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Abstract. The paper considers the class of Schrόdinger multidimensional
discrete operators with quasi-periodic unbounded potential for which essenti-
ally complete spectral analysis may be carried out. In the case of sufficiently
high incommensurability of almost-periods, the spectrum of such operators
is found to be pure point and simple, the eigenfunctions exponentially localized
and the low frequency conductivity exponentially small. In the one-dimensional
case, for any incommensurability, the spectrum does not contain the absolutely
continuous component, while for small incommensurability the spectrum is
singular continuous.

1. Introduction

The spectral properties of differential and finite difference operators with almost
periodic coefficients raise at present considerable interest. The reason is both a
very wide range of their potential applications and the variety of types of spectral
behaviour that depends on the coefficients forms and the arithmetic properties
of almost periods. In terms of the theory of disordered systems, almost periodic
operators, which model in the one-body approximation the so-called incommensu-
rate structures, are in an intermediate position between completely ordered
systems, represented in the same approximation by equations with periodic
coefficients and completely disordered systems for which the respective coeffi-
cients are random functions with sufficiently good mixing properties. Whereas
in these two cases the structures and behaviours of basic physical quantities may
be regarded in quite a number of interesting cases as clear enough (at least qualita-
tively or on the theoretical physics level of rigour [8]), understanding of
the incommensurate system is now living through its formation (cf., e.g., refs. 1
and 13).

This paper, whose principal results were announced in ref. 11, studies the
structure of the spectrum and estimates the low frequency conductivity of the
incommensurate structure model described by a family of Hamiltonians Hd(ω)
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of the form :

[Hd(ω)\l/']x = £ w x_ y^ + 0tanαxι^, (1.1)
yeZd

where wχ is a sequence of complex numbers satisfying the conditions

wχ = w*, IwJ^Ce-' 1* 1, C,p>0 (1.2)

and

d
aχ = π(α, x) - ω, αe(Rd, ωe(0, π), (α, x) = £ α.xr (1.3)

j = ι

The model (1. !)-(!. 3) is the natural generalization for the case of arbitrary dimen-
sion d > 1 of the remarkable one-dimensional model proposed by Fishman,
Grempel and Prange [4] in which, under the condition that an irrational number
α is not well approximated by rationals, essentially all the eigenfunctions are
explicitly found which prove to be exponentially localized and the corresponding
spectrum is shown to be a dense set in U. However the method of ref. [4] is
rather indirect and complicated even in the one-dimensional case. We shall
show that a simple and essentially algebraic procedure can yield a convenient
representation of the resolvent of the operator Hd (see Eq. (2.4)) to be used in a
detailed spectral analysis of the operator.

Now we summarize the basic results. In order to avoid some merely technical
complications arising from the second term in Eq. (1.1) going to infinity, we shall
assume that1

ω φ ̂  - π(α, x) (mod π), x e Rd. (1 .4)

Theorem 2. Let a frequency vector αe[Rd satisfy the following diophantine con-
dition:

|(α, x) - m| ^ Cl \x\~β, C1 ? β > 0, m<E[R, xeIR* (1.5)

Then for any ω for which Eq. (1.4) is valid, the spectrum of the operator Hd is pure
point, simple (nondegenerate)2, dense in [R, and all the eigenfunctions decay exponenti-
ally when I x I -> oo .

Theorem 3. Let σ(v) be the conductivity of the system at zero temperature in an
oscillating electric field of the frequency v (for the definition see Sect. 5). Then for
v 1 0 and α, satisfying condition (1.5),

σ(v)^C 2exp(-C 3v-^), (1.6)

where the constant C3 is of the same order of magnitude as the constant C1 in condition
(1.5).

1 Most of our results remain valid even when the condition is not observed; however in this case it
is only the sequences going to zero in the poles of tan <xχ that will enter into the domain of the operator
(1.1)
2 There is one eigenfunction corresponding to each xeZd (localized in the neighbourhood of x)



Solvable Model of Incommensurate Structure 403

Theorems 2 and 3 show that the spectrum of Hd, for any spectral parameter
value, is strongly localized, which in case of disordered systems is commonly
presumed to take place only in the vicinity of fluctuation boundaries [8]. This
seems natural in the one-dimensional case (d = l) considered in ref. [4], because
the "potential" g tan (πna + ω) takes on, under condition (1.4), arbitrarily large
values on a sequence of points going to infinity3. It is however interesting that
these peaks are also rather thick and irregular under condition (1.5) in the multi-
dimensional case, so that a particle, no matter how large its energy is, still is
"entangled" in them and cannot escape to infinity.

Theorem 2, together with some additional considerations, provides rather
a detailed and complete description of the dependence of the spectrum of the
operator H l on the arithmetic properties of α.

In case of rational α, i.e. periodical "potential",

qχ = gtanaχ, aχ = πotx + ω, xe(R, (1.7)

the spectrum of operator (!.!)-(1.4) for d = 1 is, as is well known, absolutely
continuous. In case of nearest neighbour interaction, i.e. of the second order
equation, where

Wjc = 0, x±±I (1.8)

the spectrum has multiplicity two.
If, on the contrary, α is irrational, there is no absolutely continuous component

in the spectrum H1. This statement might be proved by the method proposed
in ref. 9 based on positivity of the Lyapunov exponent. In the case under consider-
ation this positiveness follows from equality of the densities of states of operator
(1.1)-(1.4) and of the Lloyd model [cf. ref. 8], the Thouless formula [10, 13, 15]
relating the density of states to the Lyapunov exponent and positivity of the
Lyapunov exponent in the Lloyd model. However the statement of ref. 9 and the
Thouless formula have by now been only proved for second order equations
and for the case that the "potential" qχ has at least a finite first moment

I lim N~1 £ qx\ < oo 1 therefore this proof of the absence of the absolutely
\JV->oo \x\^N /

continuous spectrum is strictly speaking inapplicable to operators of the form
involved. Therefore in the Appendix we present a proof of the absence of an
absolutely continuous component using the modification of the technique used
to prove Theorems 1-3, for operators (!.!)-(1.4), without assuming validity of
condition (1.5):

Theorem 4. Let d = 1 and α be any irrational number. Then the spectrum of operator
(!.!)-(1.4) does not contain an absolutely continuous component, i.e. is singular.

