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Abstract. Derrida's random energy model is considered. Almost sure and Lp

convergence of the free energy at any inverse temperature β are proven.
Rigorous upper and lower bounds to the finite size corrections to the free
energy are given.

Introduction

The Random Energy (R.E.) Model has been introduced by Derrida [I, II] as a
simplified version of the mean field Sherrington-Kirkpatrick (S.K.) model [III] of a
spin glass.

Both in the S.K. and in the R.E. models, the energies associated to each spin
configuration in the volume N, are gaussian random variables with mean zero and
covariance JV.

In the S.K. model, we have an explicit microscopic hamiltonian, where the
couplings are assumed to be independent gaussian normalized random variables
so that the energies turn out to be dependent, whereas in the R.E. model, the
microscopic hamiltonian is not specified and the energies are supposed to be
independent random variables with the proper normalization. Thus the R.E.
partition function has the following expression:

ZN= ZexpiSj/iVZ,; X.eJTφΛ). (1.1)

In a recent paper, Eisele [IV] studied the R.E. model in a slightly more general
situation by means of the theory of large deviations. He rigorously proved that the
quenched free energy converges as iV->oo, to a function F(β) whose second
derivative is discontinuous at β = βc = ]/21og2 (third order phase transition). He
was able to prove the almost sure convergence of the free energy only for β ̂  βc,
whereas he showed the stochastic convergence for any β. In the present paper we
study the R.E. model by means of quite elementary techniques and establish the
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almost sure convergence for any β > 0 together with IF convergence for any p ^ 1.
We analyze the rate of convergence of the free energy and give explicit bounds to

(( logN
the finite size corrections that are of the expected form I ~ ——- for β ^

— constN) for β<βc [II] ). We also show that the convergence is always

geometric (see Definition 4.1 of [IV]) contrary to the conjecture formulated by
Eisele (see remark after Theorem 5.4 of [IV]).

Let us now give a short description of the main idea of the proof. We divide the
range of the random variables Xi9 namely, the real line into intervals Aκ, and for
any given sample Xx ...X2n9 we treat separately the contribution to the partition
function coming from the different intervals. It turns out that with high
probability, the "occupation number" of an interval

[Xj/iV j/21og2, (X + AX)]/N |/21og2 [

is of the order:

2N2-NXI for | χ | < i ? a n d practically zero for \X\ > 1,

so that we are led to examine the function :

Gβ(X) = (1 - X2) Iog2 + βl/21og2X, \X\<1, (1.2)

which can be regarded as the contribution to the free energy per unit volume
coming from the "level" X in a typical sample. Now it is clear that the main
contribution will come from the level X(β)> where the function Gβ(X) gets its
maximum value in the interval [0,1] (the negative values of X can be seen to be
unimportant).

Therefore, it is reasonable to expect that the free energy converges as N-+ oo to
the function:

Fm = Gβ{X(β)) (I 3)

We rigorously prove this result in the case of the Derrida's (gaussian spin ^) model
for the sake of simplicity; but our method, that in fact goes back to the non-
rigorous calculations made by Derrida [I, II], can be applied as well with minor
changes to the class of models considered in [IV].

In Sect. II, we state the results in a precise form (Theorem I and
Propositions 2-5).

The proof of Theorem I is very simple and it is contained in Sect. III.
The proof of Propositions 2-5, which is little more lengthy, is given in

Sect. IV.

II. Definitions and Results

Let (Ω, Σ, Ψ) be a probability space. We assume that for any N e N there exists a
family {XJ, t' = l ...2N of independent normalized gaussian random variables that
are defined on (Ω, Σ, Ψ).

Let β be a positive real number; we define the random variables:

ZN(β)= Σoxp(β]/NXX (III)
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and the random variables:

^ β ) (11.2)

(finite volume free energy).

Define also: βc = |/21og2 and

\/2 + β2j2 ίf ° = β = β-
ββc if β^βΛ.

