and j=2,...,d. The sum over j involves disjoint sets of

plaquettes on the right-hand side, so to get a constant in the inequality we have to

consider the sum over x. The worst situation is for j=d and it is easy to see that
|B(x, x+e,)l> <(d—1) (L—1)’L72Z}|(0,B) (p)*,

x:{x,x+eaq>CB(y)
hence
> |BG)P=dr Y (0,B) (). (2.123)
PCB(y)

bCB(y)
Next let us consider bonds b e B(c)={b:b_€e B(c_), b, € B(c,)} for some ce A".
Let c=<y,y+Le,» and A4’, A” denote the intersection of the planes x,=c, ,—1
=y,+(L—-1),x,=c, ,=y,+ L with the blocks B(c_), B(c) correspondingly, as
indicated in the figure below.
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cy=y+Le,

B(c)

We identify B(b)=B,(x) for b=<{x,x+e,), and we have
> 0:B)(p)I*23 X 1(0B) (b)I*— X BB - X [B(B)I*, (2.124)
pCB(c) bC4a’ bC4’ bCA”

(Q:B)(c)*= jL_d > L '(x,—y,+1)By(x)
xeB(c-) xeB(y)\4’
+L*Yy B(x)+L* Y L 'Q2L—1+y,—x,)B,(x)
xed’ xeB(y+Ley)
<X L 2 |B,(x)I?
xed' {x,x+eu)CB(c-)
—r 3 IB,(X). (2.125)

{x,x+e,)>CB(c+)
From these two inequalities we obtain

2 JEGBEPHQBEPZI(LY T (0BG +L7| 3 L

)

—L* ¥ [BO)P-L* ¥ |BOb). (2.126)
bCBle-) cBles)

The terms in parentheses on the right-hand side can be written as L™ 2(B, (4% "V

+Q%Q’)B), where the operators are defined on a d — 1-dimensional lattice. This
quadratic form is bounded from below by L™97! Z |B,(x)|?, hence

> 100:B) (PP +1(Q,B) (C)|2>1L"" 'Y IBO)P?
pCB(c) beB(c)
—L? ¥ [BO)P-L?* Y |Bb)P>. (2.127)
bCB(c-) bCB(c+)
The inequalities (2.123) and (2.127) imply many other inequalities. One of them is
formulated in

Lemma 2.4. Let a set ACZ* be a sum of blocks, A=B(A’). We denote by A also a set
of bonds b such that at least one of the end-points b_, b, belongs to A. Let B be a
configuration defined on A and satisfying the condition (2.121): B(I, ,)=0 for
x € B(y), ye A”. We put B=0 outside A. Then the following inequality holds

L2 Py !(QIB)(C)|2+ZI(51B)(p)|2> 12d2 L 1|B||. (2.128)
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Another consequence is a bound from below for the form (2.120), or for the
form (2. 122) These forms are bounded from below by y3||B||*> with a positive
constant y; dependent on d and L only. This implies that a covariance C of the
Gaussian integral in (2.119) is bounded from above by a positive constant
dependent on d and L only, and it has an exponential decay with a decay rate
having the same property. We may calculate the integral in (2.119), and we get
finally the desired identity:

(I, GTy=<J,0H|CPH*0*J)
+{J—0AHCPH*0*J, (G;+ H,CPHY) (J — 0AHCPH*0*])) .
(2.129)

We have to investigate yet the operators G » Hj, and H}. Doing similar calculations
as in Sect. E. (1.91)(1.103), in fact much simpler, we get the formula

H;=G,05Q;G,0n*. (2.130)
Thus this operator coincides with the operator introduced in Sect. D. For Gj we get
G;=G;—G,05(Q,6,00'0,G;. (2.131)

From these representations we obtain all the necessary properties of the operators
H, G~j. They follow from the Proposition 1.2 and from the formulas and the
inequalities (1.99)«1.101) for Q;G;Q%*. The operator H; can be investigated using
the momentum representation obtained from (2.101)

j(P/+ ) (Z |u;(p’+1)I?
2(p/+l) AZ(p/-i-l/)
This representation together with the analyticity method described in [3] imply
that derivatives of H’ up to third order, and their local Hélder norms as in (2.67),
are uniformly bounded and have a uniform exponential decay with a decay rate

depending on d only.
All the above considerations imply the following

Proposition 2.5. The operator G defined by (2.90) on the torus T (or on the whole
lattice £Z°) has the representation (2.129) and satisfies all the inequalities (1.110)—
(1.114) of the Proposition 1.2 with a positive constant &, instead of J,. This constant
depends on d and L only.