Note also that if the spectrum H1 is under condition (1.8) singular, it has
multiplicity one. This statement (whose proof will be presented elsewhere) is
general in nature and follows from an extension to the discrete case of the theorem

3 In terms of the theory of almost periodic functions, tan(πrcα + ω) is a Levitan (N) almost periodic
function, rather than a Bohr almost periodic function (uniform) [7]
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of I. S. Kac [6] which states that the spectrum of a second order operator on the
whole axis has multiplicity one, if the Lebesgue measure of the intersection of
absolutely continuous spectra components of the Neumann problem on both
the semiaxes is zero.

Further, if α is irrational aud is not well approximated by rationals, then,
according to Theorem 2, the spectrum of the operator H± is pure point and the
eigenfunctions decay exponentially. If on the other hand the number α approxi-
mation by rationals proves good enough, so that there exists a sequence of rational
numbers pjqn satisfying the inequality

^ Const W*",

then the spectrum of the operator H19 under the additional condition (1.8)4,
is pure singular continuous and the generalized eigenfunctions do not tend to
zero when | x -> oo . This can be proved both on the basis of the A. Ya. Gordon
theorem [5, 13], as was done to the almost Mathieu equation [13], and by the
technique we shall develop and use in this paper.

J. Bellissard et al. [2] considered the operators of the form of (1.1) and even
more general ones, with the periodic function as qχ (1.7), having a pole in every
period, monotonically increasing between poles and can be meromorphically
continued into a certain strip. By using the KAM theory, the authors proved
validity of the statement similar to Theorem 2 under the additional condition of
smallness of the off-diagonal part W of the operator Hd. Our results seem to
provide reasons to think that the latter condition has no close relation to the
essence of the problem and that the existence of poles in V(ζ) is probably sufficient
for localization of a particle with any energy.

In our case, by using the modified perturbation theory method similar to that
used in ref. 2, one can show that Theorem 2 remains valid when the following
term is added to operator (LI):

ε F(exp [2τπ(α, x) + 2iω] )ψx, (1.9)

where V(z\ zeC is a function analytic in the vicinity of the unit circle z| = 1,
mapping it into the real axis, and ε is sufficiently small (cf. Theorem 2' in Sect. 3).

Note also that existence of multidimensional finite difference operators with
an almost periodic and even a limit periodic potential, having a pure point spectrum
was proved by Craig [3] and Poschl [12]. Unlike ref. 2 and this paper, refs. 3 and
12 considered bounded potentials, and the spectrum closure in this case may be
either a Cantor set of zero measure or a whole interval. However the method
used there to construct the operator with the specified spectrum (inverse spectral
method) and based on the perturbation theory (KAM theory) cannot yield the
explicit form of the potential and with necessity implies a small off-diagonal
part.

To close this section we would like to point out that B. Simon and J. Avron
private communication) found independently and by other methods results
similar to ours: completeness of eigenfunctions of ref. 4, multidimensional generali-

4 It is sufficient to assume that the function Wx has finite support
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zation, the phenomena that occur when the frequencies # have good diophantine
properties.

2. General Formalism and Density of States

Denote by W the operator in /2 (Zd) specified by the first term in (1.1), and by U
the unitary operator of multiplication by exp [2π/(α, x)]. Then, by virtue of relation
tan z = - i(l - e2ίz)/(l -f e2iz) we may write that when Im z ̂  0,

(W - z + /0)(W - z - /#Γ V^ί/]

x U + έ^ί/Γ1. (2.1)

Hence, assuming that for Im z φ 0,

B = (W - z - 10Γ1, C = - (W - z + ig)(W - z - igΓ\ * = e2ίω, (2.2)

we find that the resolvent R(z) = (Hd - z) ~ * of the operator Ha from (1.1) may
be represented as

R(z) = (! + κU)(I - κCUΓlB. (2.3)

Since for Im z ̂  0 1| C || < 1, then this representation suggests that R(z) may be
written as the following series uniformly divergent when Im z =/= 0:

R(z) = £ (/ + ̂ 2ίωt/)(Cl/)n^2ίωn = B - 2igf X B(UC)n-lUBe2iωn. (2.4)
n = 0 «=1

Below we shall need the Fourier transformation transferring vectors Ψχ from
/2(Zd) into square-integrable functions ψ(η) on a ^-dimensional torus Γd =
{^^^(/y,,. . .,^), l^. -l}

ψ(η) = ̂  *̂, ̂  = ̂  1 - - nx

d

d (2.5)
xeZ^

1df/. (2.6)

By this transformation the finite difference operators W,B,C of (1.1) and (2.2)
are converted into operators of multiplication by functions

W(η) = Σ "V7*, BW = (W(η) ~ z ~ igΓ\ (2.7)

C(η) = ~ (W(η) ~ z + ig)(W(η) - z - ig)"1, (2.8)

and the operator V into a shift operator

(UΨ)(η) - ψ(γη\ yη = (y^ η, , . . . , γdηd\ y = (exp 2π/α1 , . . . , exp 2πiαd). (2.9)

By virtue of the commutation relation

UnΦ(η) - (Φ(ynη)υ\ nε R, /-(/,,..., yj), (2.10)

valid for any operator 0 of multiplication by a bounded function 0fo) in L2(Td\
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series (2.4) may be transformed also into the form

oo n— 1

R = B - 2ίg Σ B Π C(ysη)B(ynη)Vne2ίωn. (2.11)
ιι=l s = 0

All the analysis below will be based on Eqs. (2.3), (2.4) and (2.11). We shall also
use the following general statements.

Let v(dλ) be a complex-valued finite measure on [R, and functions a(z) and
b(z) are specified by equalities

a(z)= J \λ-z\~2v(dλ\ b(z) = J (λ - z)"1 v(dλ). (2.12)

Proposition 2.1. Let A be a union of a finite or countable set of intervals in [R whose
ends have zero v-measure. Then

lim επ~1 \a(λ + iε)dλ = v(A).
ε J O Δ

In particular, if A is a self-adjoint operator in the Hubert space ffl with the
resolvent R(z) = (A — z)"1 and resolution of unity E(dλ\ then for any vector AeJf

lim β π ~ 1 J || R(λ + iε)h \\2 = (E(Δ)h, h). (2.13)
ε|0 Δ

Proposition 2.2. Let vac(dλ) be an absolutely continuous component of the measure
v(dλ) and v'ac its density. Then for Lebesgue almost all

lim π~ ί Im b(λ + iε) = v'ac(λ).
εlO

If the left-hand side limit exists at all points of a certain interval (α, β) and is a
bounded function, then the measure v(dλ) is absolutely continuous on (α, β) and its
derivative coincides with this limit almost everywhere on (α, β).