Our main result is:

Theorem 1. Vβ>0,

lim FN(β) = F(β) almost surely
N

and in LP(Ω, Σ9 P) for any 1 Sp < °0

The following propositions summarize our results about finite size corrections:

Proposition 2. Let β ^ βc, then for almost allωeΩ there exists iV_ (ω) such that for

Moreover,

lE(FN(β)) ^ F(β) — — Γ 2 — — — h o t — — — I, (II. 5)

for all sufficiently large N.

Proposition 3. Let β ̂  βc, then for all positive δ and for almost allωeΩ there exists
N + (ω,δ) such that for any N^N + (ω,δ),

FN(β) ^ F(β) + I WTΫ? + ^ ) —i 1" ° I —

\2βc ) N \ JS

Moreover,

for all sufficiently large N.

Proposition 4. Let β ̂  βc, then for any ε > 0,

= 0.
iV->oo

Proposition 5. Let β < βc, then there exists a positive number λ(β) and for almost all
ωeΩ, there exists an N(ω) such that: for any N^i

F(β) - exp - λ(β)N S FN(β) £ F(β) + exp - λ(β)N. (IL9)
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Moreover,

F(β) - exp - λ(β)N ^ Έ(FN(β)) S F(β) + exp - λ(β)N (II. 10)

for all sufficiently large N.

We notice that the lower bound on the quenched free energy given by Eq. II.5
coincides with the first two terms of the asymptotic expansion given by Derrida

logiV
[II]; in other words, the constant in front of——— that we found is in some sense

optimal. Moreover, the result given by Proposition 4 is indeed an upper bound in
probability to the free energy which contains exactly the same (negative) finite size
correction. This is a further indication that in fact, the right finite size correction is
given at the lowest order by

1 logiV

Unfortunately, we are not able to prove the almost sure analogous statement,
but in any case, the result given by Proposition 3 enables us to say that the order of

logiV
the finite size correction is almost surely at most ——— so that, for example, we can

exclude —7= corrections in a rigorous way.
]

Finally, we remark that, for β<βc exponentially small, corrections were
already obtained by Derrida for the quenched free energy [II].

III. Proof of Theorem 1

The proof of Theorem 1 is based on the following decomposition of the real line:
Let MGN\{0} . We set:

M+ί
= U Δκ, (III.l)

κ= -1
where

if oS««,

We call Δκ the energy levels and study the occupation times of these energy levels,
namely: The integer valued random variables:

Nκ = Σ tAκ(X^ = #(*/*, eΔκ). (III.2)
< = 1

We first prove the following lemma.
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N
Lemma III.l. Let aN = Qxp—-, then

Σ M Sup F(Nκ>aN2NΈ(tAκ(x)))<cv. (1113)
JV= 1 O S K S M

Proof. By Markov's inequality (V) we get:

Prob(iVκ > «N2NΈ(tΔκ)) = Prob(JVκ > ocNΈ(Nκ))

^ . (III.4)

Hence the lemma follows.
Now, if we define:

M

ΩN= Π {ωeΩ/Nκ(ωUaN2NΈ(tAκ}},
κ = o

the Borel Cantelli Lemma (V) and Lemma III.l imply that:

Now, we want to prove that for any given ε > 0,

Πm-— logZ N ^(l + ε)F(j8) almost surely. (III.6)

In order to do that, we decompose the partition function in the following way:

/Ϊ
i = 1 ί = 1

M 2N

+ Σ Σ i^(^ :
K = 0 « = 1

We first consider the last sum in the right-hand side of (III.7). As we have seen
before, we have that for almost all ω there exists an N^ω) such that for any
N^N^co) and for any K = 0,1, ...,M:

Σ v it r

(III.8)

Since

the right-hand side of (III.8) does not exceed

Σ 0ίNQxpN\ ββc- - + % ( l Ϊ ) \ (III.9)

x=o L ^ ^ V M J_\
Now recalling that

GJχ) = ββcχ+!^(l-χ2), (III. 10)
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we get

Max Gβ(x) = F(β);
xe[0,l]

then, if N^N^ω), (III.9) does not exceed

aNMexp^NF(β)+^β-β^. (III.ll)

On the other hand,

1 ] / ^ (111.12)
i= 1 ^

[since if βSβc F(β) = β2j2 + β2β>β2j2 i(β>βc F(β) = β-βc>β\β\

Finally, we consider:

2itΔM + 1{X^vYNβX{. (111.13)
ί= 1

By using Markov inequality (V) we get:

•—jSf. (III. 14)

Therefore, the Borel Cantelli lemma implies that for almost all ω there exists an

N2{ω) such that for any N^N2(ω): 0^ Σ tΛM + 1{Xt)^ ^.