D (' +1) = ) ). (2.132)

Let us make a remark connected with Proposition 2.5. If the set B/(A) equals
Tp then the representation (2.129) relates the operator G;.,.; defined by averaging
operations of the order j+ 1, to operators defined by the operations of the order j,
and to unit lattice operators. Thus it is a recursive equation of the type studied in
[3], for example the equation (2.34) in [3]. There these equations provided a basic
method of proof of the regularity propertles for the corresponding propagators.
Unfortunately Eq. (2.129) relates G, ; to G in a much more complicated way, the
operator G is multiplied by the other operators When we iterate the recursive
equations we get long products of these operators and it is very hard to estimate
such expressions. Of course this difficulty is connected with the fact that we have
different gauge conditions on different scales. We circumvented the problem by



Propagators for Lattice Gauge Theories. 1T 247

reduction to Sect. F of paper [4], which ultimately relies on much simpler
recursions.

Now let us come back to the equality (2.91). At first we will formulate the
relevant inequalities for G rescaled back to #-scale. We have

(Ga)®)],  [(VGad) ()| =O0(1) [(En)?, Ln]e™En™ a2y,
(2.133)

for x € A(y), suppJ CA(Y), y, y' € BNnT. Applying the inequalities (2.133), (2.88)
and the remarks after the inequality (2.68) we obtain

(Ko, 0-Gahg J) (0] S OM ™ e 0290 (2.134)
for x € A(y), suppJ C4(y"), and this together with (2.91) implies
IR () SOM™1)e 00|, xeA(y), suppJCA(Y). (2.135)
Reasoning in the same way as in the proof of Proposition 2.2 we obtain

Proposition 2.6. There exists a positive constant 5 depending on d and L only, such
that
G IVGH XN, I(GV*) (x)I,

I(4GJ) (x)| < 0(1) [(En)?, En, En, 1] 40> (2.136)
forx e A(y), y € A;, suppJ CA(Y), with the constant O(1) depending ond and L only;
IKVGIllas  IEGV*II,= 01 (En) ~*(ICI5+1EDe™ )|, E=L77 (2.137)

for0<a<1,{e CP(A(y)) (the cube A(y) forye A;is a sum of 2% unit cubes on the
L J-scale, having y as a corner ), suppJ C A(y'), with the constant O(1) depending on
d, L and o (O(1)>00 if a—1);

I(VGP*) ()l < O(D)e™ (T [ +1J1) (2.138)

for 0<e<1, xeA(y), suppJ CA(Y), y'€ Ay, E=L7, with the constant O(1)
depending on d, L, and ¢ (O(1)—> o0 if ¢-0);

1KV Gr*Ji, <o) En)~*(ICIi+Ehe (15 + 1D (2.139)

for 0<a<l1, e>0, at+e<l1, { € CO(A(y)), suppJ CA(y"), with the constant O(1)
depending on d, L, a, and ¢ (O(1)—> o0 if a—1 or ¢—0);

IKGTI,  IEvGJl,  IKGV*I,  IvGy*al, [PV GJ],
IEGV*V*JI| < O(I(En)*, En, En, 1, 1, 1][lle™ 2T (2.140)

if supp{CA(y), y € A}, suppJ CA(y"), with the constant O(1) depending on d and L.
The operator G can be represented as

G=Gy(I-R)"'= ¥ G,R"= z hg,Goho,
n=0 o=(0o, ..., O2n)
: KDl,DzGDthz Teert KDZn-I,DlnGDZHhDZH > (2141)

and the series above is convergent in the norms appearing in the inequalities (2.136)—
(2.140).
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Let us remark that the symbol | - ||$ indicates the scale £ for which the Holder
norm is taken.

Let us also repeat once more that this theorem holds for the operators G(Q)
with Dirichlet boundary conditions on Q°, 2> Q,.

Finally let us consider the operator QGQ* and its inverse. We consider these
operators on the I?-space defined by (2.69) with sites replaced by bonds. The
operator QGQ* is positive, hence the inverse is well defined and positive also. We
want to prove similar bounds as for the operator Q’G’2Q’* and we will follow
rather closely the arguments given for it. From (2.136) we have

[(QGQ*)(b,b)| SO En)* (L)~ %™, bed;, bed;. (2.142)
Keeping the same notations as before we consider the operators

Co=00Gg0Mn)" ", C= Dgg hoCqhg. (2.143)

At first let us investigate bounds on C. We assume that we have the same
geometric situation as previously, so

<B,(QGp@*)!oB) = (Ln)"**(B,(QGH0*) o B>
=(Ln)""*<Q"™*B, Q,;G1,0TQ"*B) , (2.144)

where Q” is defined, as in (2.119), by the quadratic form in B in the expression
(2.112), and the last scalar product above is on the unit scale. We put B equal to 0
outside [, and we omit the superscripts £ and [ in the sequel. The expression on
the right-hand side in (2.144) is equal to {(Q*B, GQ*B) and is defined by the
integral in (2.95) with {4, J) replaced by {4, Q*B)»={QA, B). This expression is
gauge-invariant with respect to gauge transformations given by A satisfying
Q'A=0. In the calculations between (2.95) and (2.129) we made such trans-
formations only, and we may drop terms which appeared because of the non-
invariance of {4, J). We obtain