In particular, if Jjf, A, R(z) and E(dλ) are the same as in Proposition 2.1 and

Eac(dλ) is an absolutely continuous component of the operator-valued measure
E(dλ\ then for any /ze^f,

lim π-1 Im (A, R(λ + iε)h) = ΓΛλ, EΆch]\(λ). (2.14)
elO Lϋλ J

Before going on to proving the results formulated in Sect. 1, let us use the
above derived formula to calculate the integrated density of states (normalized
eigenvalue distribution function) N(λ) of Hd. Recall that the function is specified
as follows:

) = M{(E(λ)e0,e0)}, (2.15)

where /2(Zd)3e0 = δχ 0 and M{ ) in this case denotes the operation
π

π~l J ... dω. (As regards the properties^ this function and its role in the spectral
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analysis of metrically transitive random operators, the reader may consult, e.g.,
refs. 8 and 9.)

Theorem 1. The integrated density of states N(λ) of the operator Hdfrom (1.1)
is absolutely continuous and its derivative p(λ) = N(λ) (density of states) is

'
Proof. It follows from Eqs. (2.15) and (2.4) that

l(λ - zΓ lN(dλ) = M{(R(z)e0, eQ)} = (RQ(z + ig)eQ9 e0\ (2.17)

where R0(z) = (w — z)"1 is the resolvent of the "nonperturbed" operator W.
Since, according to (2.2), RQ (z + ig) = B and the operator B is a difference one,
then by going in (2.17) to the limit ImzJ,0 and using Proposition 2.1, we arrive
at Eq. (2.16).

Substitute now in Eq. (1.1), for αχ, random variables mutually independent
and uniformly distributed over [0, π). In this case the "potential" qχ in operator
(1.1) is

qx = gten<*x, (2.18)

and, as is clear, are random variables mutually independent and Cauchy-distribu-
ted, i.e. having the density

and the corresponding operator is that of the Lloyd model [8]. For such
an operator, a formula analogous to (2.4) also establishes a relation similar to
Eq. (2.15), in which M{ } denotes now a mathematical expectation operation.5

As a result we obtain

Corollary. The densities of states corresponding to the operator (1. !)-(!. 3) and in
the Lloyd model are equal.

This fact was proved in refs. 4 and 14 in another way.

3. Proof of Theorem 2

Condition (1.5) is convenient to rewrite as follows:

1 1 - yx\ ^ C\x\~β, xe[Rd, x ± 0. (3.1)

We shall also need the following

Lemma 3.1. Let ε > 0 and

Sε = {ξeC:\ξ\ = 1, 3Cξ > 0 :\ξ - yx\ ^ Cξ(l + \x\-d~ε, xeZd}. (3.2)

Then Sε has a full Lebesgue measure on the unit circle S1 .

5 Another method to calculate the density of states in the Lloyd model may be found in ref. 8



408 A. L. Figotin and L. A. Pastur

We are proving this simple statement, because similar reasoning will be used
below more than once.
Put for any δ > 0,

\-d~ε} (3.3)

Then

mes S ' g 5 Σ ( H - 1 x !)-"-•-> 0,

mes S] -> 2π. (3.4)
<5->0

Therefore the set of points of a unit circle

has a full Lebesgue measure and for all ξeSe, | f - y* ^ Cf(l + |x | )~ d ~ ε

(3.6)

Note also that from the definition of the set S] it follows that

Denote by Td a polycylindric domain,

Tdίp = {ηECd:e~» g |^| £ e»,7 = 1, ... , d, p > 0}.

Then, by virtue of condition (1.2), the function W(η) specified by equality (2.7)
will be analytic in Td p. Besides, because of equalities (2.7) and (2.8) and since the
function W(η) takes on real values on the set Td c Td , the functions B(η) and C(η)
will be analytic for a certain positive p in Td . On the other hand, a function
Ψ(η) arbitrary and analytic in the domain Td may, as is known, be represented
therein as a Loran series (2.5) with the coefficients ψx specified by equalities (2.6).
These coefficients exponentially tend to zero when |x| -> oo :

0<Pι <P>\Ψx\ ^ const exp(-y9! x|).

It follows from this inequality, condition (3.1) and Lemma 3.1, that the following
is valid

Lemma 3.2. Denote by 3F 0 the set of functions φ(η) analytic in the polycylinder
Td , such that

φ0 = (2πiΓd$φ(η)η-1dη = Q
τd

Then the operator I — U is a one-to-one mapping of ̂ 0 into itself, and

Consider now the function C(η, z) specified by equalities (2.8). This function
will apparently be an analytic function of its variables η and z on the polycylindric
domain Td x L , where p is a certain positive constant and the strip Lg is

(3.8)
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The function C(η, z) is continuous up to the boundary of Tdp x Lg and apparently
does not assume in it nonpositive values. Therefore, having chosen in a standard
manner a logarithm branch on the plane C with a cut along the negative semiaxis,
we obtain the following function analytic in Td x Lg :

f(η,z) = lnC(η9z). (3.9)

Using Lemma 3.2, solve the following equation for t :

f(η, z) = /0(z) + ίfa, z) - (Ut)(η, z), (3.10)

z)η-^dη. (3.11)

As a result, we have

% z) = (/ - UΓ l [/(ι?, z) - /0(z)], (3.12)

where functions t(η, z) and /0 (z) have the following properties.

Lemma 3.3. The function /0 (z) fs analytic in L , «πrf

Re/ 0 (z)<0i f lmz>0, (3.13)

Re/0(z) = 0 i f l m z = 0,

(3.14a)

ί arc tan [ (fy) ~ λ \η-ldη. (3.14b)
rd L # J

T/zen function m(λ) is monotonic, gives one-to-one correspondence between [R
and the interval ( — π, π) and is related to the integrated density of states N(λ) of
Eqs. (2.15)-(2.16) as follows:

2πN(λ) = π - m(λ). (3.14c)

The function t(η, z) is analytic in the domain Td p x Lg, and

Re t(η, z) = Re f(η, z) = 0, Im z = 0. (3.1 5)

Proof. Equations (3.13) and (3.14) and the properties of functions /0(z) and
m(λ) follow directly from the representation (3.9), (3.1 1) of Eq. (2.8) and Theorem 1.
Analyticity of t(η, z) follows from its representation by equality (3.12) and Lemma
3.2.