2N

Since Σ ^ΔM + i P Q c a n o n ly t a ke integer values, it follows that it is necessarily

equal to zero for N ̂  N2(ω). This fact together with the inequality:
2N

0<; Σ i
• = = i

(111.15)

implies that for almost all ω if N ̂  iV2(ω),
22V

Σ i ^ M + 1(Z.)expl/iVj8J!f,. = 0. (III. 16)
« = l

By Eqs. (III.ll), (III. 12), and (III. 16), we eventually get: for almost all ω there

exist an JV(ω) = Max I N^ω), JV2(ω), JV0(ε) = ), such that for all
V ε

l o g Z w ^ ( l + 6 ) F ( « . (111.17)
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Now we prove that for any ε > 0

131

(111.18)

almost surely.
The idea of the proof is very simple: we bound from below the partition

function by only keeping the contribution coming from the level near to the point
x = x(β), where the function Gβ(x) [see (III. 10)] gets its maximum value in the
interval [0,1].

Notice that

We can write,

for all ω Σ

if

if

2N

^ Σ • .-)™pNββc(x-
\

(IΠ.20)

where K = [Mx] - 1 if M ^ βjβ.
Using Tchebychef's inequality we get

<Prob Σ iΔlt(X.)-2ι

Now it is not difficult to see that

On the other hand, the right-hand side of (111.22) is bigger than

therefore, since

L(Λ- J—\2

 Nβ2 oo

ΛΓ = 1 |//V

Σ ^
ΛΓ = 1 | /JV 4 M

(111.21)

(ΠI.22)

, (ΠI.23)

(111.24)

the Borel Cantelli lemma implies that for almost all ω there exists an N3(ω) such
that for all N^N3(ω):

(111.25)
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Therefore, for almost all ω if JV^ iV3(ω),

l } ) ^ (111.26)

and this concludes the proof of the first part of Theorem 1.
In order to prove the second part of Theorem 1, we use the mean convergence

criterion (V): If the random variables {\Yn\
p, Ξ̂> 1} are uniformly integrable (u.L),

that is

lim Sup ί | 7 J W = 0, (ΠI.27)
α->oo n^,nQ \Yn\P^a

and Yn-+ Y in probability, then Yn-+Y in Lp.
We start from the inequalities:

Max X,<\logZN<β-l= Max X, + log2. (111.28)
1 ^ 2 * N ]/N 1 ^ 2 *

From (111.28) we have if α ^ 1,

( J V ( j ) ) f (-FN(β)YdΨ (111.29)
FN(β)>a FN(β)<-oc

J 1 i 5 ^ = Max X + log2y rfF (11130)

M a x

In order to estimate (111.30), we use the following asymptotic estimate for

Probf-U Max X^^-K) =l-\ l-Prob(X>^-]/N]Ϊ (111.32)

^ ^ , (111.33)

which implies that (111.30) does not exceed

P

(a
(111.34)

(111.34) goes to zero as a goes to infinity.

In order to estimate (111.31), here we use:

Max ) f ^ )= ProbfX^ -K(α + l o g 2 ) ^ )
L \ P /J

(IIL35)
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which implies that (111.31) does not exceed

2 JV2*K2

κ = i 2β

K2

^ ( α + log2)p Σ CK + l)pexp —(α + log2) TΓ^, (111.36)

which goes to zero as α goes to infinity.

