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Abstract. Real physical problems are presented in which Euler equations on
Lie algebras of arbitrarily high finite dimension arise. A new integrable case of
rotation of a magnetized rigid body in constant gravitational and magnetic
fields is found. It generalizes the Kowalewski classical integrable case.

1. Physical Problems Related to Euler Equations
on Finite-Dimensional Lie Algebras

The classical equations describing rotations of a free rigid body around its center of
mass were derived by Euler in 1758 [1],

M = M x ω , (1.1)

where M and ω are the angular momentum and angular velocity vectors; the
3

equality relating their coordinates is Mt = Σ lnfi>ki where Iik are components of
fc=l

the inertia tensor of the rigid body. From the modern point of view, Eqs. (1.1) are
given in the space conjugate to the Lie algebra SO(3); they are Hamiltonian
equations on the orbits Ml + Ml + Ml = const. Arnold [3] proposed the following
extension of Euler equations (1.1) for arbitrary Lie algebras,

M = ad*M)M, (1.2)

where the vector M belongs to a space L* conjugate to the Lie algebra L, and α(M)
is a linear self-conjugate (with respect to the natural pairing) operator from L* to
L. Equations (1.2) are Hamiltonian equations on orbits Θ of the co-adjoint
representation (in the space L*) of the Lie group L, associated with the Lie algebra
L. The Hamiltonian for Eq. (1.2), H= \ (α(M), M), is necessarily a homogeneous
second-order polynomial of components of the vector M. Until recently, there was
an opinion that Euler equations in finite-dimensional Lie algebras which can be
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relevant to physical problems must have low dimension, since the physical space is
three-dimensional. It has been shown [4] that the classical Kirchhoff equations
describing motions of a rigid body in a fluid are Euler equations in the space
conjugate to the six-dimensional Lie algebra E3 (the Lie algebra for the Lie group
G3 containing all Euclidean motions of the three-dimensional space JR3). Another
known example of Euler-type equations are the equations describing rotation of a
rigid body with an ellipsoidal cavity filled with an ideal incompressible fluid which
is in homogeneous vortex motion. These equations were introduced by Lamb,
Zhukowski, and Poincare; they are related to the six-dimensional Lie algebra
SO(3) + SO(3) = SO(4).

In this section we present new examples of Euler equations on higher-
dimensional Lie algebras, which arise in real physical problems. An investigation
of these examples has revealed that the mentioned definition [3], (1.2), does not
include a number of important physical equations related to the Lie algebras. For
example, the classical equations describing rotation of a rigid body in a general
potential force field, which were also derived by Euler in [1], cannot be represented
in the form of (1.2). Therefore in the following we use another, more ample
definition of Euler-type equations.

Let L be an n-dimensional Lie algebra, L* its conjugate space, x l 5 ...,xπ

coordinates in L*. By definition, the linear functions xί9..., xn belong to the Lie
algebra L and form a basis in it; let C^ be the structure constants of the Lie algebra
L in this basis. As is known, a Lie-Poisson bracket exists in the space of functions
on L*,

l
which is related to the Berezin-Kostant-Kirillov symplectic structure in a natural
way. Let H(xl9 ...,xj be an arbitrary function in the conjugate space L*.

Definition. Euler equations in the space L* are a system of equations written as
[12]

d / Λ {xi,H}, i = l , . . . , n . (1.4)

In particular, if the Hamiltonian H(xί9 ..., xn) is a homogeneous second-order
polynomial, Eq. (1.4) are reduced to (1.2).