From Eq. (3.12) it immediately follows that Re t(η, z) = Re [f(η, z) - /0(z)].
But, when Im z = 0, we apparently have from (3.9) and (2.8) that Re f(η, z) = 0.
Therefore, due to Eq. (3.13), Eq. (3.15) is valid.

From equality (3.10) and commutation relations (2.10) we obtain the following
representation important for all the below discussion:

. (3.16)

Hence and from Eq. (2.1),

Hd-zl = B- V[/ - £>/o(z)κl/]έΓf(/ + κUΓ1- (3.17)
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Lemma 3.4. The set ofHά eigenvalues coincides with the set of solutions to equations

m(λ) + 2ω + 2π(α, x) = 0 (mod 2π), x e ~Lά. (3.1 8)

Here for every x, Eq. (3.18) has exactly one solution λx, and when x1 =^x2, λ ^= λX2 .
The set of Hd eigenvalues {λχ, xeZ.d} is everywhere dense in IR. There is for every
λχ a single eigenfunction u(x) corresponding to it:

(3.1 9)

It follows from the analyticity of t that every eigenfunction u(x\ after having been
represented as an element of the space /2 (Zd\ mil be exponentially decreasing at
infinity.

Proof. From representation (3.17) it follows that the vector u will be an eigenvector
of the operator Hd corresponding to the eigenvalue λ if and only if

(/ - efoWκU)(e~t(I + κUΓ^u) = 0, (3.20)

or, if put

v = e-<(I + κU)-1u, (3.21)

then Eq. (3.21) may be rewritten as

Uv = κ~le-fo(λ}υ. (3.22)

Since the operator U has apparently the complete family of eigenvectors ηx,
xeZd, then it follows from Eq. (3.22) that all ι?'s satisfying Eq. (3.22) are exhausted
by the set of vectors ηx, xeZd, and the corresponding eigenvalue λχ is the solution
to Eq. (3.18). The properties of the set {λχ9 xeZd] enumerated in the lemma follow
directly from the properties of the function m(λ) of Lemma 3.3. The expression
for the eigenvector is to be obtained from Eq. (3.21) with substituting v = ηx.

To prove Theorem 2 it only remains to show that the system of eigenvectors
of the operator Hd is complete. We shall use equality (2.13) of Proposition 2.1
and show that for any finite interval A c= IR whose ends do not belong to the set
{λχ, xeJ.d] there is a sequence of imbedded intervals Δδ, δ > 0, such that each
Δδ is a union of a countable number of intervals in IR and

A^Aδ=>An {λχ, xεZd};AδlAn {λχ, xeZd}, <5|0, E(Aδ) = E(Δ\ δ > 0.

For this we shall need the following auxiliary statement which is a direct corollary
of the analyticity of the function /0 in the strip Lg and relation (3.13).

Lemma 3.5. Let Δ be an arbitrary interval in R. Then there is a positive ε0 such
that for θ 5 ^ ε ^ ε 0 , Λ e z l and ξeS1, the inequality

is valid.
Proof. Let us take an arbitrary finite interval A in IR whose ends do not belong
to the set of eigenvalues {λχ, xeZd}. Consider the image of A under the mapping
/z:l->κexp [/0(A)] = %exp [wι(λ)] and denote it by hA, with hA cS1. As was
shown in Lemma 3.3, hA is a diffeomorphism of IR on S1\{ — 1}, and it follows
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from equality (3.18) that h(λx) = γx. Take an arbitrary <5 > 0 and consider sets
Δδ = zl n/Γ1^1 and 2δ = A nV1^ where S$ and SJ are specified by (3.3). Here
apparently,

(3.24)

Lemma 3.6. There exists such positive ε0 that when δ>Q, 0^ε^ε0 and
for a certain positive constant Cy δ depending on δ and yeZd, the following inequality
is valid :

iε)ηy\\£Cytδ. (3.25)

Proof. Indeed, we have from (3.25) :

R(z) = (I + κt/y[/ - e^^κUY^e^B. (3.26)

Take an arbitrary yeZd, consider the vector R(z)ηy, and denote

Ψ(η9 z) = £Γ t(η'z) B(η, z)ηy. (3.27)

Owing to analyticity of functions t(η, z) and B(η, z) in the domain Td x L , there
exist such positive p1<p and fc depending on A that for 0 ̂  ε SΞ 0/4 and λeA,

Pl |x|], (3.28)

]fc. (3.29)

Thus, it follows from (3.26) and (3.29) that the proof of (3.25) reduces to the proof
of inequality

|| (/ _ efo(λ+ie)κUΓlΨ(η, λ + *'β) || ^ Cδ> (3.30)

where Cδ is a certain positive constant dependent on δ. Let now be the same as
in Lemma 3.5 and ε0 ^ 0/4. From λe2δit follows that

(3.31)

Using inequality (3.23) of Lemma 3.5, we obtain for 0^ε^ε 0 and λe2δ:

Hence as well as from Eqs. (3.31) and (3.6), it follows that

|[(/-^oα+iε)κ[/)-ι,p-]^|^25-1(l + |x |) d + ε |¥ 3 ί j . (3.32)

From inequality (3.28) and inequality (3.32) valid for 0 ̂  ε ̂  ε0 and λe 2δ follows
validity of (3.30) for the same conditions, which completes the proof of the Lemma.

If we now use equality (2.13), then by virtue of Lemma 3.6 we obtain for any
x e Z d a n d ( 5 > 0 :

(E(A)ηx, ηx) = (E(Aδ)ηx, ηx).

Hence and from (3.24) it follows apparently that

The latter equality means completeness of the set of eigenvectors of the operator
Hd, which is the end of the proof to Theorem 2.
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We shall now consider an operator algebra that naturally arises here and
includes resolvents of operators of the form of (1.1), as well as its elementary
properties. The latter will be helpful in the calculation of the conductivity corres-
ponding to the operators of the form of (1.1) and a certain generalization
of Theorem 2.