IV. Proof of Propositions 2-5

1. Proof of Proposition 2

We start from the following inequality:

ZN^ Σ iA(X.)expl/iVβXt, (IV.l)

where A is the interval j/iV/Jj I — a \,γNβc L a is a positive number

depending on JV that will be chosen later. We get

Now it is clear that the first part of Proposition 2 will be an immediate consequence
of the Borel-Cantelli lemma and of the following:

Lemma 6. Define

loglogiV'

Then

2/?2 β2

(IV 4)

Λ Γ = 1

Proof. If the following condition on a and b is satisfied:

exp - b \ogN^2NΈ(iA), (IV.5)

then

Probί Σ l ^ J ^ e x p -

^Probf
\

2N

Σ

The right-hand side of Eq. (IV.6) can be estimated by means of the Bernstein's
inequality [VI]:



134 E. Olivieri and P. Picco

Suppose Y- are independent random variables with mean zero, | 1 ^ 1 . If

Dn= Σ E(^ 2) and if 0<£<j/ΪΓ, then
i= 1

Prob Σ S
ί = l

2 '
(IV.7)

We choose t = γ2»-1Έ(lJ. Since DN = 2N (E(1J-[E(1,)] 2),
and so

(IV.8)

we get

Prob

(IV.9)

Now, in order to prove the lemma, it is sufficient to find a lower bound λN to
such that:

(IV. 10)

i)

[so that condition (IV.5) is satisfied], and

ii) Σ e x p - ^

Now it is easily seen that if 0 ^ ΘN = a, then

(IV. 11)

In fact, by definition:

from which estimate (IV. 11) immediately follows.

Now if we choose 6*̂  = it is easy to check that conditions i) and ii) in
(IV.10) are satisfied. D l o g J V

In order to prove the second part of Proposition 2, namely, the inequality (II. 5)
we start from:

M) = E(HΩ - FN(β)) + Έ(tΩ t FN(β)),

where

using

(IV.12)

Max X,\

Max XiS



Random Energy Model

if

B=j Max

By Schwarz' inequality we get:

135

Max Xt

Max 1/2

(IV. 13)

since
j/21og2N

) ^ ( | ) 2 N and MaxNX,/[/21og2iV

is in L2(Ω,Σ,Ψ) [as it can be seen by using (111.33) and (111.35)]. Then

Έ(tΩ-FN(β))^ -cons texp-2 N log2 . (IV.14)

By the previous estimates [Eqs. (IV.9), (IV. 11)] we know that:

if ΩN-

Therefore,

β J ^ 1 -exp-cAΓ l o g l o g ] v for some c and a.

- const exp - 2N Iog2 - exp ( - cN l o g l o g j V )J . (IV.15)

The conclusion of the proof immediately follows from (IV. 14), (IV. 15). D

2. Proof of Proposition 3

We decompose the real line in the following way:

where

_ J ^ logJV (1 + ε) log log AΠ

~ 2 ^ " Λ Γ + ^ JV J'

logΛΓ (1+ε) loglogΛί

βl N

Γ,=

n =

(IV. 16)



136 E. Olivieri and P. Picco

We have

ZNS Σ ΣlΓx
K=l i=\

It follows from Lemma 7 below that:

/ 2 N i— \ 1

Prob Σ tΓί{X^Qxpβ]/Ί^X,>cxp(NF(β)) ^ const exp -—(log iV)1+ε.
v = i / Pc

If the following inequalities are true: \ - )

/ 2N \

Prob Σ HΓ2(^-)^exp21oglogJV ^constexp-(logΛΓ)2, (IV. 18)
\« = i /
/ 2N \

Prob Σ HΓ3CXr, )^exp21oglogJV) ^constexp-( logiV) 2 , (IV. 19)
\« = 1 /

2N \ const

Σ l r 4 ( * J = 0 j ^ 1 - jyΓFi, (IV.20)

then from Eqs. (IV.17)-(IV.2O) we can deduce:

and so the first part of Proposition 3 is proven.

To prove inequalities (IV.18)-(IV.2O) we first compute Έ(tΓκ); we get

1 Vΰβc χ2

ί

|/2π VNβc

logΛΓ β2

S const ̂ ^ exp - N ̂ , (I V.22)

+0° x 2

ί

(IV.23)

Equations (IV. 18), (IV. 19) follow from the following inequality [VII]:

Prob (Sn >t)S e(P(n)nγ, (I V.24)
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where Sn = Σ σ* a n d {σA* = 1 « *s a family of independent identically distributed
« = l

random variables with values in {0,1} and such that:

Prob(σ, = + l ) = P(*).