Below we present a list of important physical problems formulated in terms of
Euler equations, in the sense of the above definition.

i) Rotation of a rigid body T with a fixed point in a Newtonian field with a
potential φ{xι,x2,^3) [5]. Let α, β, γ be three unit basis vectors of a fixed
coordinate frame related to a reference frame S moving with the rigid body. The
equations describing rotations of the rigid body in the frame S are

M = M x ω + ( / ) ( / β ) β + ( / γ ) γ,

ά = α x ω , β ^ β x ω , γ = γ x ω ,

where l/(α, β, γ) is the potential function

[/(a, β, γ) = J ρ(r) φ((r, a), (r, β), (r, γ)) drt dr2 dr3,
T

and r1? r2, r3 are coordinates in the reference frame S.
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Equations (1.5) are Euler equations of the type (1.4) in the space L%2, the
corresponding Hamiltonian is

H = 2'1(M9ω)-U(μ9%y)9 M= £ Iikωk.
k= 1

The relevant Lie algebra L 1 2 is a semi-direct sum SO(3) + R3 + R3 + R3. In this Lie
algebra we have a basis Xb Y* (i,j\ α, /?= 1,2,3), and the commutation relations
are

ίXhXj-]=ειJkXk, [Xh Yβ=είJkYk\ [Y?, Yf] = 0. (1.6)

Because of the Laplace equation, Aφ = 0, the potential function U satisfies three
equations,

d2U/daf + d2U/dβϊ + d2U/dyf = O, i = l , 2 , 3 .

Evidently, the nonlinearity of the function l/(α, β, γ) may be arbitrarily com-
plicated, so in general the Euler equations (1.5) cannot be reduced to (1.2), as in the
latter equations the Hamiltonian is a quadratic form. In the simplest case where
the potential φ is a linear function of coordinates, φ = a1x1 + a2x2 + a3x3, Eqs. (1.5)
are equivalent to the Euler-Poisson equations; they cannot be transformed to (1.2)
in this case either.

ii) Dynamics of a rigid body with a distributed electric charge in ideal
incompressible fluid in the presence of constant gravitational and electric fields
and under the conditions that the buoyancy and gravity forces are equal and the
total charge of the body is zero. In the reference frame S, fixed to the body and
having its origin at the center of mass, the equations of motion are, if the flow
around the body is vortex-free,

u + mar xγ + Ed xδ,

A * ( L 7 )

δ = δ x ω ,
where ω is the angular velocity, u is the velocity of the rigid body in fluid, p is the
total momentum, M is the total angular momentum (in the frame S), m is the mass
of the body, g is the free-fall acceleration, γ indicates the direction of the gravity
force, the vector r stands for the position of the center of mass of the fluid volume
displaced by the body, E is the electric field strength, d is the electric dipole moment
vector, and δ indicates the direction of the electric field. Equations (1.7) are the
Euler equations iπ space L^; the Hamiltonian is

i, j — 1

ωt = dH/dMi9

where aij9 bip ctj are arbitrary constant coefficients providing positiveness of the
quadratic form. If £ = 0, (1.7) are the Euler equations in space Lξ dual to the Lie
algebra L9 given by the commutation relations (1.6) for α, β = 1,2. For E = 0, g = 0
equations (1.7) are reduced to the Kirchhoff equations which are Euler equations
in £f [4].
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iii) Rotation of a magnetized rigid body with a fixed point in homogeneous
magnetic and gravitational fields is described with the following equations:

M = M x ω + m0Γxγ + /ϊ$Rxδ, γ = γ x ω , δ = δ x ω , (1.8)

where 9JI is the magnetic moment vector of the rigid body, the vector δ indicates
direction of the magnetic field, and h stands for the magnetic field strength.
Equations (1.8) are the Euler equations in the space Lξ\ the Hamiltonian is

k=l

= 0, Eqs. (1.8) are reduced to the classical Euler-Poisson equations which are
the Euler equations in £f, in the sense of (1.4).

iv) Dynamics of a rigid body with an ellipsoidal cavity filled with a magnetic
fluid in a homogeneous vortex motion (a model of a pulsar rotation) [6]. In the
rotating frame S the dynamical equations are