Let us consider a polycylindric domain

(3.33)

and the family &* ' r of functions u(η, ξ) which are analytic in Tpr. Such functions
may be represented by the Loran series :

u(η,ξ)= Σ ux,k1*?> (3-34)
jceZd,fceZ

uχtk = (2πΐ)-*-1 J u(η,ξ)η-χ-iξ-k-ldηdξ, (3.35)
M = \ξ\ = ι

\uX}k\^ Const e-plW~rίW90<pί <p,0<r1 <r. (3.36)

The function ue 2F r induces the following operator:

u(η,U)= Σ u*,^Vk. (3-37)
xεZd,ke~Z

As the operators η and U do not commute, their order in equality (3.37) is impor-
tant. We shall refer to the function uχk, xeZd, feeZ as the kernel of an operator
and denote the family of operators specified by (3.37) for we^" r by ̂  pr ^ p r

will apparently be an algebra; by virtue of the commutation equation (2.10) and
the equality Uηx = γxηx, we shall have

(u + υ)Xtk = uχ>k + υxtk, (3.38)

(«<* = Σ *,-„.*-*, y(*~*1)J* (3-39)
xιeZd,fcιeZ

If the components of the vector α are rationally independent (for d = 1, α is an
irrational number), then one readily makes sure that

u(η, U) = 0 o uχk = 0, x E Zd, k E Z. (3.40)

Because we shall not be interested in specific p and r values, we shall consider
the algebra tf = U j/p>r

p,r>0

With every operator ue ĵ , the following family of operators may be associated :

uω = u(η, e2i™ U) = Σuχ>kη
x(e2iωU)\ (3.41)

x.fc

or, if, as before, put κ = e2iω,

uκ = u(η,κU) = Σuχ,k«
X("U)k' (3-42)

κ,k
With each such family we shall associate the following averages :
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(uωy = π-1]uωdω = (2πiΓi J u^^dκ, (3.43)
0 |κ| = l

<uω\=(η°,<uayη°). (3.44)

Obviously,

< Wω > = Σ W*,0 1*> < Wω >0 = W0,0 (3 45)
xeZd

Since families uω and t/κ are unambiguously specified by the operator U, para-
meters ω and κ will be often omitted from symbols < wω > , < uω >0 .

Lemma 3.7. Lei ϊ^fa), <P2fa), φ(ξ)e&pιf. Then

< Ψι(η)φ(U)Ψ2(η» = Ψ,(η)φQ Ψ2(η\ (3.46a)

φ0 = (2πi)~1 J φ(κ)κ'ίdκ9 (3.46b)

<^^^l7^> = 7*1*2^1 + ,2^1+Jk2, (3-47)

(50 = 1 and for £ =/= 0, ̂  = 0. //w 1 ? ... , une<s/, then

<(u1u2...unyo = ̂ u2...unuιy(). (3.48)

Proo/. Equations (3.46) and (3.47) naturally follow from the respective defini-
tions, and Eq. (3.48) readily follows from (3.47).

Theorem 2'. Let V(z\ zeC, be a function analytic in the neighbourhood of the
unit circle Sl and take on real values on S1. Then there exists such δ0 > 0 that for
allδeR9\δ\^δQ, the statements of Theorem 2 hold for the operator

Hd = Hd + (5F[exp (2πi(α, x)

To prove this theorem, let us show that the unitary operator mapping the basis
ηx,xeZd, into the eigenfunctions u(x\ xeZd of the operator Hd belongs to the
operator algebra j/.

Make the following change of variables :

= b(ξ\ If =1. (3.49)
1 + f

Then, as follows from the proof of Lemma 3.4, the ξχ values corresponding to
the λχ eigenvalue may be found from the relation

e-fo(b(&) = κyx

9 xeZd (3.50)

Notice now that the function /0(z) specified by equalities (3.9) and (3.11) is analytic
in the strip | Im z | ̂  g/2 and the point z = oo is the branching point at the same
time, as follows from equalities (3.9) and (3.14), the difference between branches
of the function is proportional to 2πi. Therefore the function exp [ — /0(fc(f))]
is analytic in the neighbourhood of the circumference | ξ \ = 1 and, in view of
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equalities (3.14), it is a one-to-one mapping of the circumference \ξ\ = 1 onto
itself, and its inverse function

i (3.51)

is also analytic and by virtue of (3.14), for certain positive constants C and r,

\a(ξ,)-a(ξ2}\^C\ξ2-ξ,le-^\ξ^2\^e*. (3.52)

From (3.49) and (3.50) we have:
= b(a(κyx)). (3.53)

Besides, note also that the function exp [t(η, fe(£))] is analytic in T r for some
p, r > 0, which can be proved in the same way as for the function exp [ — f0(b(ζ))~\.

From (3.18), (3.19) and (3.11), making use of the commutation relations (2.10),
obtain

MB(η, λx)ηx. (3.54)

Now if we normalize the function u(x\η) to unity, then in view of equalities (3.14),
the corresponding normalized eigenfunction ύ(x\η) of the operator Hd is

fiWft) = et(tlMB(η, λχ)ηx, (3.55)

B(η λ) = exp [fare tanλ]B(fy, λ) x [(2πi)~d J \B(η, /l)| V1*?]'1'2- (3.56)
τd

Use representation (2.7) for the function B(η, z\ then the function β(η, z) is readily
shown to be analytic in T r, for some p, r > 0.

Thus, it follows from equalities (3.53) and (3.55), that

flWfa) = s(η9 κγ*)η*9 (3.57)

s(η, ) = e«* ™B(η9b(ξ))\ξssa(.Γ (3.58)

where the function se^ r. In view of commutation relations (2.10), equality
(3.57) may be written as

ύ(x) = s(η, U)ηx, (3.59)

where the unitary operator SEA/.
Since apparently, if uejtf, then U*EJ/ too, then s"1 =5*EJ/. Thus, from

(3.49), (3.53) and (3.57) it follows that

s'ΐHds = boa(κU\ (3.60)

where the function b°a( ) is meromorphic in the annulus Kr\e~r ^ \ξ\ ̂  er,r > 0
and maps the circumference | ξ \ = 1 into R. Consider now the family 1^ similar
to that of ref. 3, which consists of the function V meromorphic in the annulus
Kr for some r > 0 and possessing the property

\V(ξί)-V(ξ2)\^C\ξ1-ξ2\,ξί,ξ2eKr,

where C is a F-dependent positive constant. Then, by virtue of Eqs. (3.49) and
(3.52), bQaεi^ and, according to ref. 3, there is δ0 > 0 such that for any δ :\δ\ ^ δ0
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there exists a unitary operator Uδe<$/ such that

U~ 1 [b °α(κl7) + δs~ 1 Vs] Uδ = V1 (κ U\

where V^ir. Thus,

whence apparently follows the validity of Theorem 2'.