To get the result it is sufficient to take σ = HΓ2(XJ, σ- = HΓ3pQ5 respectively, and
n = 2N. Equation (IV.20) is a consequence of Markov's inequality [V] [see
Eq. (111.14)].

Now we want to prove the second part of Proposition 3, namely, the upper
bounds (II.7) on the quenched free energy.

From the previous arguments it is evident that V δ > 0, 3 ΩN(δ) with

const

(for some positive α) such that:

\/ωeΩN(δ):

1

Now recalling the definitions in (IV. 12)

we can write:

E(vl-\ogZN

We define

and so since

Max X,

Λ

-

Max Xi

Max X,

(IV.25)

5)Ψ- (IV.26)

(IV.27)

(IV.28)

+ log2 l f l ί. . (IV.29)

From Eqs. (IV.25HIV.27), (IV.29), and (111.33) we get the desired result. D
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3. Proof of Proposition 4

We decompose the real line in the following way:

K(N) + 1

R = U ΔK,

+00 [,

,tΛ_ if K=1,...,
with

( I V 3 0 )

We have

JK(JV)

K(N)

y

()
ZN S χ Σ i (exp]/iVj8^) _Σ tAκ(X() + _Σ

+ Σ l/1_1(Xi)expj/JVi8Z,+ Σ lAo(X.)exp(N ββJ. (IV.31)
« = 1 « = 1

We first consider the third sum in the right-hand side of (IV.31):

.

f . ) 1 ) ] 2 N . (IV.32)
const

It is easy to see that the right-hand side of (IV.32) does not exceed . , therefore,
\/N

N

(IV.33)
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Now we consider the last sum in the right-hand side of (IV.31):

J; iAo(xfe1) = l - ( l - N

). (IV.34)

A simple change of variable implies that

2NΈ(tJ ί j (̂exp -γNβ2

£ logN) - - L j .

^u r 'c u (1+ε) loglogN
Thereiore, li we choose γN= — ^ ———, we get

pc logiV

P ((expNβ βc) Σ ^AoiXJ ^ o
\ i=\ 3

= ~~o n Λτ\l+ε ~ 77ττ (IV.35)

In the following lemma we study the first sums in the right-hand side of (IV.31).

Lemma 7.
/K(N) 2N 2N

P Σ (eχp]/NβXκ) Σ W ^ + Σ l^(W)+2(A-. )
\ίC — 1 « — 1 i — 1

^ c o n s t e x p - — (logiV)1+ε. (IV.36)

Proof of Lemma 7. If we use the Markov inequality [V] and the fact that

K(N) + ί)^ it is straightforward that:

(IV.37)

On the other hand, it is a direct consequence of the Bernstein inequality that for
any l ^ K ^

< P
2N

i=ί

(IV.38)
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Therefore,

P

Using

we get
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K(N)

K(N)

~ K=ί

K(N)
1Έ(iA

The last sum in the right-hand side of (IV.40) does not exceed

const exp - yN(ββc - β2

c) log AT.

Therefore,

K(N) Λ / I

^ Σ i 2 N E ( 1 , J expj/ΪV^X^ ^ constyN logiV expAΓ^ (̂  1 -

On the other hand, if we use

(IV.39)

(IV.40)

(IV.41)

(IV.42)

we get

Using ?N=

K(N)

Σ exp - 2 N E ( i Δ J ^ const exp - — exp β2jN log N. (IV.43)
2 P ,

> ( I V 3 7 ) ' ( I V 3 9 ) ' ( I V 4 1 H I V 43), we get the result.ί

Now the Proposition 4 is a direct consequence of (IV. 3 3), (IV. 3 5), and
Lemma 7. D
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4. Proof of Proposition 5

1 — XR
Define: * = - £ - < 1 , 0 = •

2 '

7N

where yN >0, and will be specified later.
N-* oo

(IV.44)

(IV.45)

-R\GS. 4
We have

fΣ Σ l4jc(X/)exp|/jVj8A-,SZN= Σ f l
-K — K. — i — 1 /£ — K — i — 1

Σ

Let

Σ
= 1

ίv2) - { Σ , > expJVG

where 0 < ε N > 0 and will be chosen later;
N-* oo

For any ωeΩj^nΩ^', we have

Σ
K. — K. —

Σ (\-εN)2N(expkβγN]/N)Έ(tΛκ)
K

(1 +ew)2 i V(exp(X+ l ^

+ expiVCG/x + θ) + qβ-\.