M = MxA, K = KxB + uxw, ύ = uxB, (1.9)

where M is the total angular momentum of the rigid body and fluid (referred to
their common center of mass), A is the angular rotation velocity of the rigid body,
B is the angular internal rotation velocity of the fluid, K stands for the fluid velocity
vortex vector, the vectors u and w are related to the magnetic field frozen into the
fluid. Coordinates of the vectors A and B are linear combinations of coordinates of
M and K, respectively; there are also linear relations between coordinates of u and
w [6]. Equations (1.9) are the Euler equations in the space conjugate to the Lie
algebra SO(3) + £ 3 ; the Hamiltonian is

v) Dynamics of a rigid body with n ellipsoidal cavities filled with a magnetic
fluid which is in a homogeneous vortex motion is described with the following
equations:

M = MxA, Kα = KαxBα + uαxwα, ύα = uαxBα, (1.10)

where α = 1,..., n, M is the total angular momentum of the body and fluids in all
the cavities (referred to the system center of mass), A is the angular rotation
velocity of the rigid body, the vectors Kα, Bα, uα, wα are characteristics of the fluid
motions and of the frozen magnetic field in the αth cavity. Coordinates of the
vectors A,B1? ...,Bn are linear combinations of coordinates of the vectors
M,K1? ...,KΠ5 respectively; coordinates of uα and wα are also related linearly.
Coefficients in the linear relations depend on components of the body inertia
tensor and parameters of the ellipsoidal cavities [8]. The notation we use for the
relevant Lie algebra is Ak>m = SO(3) + ... + SO(3) + £ 3 + . . . + £ 3 . It is a direct sum
of k copies of the SO (3) Lie algebra, and m copies of the £ 3 Lie algebra. Equations
(1.10) are the Euler equations in the conjugate space of the Lie algebra L=AltΛ; the
Hamiltonian is

H = l- £(M, A) + Σ ((Kα, Bα) + (uα, wj)
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In the absence of magnetic field in k cavities (t/α = wα = 0 for α = l , ...,fc) the Lie
algebra is reduced to L = Ak+ίffl^k (the case k = n was considered in [7]).

vi) Rotation of a rigid body with n ellipsoidal cavities, filled with a magnetic
fluid, around a fixed point, in a Newtonian field with potential φ(x1,x2,x3), is
described with the following equations:

M = M x A + (dU/da) x α + (dU/dfί) x β + (dU/dy) x γ,

ά-αxA, β = βxA, γ=γxA, (1.11)

which are an irreducible combination of Eqs. (1.5) and (1.10). Equations (1.11) are
the Euler equations in the space conjugate to the Lie algebra L = Ll2 + A0 n\ the
Hamiltonian is

Σ ((Kα,BJ + (uα,wj)-U(μ>β,γ).

In the absence of magnetic field in k cavities the Lie algebra is reduced to L = L 1 2

A combination of problems ii) and v) leads to the Euler equations related to the
Lie algebra L = Lί2-\~AKn_k. In the absence of electric field the Lie algebra L is
reduced to L9 + AKn_k; if the gravitational field is also vanishing the Lie algebra L
is reduced to E3 + Aktn-k = AktΛ-k + 1. The Lie algebras L9 + Aktn-k and Λ.H-Λ + I
are also related to equations arising from combinations of the problems iii) and v).

2. A New Integrable Case; Rotation of a Magnetized Rigid Body
in Constant Gravitational and Magnetic Fields

1. Let us consider rotation of a rigid body T, having a constant magnetic moment
9M, with a fixed point 0, in homogeneous gravitational and magnetic fields.
Suppose that in a rotating reference frame S the inertia tensor of the rigid body is
diagonal and has components Il9 J2, J3. To indicate directions of the constant
gravitational and magnetic fields we use unit vectors γ and δ; the vector r stands for
the position of the center of mass (in the frame S), m is the rigid body mass, g and h
are the gravitational and magnetic field strengths, M is the angular momentum
and ω is the angular velocity; their components are related by Mk = Ikωk. In the
frame S the equations of motion have the form of (1.8). The same form is specific
also for the equations describing rotation around a fixed point for a charged rigid
body with a total charge σ in the presence of constant gravitational and electric
fields. In the latter case h in Eqs. (1.8) should be replaced by E (the electric field
strength), and the vector SDΪ should be replaced by the electric dipole moment

d= J σ(r)rdrί dr2dr3, where σ(r) is the electric charge density.
T

Equations (1.8) have the following first integrals:

), J 2 = (γ,γ), J 3 = (δ,δ), J 4 = (γ,δ).
(2.1)
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The first integral Jt is the total energy of the rigid body. A manifold Ji6, which is
determined by the conditions J2 = l, ^3 = 1? J 4 = c4 is in general a product,
Jί6 = R3 x SO(3) = T(SO(3)) [the tangential bundle to the Lie group SO(3)].

As it was mentioned in Sect. 1, Eqs. (1.8) are the Euler equations in the space Lξ
which is conjugate to the Lie algebra L9; the commutation relations for the latter
are written in the basis Xh Y*9 Eqs. (1.6), where α, β = 1,2. The three dimensional
vectors M, γ, δ belong to subspaces with the basis vectors Xf, YJ1*, l^2*,
respectively.

For functions in space Lξ the Poisson brackets are defined by Eqs. (1.3). For
the basis functions we have

{Mi9 Mj} = εijkMk, {M i 9 yj} = εijhyk, {Mi9 δj} = εijkδk,

{ } {δδ} { δ } Q

In view of (1.3), the Poisson bracket for arbitrary polynomials of Mi9 γj9 δk is
calculated using (2.2) by means of the Leibniz rule. The functions J 2 , J 3, J 4 , given
in (2.1), annul the Poisson brackets (2.2); manifolds of their combined levels, Jΐ6,
have a nondegenerate symplectic structure. The equations of motion, (1.8), have a
Hamiltonian form,

M-iM^H), yj = {yj,H}, Sk = {δk,H} (2.3)

with the Hamiltonian function H = J1.

Theorem 1. Under the following conditions

mgr=(R,0,0), λSK = (0,β,0), 7 1 = / 2 = 2/3, (2.4)

Eqs. (1.8) have also the first integral,

J 5 = Z ? + Z L (2.5)
zι = M2

1-M2

2 + 4I3(Ryι-Qδ2), z2 2MM + 4I(R Qδ)

In an invariant submanifold determined by the condition J5 = 0 (zt = 0, z2 = 0) there is
an additional integral J6 = {z1,z2}, and Eqs. (1.8) are integrable in Liouville's sense.

In an invariant submanifold determined by the conditions z1 = 0, z2 = 0, J6 = 0,
Eqs. (1.8) have another additional integral JΊ = ({J6, z1})2 + ({J6, z2})2. In the latter
manifold all trajectories of the system (1.8) are closed.

Under the conditions (2.4), Eqs. (1.8) are written as

2 =-M 1 M 3 /273-Ry 3 , M^Rγ^Qδ,,

γ2 = y3M1/2I3-y1M3/I3,

6ί = δ2M3II3-δ3M2βI3,

= δ3MJ213 - ^ M 3 / / 3 , 63 = ̂ M 2 /2/ 3 - δ2MJ2I3.

γ3 = y1M2/2I3-γ2M1/2I3, 6ί = δ2M3II3-δ3M2βI3,
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The following equations are derived from (2.6)

(Mx + iM2) •= - i(2/3)" lM3(M, + *M2) - iΛy3 + Qδ3,

'= - ί/ί ^3(71 + ίy2) + iy3(2/3)"' (Mx + *'M2), (2.7)

'= -U3

1M3(δ1 + i52) + « 3(2/ 3)" 1 (Mi + iM2).