Remark. This theorem may be proved otherwise as well. Indeed, as follows
from ref. 9, the spectrum of operator (1.1) for almost all ω's (in the sense of Lebesgue)
will be pure point, if for any interval

(3.61)
xeZd

where

pχ(A) = \im $dλBπ-lM{\RΌtX(λ + iε)\2}. (3.62)
ε jO Δ

Therefore, one may calculate px(Δ\ using representations (2.4) and (3.10) and
then make sure that Eq. (3.61) is valid.

4. Upper Bound for Zero Temperature Conductivity

In this section, by way of avoiding cumbersome formulae, we shall consider
the one-dimensional case, but all results hold for the multidimensional case
without essential changes in reasoning.

Let z1 = λ + iε, z2 = λ + v + iε, ε > 0, v > 0 and R.(ω) = R(z., ω)j = 1, 2 be a
resolvent of the operator Hί from (1.1).
Put

σε(v, λ)=-v~1 J < W'(R, - R*)W'(R2 - R*)\dλ', Wf(η) = 2πiηdW(η)/dη,
λ

(4.1)

where <Λ(ω)>0 for the operator A(ω) denotes, as in the preceding section, the
π

operation π"1 §dω(η0,A(ω)η°). The term "conductivity corresponding to the
o

external field frequency v, the Fermi energy λ and the zero temperature" will be
applied to

φ,λ) = ϊίmσβ(v,λ). (4.2)
βiO

This definition proceeds from the Kubo formula [8] obtained in terms of the linear
response theory with "averaging" over the energy range of the length v in the
neighbourhood of the Fermi level. Besides, the formula omits the factor consisting
of the electron charge, the Planck constant and the number π.

Let us calculate the integrand in (4.1). To do so, consider the following func-
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tions :

(4.3)

(4.4)

where the function t(η, z) is specified by (3.12) and the subscript; of the function ί,
as in case of other functions below, means substitution of z . for z. Introduce
also

(4.5)

Note that in view of equality (2.7), B~(η, z) = B(η, z) and here Eq. (2.8) becomes
as follows :

η9z). (4.6)

Now it appears to be more convenient to use the usual Fourier transform, i.e.
to put

With this substitution, the above functions of η, \η\ = 1, W(η\B(η) and others
become periodic functions of p with the period 1, for which we shall use the symbols
as before: W(p\ B(p\ etc.

Lemma 4.1. // the function /0(z) is defined by equality (3.11),/0 .=f0(z.) and
y = e2πί«, then for W'(p) = δ W(p)/dp ,

J dpW'2(p}\B,B2

2

-1/2

I/ 2 1 _μ v>V/o,i+/S,2

-1/2 meZ X X ^

(4.7)

Proo/. First of all, note that from the definition of the mean value of < >0 and
Eq. (3.48) it follows that

< W'R* W'R* >0 = <W'R1 W'R2 >* , (4.8)

< W'R^ W'R*2 >0 = < W'R* W'R2 >* . (4.9)

In calculation of these mean values we shall use representation (3.26) for R(z).
To be able to use equalities (3.46) of Lemma 3.7, we transform, by commutation
relations (2.10), the said representation in the following way:

R = el (I + C ~ l efo(z)κ U)(I - efo(z)κ UΓ^'Έ. (4. 1 0)

Representation (4.10) was obtained by using also equality (3.10). Since, in view
of (3.13), R is analytic in the circle κ ^ 1, then, by Lemma 3.7,

^W'R1W
fR2yo = (2πίΓ1 J W'^B^B^η^dη. (4.11)

M = ι
Now use representation (4.10) for calculation of the average < W'R^ WR2yo



Solvable Model of Incommensurate Structure 417

that is, on the basis of commutation relations (2.10) and the above defined functions
F1, obtain

WfRίW'R2 = ̂ ~[W'e^m(I + C~lefΌ'lymκU] x (I - ef^ymκU)~l

The above expressions are, as functions of κ 17, meromorphic in the unit circle
with the only pole at point κ = ef°'2. From this fact, Eqs. (3.46), (4.4) and identities
(4.6), by simple calculations, we arrive at the following:

y » e x p [ / 0 . 1 . 2

l-7wexp[/
0.1+/g.2] 1

[/0 i l+/* i 2]J

= *92 Σ β~<V + ηm\^ ^°f

i + 'γ\ + <W'2B^2/0

1/2

- j dp(Wf2B1B*-2g2V+V~)
-1/2

From equalities (4.4), (4.8), (4.9), (4.11) and (4.12), by elementary transformations,
we obtain (4.7). The lemma is proved.

Substituting now (4.7) into (4.1) and (4.2), we note that the first two terms of
(4.7) are, by virtue of (4.3), continuous functions of z, when | lmz| :g 0/2, and
therefore, after going to the limit, ε 10 will give no contribution to σ(v, λ). We
introduce now the function

φv(z)=-/[/0(z)-/0(z + v)]. (4.13)

From Lemma 3.3 and equality (2.15) the following holds:

Lemma 4.2. If z = μeR, then

φv(μ) = 2πμ]Vp(τ)dτ. (4.14)
M

Further, with sufficiently small v > 0, the function φv(μ) is monotonίc for
μe\_λ, λ f v ] , takes on values in the range [φv(/l), φv(λ + v)] and the number of
solutions to the equation

φv(μ) = 2πmα( mod 2π), meZ (4.15)

in the interval \_λ,λ + v] is 0 or 1, depending on the validity of relation

2πmα ε [_φv(λ\ φv (/I + v) ] (mod 2π). (4.16)

Denote the set of solutions μw by Λλ v.
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Lemma 4.3. Let h(μ) be a real-valued continuously differ entiable function in the
interval \_λ, λ + v]. Then, if φ is an internal point of the interval \_φ^(λ), φv(λ + v)],
i.e. for a some μφe(λ, λ + v), φv(μφ) = φ, then

i[φ -yv(μ + fe)] = 2nh(μφ)

φv(μ + ie)] φ'v(μφ) '

Ifφ coincides with one of the ends of the interval [φv(A), φv(λ + v)], then μφ is equal
toλorλ + v, and we shall have, instead of equality (4.17), the following:

limRe λ+{dμh(μ) \ + ̂  ̂  ~ ̂  * ̂  j = ̂ *j. (4.18)
ε io ί ! - exP ?[^ - ^v(^ + ίε)l ^v(^)