Now since

then for

(IV.46)

(IV.47)

(IV.48)

( I V . 4 9 )
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κ +

Σ
K = K-

2K+y2-y2

where G _ (K) = -^= expβ]/NyN(K + 1) -
l/2π

and, for xeAκ

β2

so that, recalling that -^- =log2, we get

2/|/2πJV

exp - yN l/JV ^ + 2(x + θ) +

From which by an easy calculation we get:

(IV.50)

2(x

Now we claim that

VΛΓ

(IV.52)

(IV.53)

In order to obtain Eq. (IV.53) it is sufficient to show that VK = K_,...,K+,

2"

Σ tΔκ{Xt)-ΈitΔκ{X{)) >εN2NΈ(iAκ)

(IV.54)
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since it follows from the definition of i£_, K+ that:

inf

for some positive constant ξ.
Equation (IV.54) is again a consequence of Bernstein's inequality (see the proof

of Lemma 6 above).
It is easy to see by an argument very similar to the one used in the proof of

Theorem 1 that 3 μ > 0, such that

P(£42)) > 1 - exp - μN. (IV.55)

In fact, the quantity Σ ^z(^G e xP/ψ NX, appearing in the definition of Ωψ is a

sort of partition function evaluated in the "restricted ensemble" that excludes the
energy levels in the interval [x — θ, x + &]γNβc so we can apply the analog of the
heuristic argument given in the introduction (namely, the maximization of Gβ(x)
in [O,1]\[JC-0,;C + 0] as well as the rigorous estimates (III.4), (III.7), (III. 12),
(111.14), to get (IV.55).

N
Now if we choose εN = exp — ζ-r and for example, yN = exp — JV, then by Eqs.

(IV.52), (IV.53), (IV.55), using again Borel-Cantelli's lemma, we conclude the proof
of the first part of Proposition 5.

To get the other result concerning the quenched free energy, namely Eq. (11.10),
we proceed exactly like in the case β^βc but now, we use the exponentially
decreasing estimates (IV.53), (IV.55), instead of the power like bounds of the case

Finally, if we apply the explicit bound (III.3 3) to evaluate

[see Eq. (IV.20)] we get the result. D

Remark 1. It follows from Eqs. (III.4) and (III. 14) that FN(β) is geometrically
bounded from above by F(β) for allβ>0 (see Definition 4.1 of [IV]). On the other
hand, we get from (111.24) that FN(β) is geometrically bounded from below by F(β)
for all β>0. These two facts imply geometric convergence for all β > 0 (Definition
4.1 of [IV]).

This convergence was proved in [IV] for β^βc. In the same paper, it was
conjectured that the geometric convergence fails for β > βc. Our method allows us
to disprove this conjecture.

Remark 2. It is not difficult to see by using Bernstein's inequality that FN(β) is
hypergeometrically bounded from below by F(β) (Definition 4.2 of [IV]) for any
β>0.

We can also prove the following statement: For all β>0, FN(β) is not
hypergeometrically bounded from above by F(β). The reason is the following:

Ψ(FN(β) ̂  2F(β)) ̂  F(ZN ^ expNββj) ^ P (
w=i
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if y is such that ββjβy>2F(β), but

N
^ const 2Noxp-β2y2 — i

and so FN(β) can be at most geometrically but not hypergeometrically bounded
from above by F(β).

Remark 3. By straightforward calculations it is easy to extend the results contained
in Theorem 1 to the case of models describing by the partition function

ZN=Σ
« • = l

where X are independent identically distributed random variables with

for x-»oo for some positive b and p e [1, + oo[ (see [IV]).
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