(B,QGQ*B)»=<B,0G,0*B)+<B,QH,C{YH*Q*B)
={Q"*B,0;G,0¥Q"*B)+<Q"*B,Q;H,CYH*Q*Q"*B) . (2.145)

The first term on the right-hand side of the last equality is equal to 0 by the
definition of G;. From the definition of H; we have Q;H;=1, hence

(B,QGQ*B)={Q"*B,C{Q"*B)=<B,,C{B,), (2.146)
where B, is equal to Q”*B everywhere except the bonds of () Ax(y)at which it is

~ yed
equal to 0. The operator C} is an inverse to the operator of the quadratic form
(2.120), hence it is bounded from below by an inverse of an upper bound of this
form. Taking into account that || B, ||* is bounded from below by const || B||?, we get

(B,(Q@GQ@*")aB)>Z 7ol BII? (2.147)

with a positive constant y, depending on d and L only. Of course we have also a
similar bound from above and an exponential decay of a kernel of the operator in
(2.147). This implies the same properties for C&, with the corresponding bounds
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and a decay rate d,. For the operator C; we get
|Ca(b, b)|O(1) (L) 4 2eda@Wm ™ b-—b=1 = p e BAO. (2.148)

We form the equality for QGQ*C in exactly the same way as in (2.82) replacing only
in the definition of R, . the operators Q’, G'(00)%, G? by Q, G, G. We have the
same estimates now as before, but with powers of scaling factors changed properly
(we replace +4 and —4 in (2.83) by +2 and —2), thus we have (2.85) and this
implies

Proposition 2.7. The operator (QGQ*)~ ! is given by the convergent expansions of
the form (2.86), and it satisfies the bound

(QGQ*) ™! (b,b)| <O (L) X(L'n) e #*®:), bed;, bed;.
(2.149)
We will apply the results obtained until now to many different problems. At
first let us consider the operator H. We have

Corollary 2.8. A kernel of the operator H,
(HB)(b)= X (Z)*H(b,c)B(c), (2.150)

ceB
satisfies the inequality

[H(b,ol, [(VH)(b,o)l, (EVH)(-, )l
SOMLL (En)~ Em) = (ICIS+HIEDT ) e s (1.151)
be A(y) or supp{CA(y), yeA;, c_€A;.

This Corollary and Proposition 2.6 are our main technical results. They will be
used systematically in subsequent papers.

Next let us consider the inequality (2.128) in Lemma 2.4 again. We will apply it
in the following situation. Doing a k+ 1 renormalization transformation we have
to calculate an integral of the form

const | dBS(QB)S ,,(B)e™ B 4B F(B) (1.152)
on the whole lattice T%, or on a subset AC T®. Using (2.118) and (2.128) we get

Yo r-da-1yp2 Yo r—da-1
= A= L .
{B,4;B)= 12d2L [Bl*, or 4,z i (2.153)
on the subspace of B satisfying: QB=0, B(I}, ,)=0 for x € B(y). Let us denote the
covariance of the Gaussian integration in (2.152) by C%®, or by C%, hence

[ dB1 40(QB)d 4(B)e ™ B 4B+ B> 70 <1, C0T> (2.154)

An easy way to get a useful representation for C% is to get rid of the unnecessary
variables in the integral above. We remove the variables B, for bCT; , using the
o-functions d 4,(B). Next we remove the variables B, , where b, is a bond belonging
to B(c) for some ¢ € A’, and contained in ¢, using the d-functions 6((QB) (c)). If we
denote the remaining variables by B’, then we can write B= CB’, where Cis a linear
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operator, and we have

(the left-hand side of (2.154))
_ (l‘f)"” ,f dB’ e~ 3<B C*4CB) +(C*1,B")

= (I4)A'1Z/0 g 5(CU.(C*4:0) - 1CHy (2.155)
hence

C®=C(C*4,C)~1C*. (2.156)

By the definition of C we have of course that CB'=0 outside 4, QCB'=0,
(CB)(I,,)=0, x € B(y), y € A, for arbitrary B’. The inequality (2.153) implies

(B, C*4,CB") = 1322 LY CB 1Pz yollB)1, (2.157)
where yo= 1322 L %!, C is a short-ranged operator, so C*4,C has the same

exponential decay as 4,. Now we may apply the theory developed in Sect. 5 of [3]
on unit lattice operators. It gives us an exponential decay, and all the other
properties, for the operator (C*4,C) !, hence for C¥ also.

Such a scheme will be applied in the future to investigate all unit lattice
propagators defined by generalizations of the integrals (2.152), (2.154).
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