Proo/ Note first of all that from analyticity of the function φv(z), in view of (4.13),
and its monotonicity in the interval [A, λ + v] by virtue of Lemma 4.2, it follows
that the function

1 + exp i[φ - φv(z)]/l - exp i[φ - φv(z)] (4.19)

is meromorphic and in the domain Reze[A, λ + v], | lmz | < ε for sufficiently
small ε, has its sole pole at the point z = μ . From this fact, smoothness of h and
the obvious fact that function (4.19) assumes imaginary values when φv(z) is real,
it follows that

ε io

= limAfo,) Re "{ d μ\
ε io

 Φ ί M l

By calculating the right-hand side of this equality using standard methods of
complex variable function theory, we obtain the sought Eqs. (4.17) and (4.18).
In this case Lemma 4.3, as is readily seen, admits the following generalization:

Lemma 4.4. // h(μ, ε) is a continuously differ entiable function of its arguments and
the function h(μ] = h(μ, 0) is real-valued, then Eqs. (4.17) and (4.18) will remain valid,
ifh(μ) is substituted by h(μ, ε) as the integrand.

Regarding the coefficients β^ entering into Eq. (4.7), note that in view of
(4.4) and (4.5) and analyticity of the functions V ±(η, z), when η e 7^ and | Im z | :g g/2
the following statement is true.

Lemma 4.5. There exist positive constants C and p such that when Reze[/l, λ + v]
and | Imz| ^g/2,

(4.20)

Besides, when z = μeIR,

(4-21)

Now calculate the conductivity σ(v, Λ) by Eq. (4.7). Consider the following
identity:
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l + y " exp[/0|1+/0V|

ι-rmeχp[/0,1+/*,2]

_ β.B+
P"P- l-y"exp[/ 0 f l +/* 2 ] l+y»e- '

Since by virtue of Lemma 3.3 in the case of ε = 0/0 t + /J 2 = — i<j0v then, by
using Lemmas 4.3 and 4.4, where the role of the function h will be played by the
parenthetical expression in the right-hand side of identity (4.22), and also Lemma
4.5, we obtain from (4.7), (4.1), (4.2) the following:

*M) = %2 Σ' ^H-, (4-23)
μweΛU,v Tv^rrn)

where £' means that if one of the ends of the interval [Λ, λ + v] equals μw, then
1/2 must be placed before the pertinent term. From Eq. (4.23) it apparently follows
that

The asymptotic bound of a simpler form for the conductivity σ(v, λ) from inequality
(4.24) will be obtained by inequalities (4.20) and the following statement.

Lemma 4.6. Let μm,μf

meΛλv be different. Then there exists a positive ^-inde-
pendent constant Cχ such that

Im-m'I^C^v- 1 ^, (4.25)

where β is the constant of condition (1.5).
Besides, ifμmeΛλv, then

\m\^Cvv-iiβ. (4.26)

Proof. Note first of all that condition (1.5) may be rewritten as Eq. (3.1), namely:

\e2nim«-\\^C\m\-β. (4.27)

Besides, by virtue of (4.14) it is apparent that

max \φv(μ)-φv(μ'}\^2v max p(μ). (4.28)
μ,μ'e[λ,λ + v] μe[λ,λ + v]

Because μm and μ'm are solutions to Eq. (4.15) in [/I, λ + v] then 2π(m — m') = φv(μm)
— φv(μm>) (mod 2A). Hence, in view of Eqs. (4.27) and (4.28), obtain for a certain
constant C independent of v :

C\m - m'|-' ̂  |e"«<«-»')« - 1 1 = |exp i[φv(μj - φv(μm,)] - 1 ^ Cv.

From the latter inequality easily follows validity of inequality (4.25).
For proving inequality (4.26) note that, in view of (4.14) for 0 ̂  v ̂  1 and some

positive-independent constants C1 and C2,

+ v]. (4.29)
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Since μm is the solution of Eq. (4.15), then

φv(μj = 2πmα (mod 2π).

Hence, and from Eqs. (4.27), (4.29), we obtain that

C\m\~β ^ \e2πίm« - 1 1 = l^vOim) _ 1 1 g C3v,

where C3 is the positive v-independent constant. From the latter inequality
apparently follows the sought inequality (4.26).

From inequalities (4.20), (4.25), (4.26) and (4.24) it follows, as is easily seen,
validity of the asymptotic inequality (1.6), which is the conclusion of the proof of
Theorem 3.

Appendix : Proof of Theorem 4

If an irrational α is such that for any integer r and q,

\*-r/q\^q-2<>, (A.I)

then by virtue of Theorem 2 the spectrum of the operator H1 will be pure point,
i.e. the absolutely continuous component of the spectrum is absent (we took
20 in (A.I) only to avoid fractional degrees of q below). Assume now that condition
(A.I) is not fulfilled, i.e. there is a sequence of integers rn and natural qn, where
qn are mutually prime, that when n -> oo , rjqn -> α, and

Show now that for any ω satisfying condition (1.4) and α satisfying (A.2), the
absolutely continuous component of the spectrum of the operator H^ is absent.
To do so, it is by Proposition 2.2 sufficient to ascertain that for each fixed xeZ,
for Lebesgue almost all /Γs, the following relation is valid:

lim Im (η*9 R(λ + ίε)ηx) = 0, (A.3)
ε j O

where for the resolvent R, its representation in the space L2(T1) = L2(S1} should
be taken. The proof below of (A.3) is arranged as follows. The operator H1 and
its resolvent R depend on α, i.e. R(λ + iε) = R(λ + is, α). Since, in view of (A.2), α
is sufficiently well approximable by rational numbers, it is possible, by using the
representation of R as series (2.11), to reduce the proof of (A.3) to establishment
of validity of the following relation:

lim Im fo*, R(λ + ien, rn/qn)ηx) = 0, xεZ,
n~* oo

where εn = q~ 5, for Lebesgue almost all /Γs. This is proved with the use of suitable
estimates of the expression under the limit sign, which can be obtained on the
basis of the said representation (2.4).