Let us multiply the first equation in (2.7) by 2{M1 + iM 2), the second equation by
4/3JR, and the third equation by 4iJ3β. The sum of the resulting equations is

z = —H*1M'iZ,
(2.8)

z = (Mί + iM2f + 4/ 3 Λ(y ! + iy2) + 4 i / 3 Q ( 5 i δ )

This function can be written as z = zx 4- zz2, where zx and z2 are presented in (2.5).
The complex equation (2.8) is equivalent to a pair of real equations,

z1 = {z1,H}=i;1M3z2, z2 = {z2,H} = -I3'
1M3zί. (2.9)

A consequence of (2.8) is (zz)'=(z\ + z 2)'=0, so J5 = z\ + z\ is a first integral for the
system (2.6).

Intersections of the manifold J5 = 0(zί = 0, z2 = 0) with the submanifolds M6

are four-dimensional symplectic submanifolds Jt** (the induced symplectic
structure is nondegenerate). In the submanifolds Jί* the system (2.6) has an
additional first integral,

3. (2.10)

In order to verify this fact one can use Eqs. (2.9) and the Jacobi identity; the result is

j 6 = {{zl9z2}9 H}=- {{z2, H}9 z j + {{zl9 H]9 z2}

= I3\z1{M3,z1}+z2{M3,z2}) = I3\2z1MίM2-z2(M2

1-M2

2)). (2.11)

So in submanifolds Jί^ which are determined by the conditions zt = z2 = 0, J2 = 1,
J 3 = l, J 4 = c4, one has J 6 = 0. Thus the Hamiltonian system in the invariant
submanifolds JίA has an additional integral J 6 , so it is completely integrable in
Liouville's sense.

Let us calculate the time derivatives of functions {J6, zx} and {J6, z2}, using the
Jacobi identity,

6 U } = 0, ί = l , 2 . (2.12)

Putting Eqs. (2.9)-(2.11) into (2.12) we get

(2.13)

+ z2{z2, Mj - M\} + 2J 6 M 1 M 2 - M3{J6, z j

In the invariant manifold determined by the conditions zί=Q, z2 = 0, J 6 = 0,
Eqs. (2.13) acquire the form

{J6,z1} =/3 1M 3{J 6,z 2}, {J6,z2} =-/ 3 - 1 M 3 {J 6 ,z 1 } . (2.14)
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Consequently, under the conditions z± = 0, z2 = 0,J6 = 0 the system described by
Eqs. (2.6) has the additional integral JΊ = ({J6, z1})2 + ({J6, z2})2. In every in-
variant four-dimensional submanifold JK\z1 = 0, z2 — 0, J2 = l, «̂3 = 1? J4 = c4),
the intersection of three level surfaces J1=cl9 J 6 = 0, J7 = c7 determines closed
trajectories of the system (2.6). This completes the proof of Theorem 1.

In the absence of the magnetic field (Q = 0) the integrable case specified by
Eq. (2.4) for the system (1.8) is reduced to the classical case discovered by
Kowalewski [2]. In the integrable case obtained here the potential function
U = Ryί + Qδ2 [cf. Eq. (1.5)] has an essential dependence on three Euler angles φ,
ψ, θ. Integrable cases where the function U depends on two Euler angles φ, θ were
investigated by Gory ache v [9,10].

Remark. It is not difficult to verify by means of a direct differentiation that
Eqs. (2.6) result in a matrix Lax equation,

£ = [L,i4], (2.15)

where matrices L and A are two-dimensional and have the following elements

ip ip

(2.16)

Because of Eqs. (2.15), the functions Tr(L) and Det(L) are first integrals of the
system (2.6). These integrals are related to the integrals J 1 ? Eq. (2.1), and J 5,
Eq. (2.5),

J ^ ^ Γ ' T r t L ) , J 5 = (Tr(L))2-4Det(L).

If Q = 0, the matrix equations (2.15H2.16) are reduced to an equation derived for
the Kowalewski case in [11].
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