In this Appendix, as in the preceding sections, it is convenient to consider the
operator representations in the space L2(5'1); in particular here it is convenient,
as in Sect. 4, to substitute η by p :

(A.4)
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R0(p) = B(p\ Rn(p) = - 2igB(p) Π C(p + sv>)B(p + nα).
s = 0

Now fix the arbitrary finite interval Δ and introduce:

As a result, Eq. (2.10) becomes

(UΨ)(p) = Ψ(p + α), UnΦ(p) = Φ(p + rcα)t/π, neZ. (A.5)

Hence, and from (2.4) we obtain

*(*)= Σ«.(p)t/"χ", (A 6)
n-l

(A.7)

(A.8)

From the definitions of functions B and C by equalities (2.7) and (2.8), we obtain

the following estimates valid for:

(A.9)

(A. 11)

(A. 12)

(A. 13)

C(p)

C(p)

where Cί and C2 are positive constants independent of zeLA and α.

Lemma A. 1. Let <x1, α2e!R, z = λ + iεeLΔ. Then there exist positive constants
C3 and C4 independent ofzeLΔ and such that for any positive integer k,

(ηx, R(λ + iε, ^)ηx) - (ηx, R(λ + iε, a2)ηx)\

Proof. It follows from Eq. (A.7) that

π >, α) = Rn(p, a

(A. 14)

(A. 15)

(A. 16)

and from the definition of Rn(p, α) by equalities (A.7) and inequalities (A.9)-(A.13)
we have for n ̂  0 and zlα Ξ α2 — α t |.

+ (1 + nC - 1 (A. 17)
5 = 1
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-exp C1rczlα+ ^C^sΔη — 1 ̂  expfC^zlαn2] — 1.
L 5 = 1 J

From (A.I 1) and (A. 17), in view of the identity

we obtain with allowance for (A.7) and (A. 15), (A. 16):

iε^)ηx) - (ηx, R(λ + ίε, α2>
oo 1/2

^ Σ ί
n = 0 - 1/2

fc-1

k

^ C1 \dτ(ec'^τ2- 1) + 2(^-^(1 - g-^8)-1.
o

From this estimate follows inequality (A. 14).
Note now that the validity of the limiting relation (A.3) is enough to be esta-

blished for any sequence εn converging to zero. Choose it in the following way.
Consider the sequence rjqn approximating the number α with the rate specified
by inequalities (A.2) and put

Now use Lemma A.I, putting α t = α, α2 = rn/qn and substituting

kn = q6

n (A.20)

for k. As the result we obtain the following statement :

Lemma A. 2. F o r a n y A e z l ,

lim Im(ηx, R(λ + /ε, α>f ) = lim Im(ηx, R(λ + ίεn, rjqn}ηx\ (A.21)
ε|0 n->oo

where R(z, α) is specified by equalities (A 7), and εn = q ~ 5 .
Indeed, in view of (A.20) and (A.2), when n -» oo, kn α — rnqn \ 1/2 -> 0. Hence and

from inequality (A. 14), we obtain f o r n -> oo , with allowance for (A. 19), (A.20) and
(A.2):

I fa*, R(λ + iβB, α>y*) - (ι/*, R(A + ieB, rχ>y*)l

^2C^2 |α-rA| + C3β;^-c^-0.

Thus, Lemma A.2 is proved.
Now, for the proof of the theorem, by virtue of relation (A.21), it is enough to

ascertain that, when εn = q~5, for Lebesgue almost all λeA,

lim Imfa*, R(λ + iεn rn/qn)ηx) = 0. (A.22)
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Investigate R(z,α) specified by (A.7) for rational α's, i.e. for α = r/g, where r,q
are integer mutually prime numbers.

Let us consider the following auxiliary functions:

(I

Cq(p) = Y[ C(p + srq-ί) (A.23)

k

Dk(p) = - 2ίgB(p)B(p + (k + l)rq~l) Π C(P + srq~l). (A.24)
s = l

Then, if we denote

κq = κ exp 2πirq~ίx, xeZ, (A.25)

then κq = κq, and for n > 1 and n— I =tq + k, 0 < /c ̂  0 — 1, we shall have
<z

Now if we use the identity

Im (ηx, R(λ + iε)ηx) = ε || R(λ + iε)ηx \\2, (A.27)

then in view of Eqs. (A. 15) and (A. 16), we shall obtain

1/2 oo

Im (jfx, R(λ + iε, r/q)ηx) = ε J dp|R0(p)+ Σ^nχ(P)|2 (A.28)
-1/2 π = l

If we use inequality (A. 11), then by virtue of (A.28) for the proof of (A.22) it is
sufficient to ascertain the validity of the following statement:

Lemma A.3. For Lebesgue almost all λ^Λ,

1/2 oo

lim επ J dp\ ^ Rm χ(p, λ + ίεn, rn/qn)\2 = 0, (A.29)
n-^ oo -1/2 m = l

where εn = q~5.

Proof. It follows from (A.26) that

00

Σ Rm,χ(p) ~

Hence, and from Eqs. (A.IO) and (A.I 1) follows existence of such a positive constant
Cthat VzeL,

Now consider the function C /̂?), and note that in view of Eqs. (A.23) and (3.9),
it may be represented as follows :

Cβ(p) = e x p / o + q Σ Λ/2π' (A32)

L /c^O J

Since, as was shown in Sect. 3, the function f(η, z) is analytic in the domain
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Tί x Lg, then there exists a pair of positive constants C1 and C2 such that

. (A.33)

Hence, and from equality (A.32) we obtain for:

I Cq(p, z) - eqfo(z) I ^ C^e~C4q (A.34)

where C3 and C4 are positive constants. Now if we use Lemma 3.3, then for z =
λ -f iεeLA and εg ̂  1 we shall have:

(A<35)

z = λ + iεeLA :
If we put q = qn and εw = q~5, then inequalities (A.34) and (A.35) will yield for

|CβnQU + ίεn) - e^^\ ^ C6q~\ (A.36)

where C6 is a positive constant.
From inequality (A.36) and κ = ei2ω, we have for a positive constant C7 and

and z = λ + iεeLA :

\Γ (n 2 J_ 7*0 Wβn /,iβw('»U)+2ω)| < Γ* /7~ 4 f Δ ^7Ϊc (j9, A -|- zε^jx — £ I — ?%ί j/\ -> /;

Now if we use the continuity and monotonicity of m(/l), we shall see that for
Lebesgue almost all /le[R,

Hence, and from inequalities (A.37) and (A.31) it follows that for almost all λeΔ,

oo 2

m=ί

The latter inequality apparently implies validity of Eq. (A.29).
Equation (A.22) is thus true, which is the conclusion of the proof of Theorem 4.
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