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Abstract. We show that QCD with a sufficient number of fermions of zero bare
mass has physical massless particles. That result also follows from triangle
anomalies, so only our method is novel. Our method involves proving special
cases of recently conjectured paramagnetic inequalities for fermions. The
proofs are simple applications of the Atiyah-Patodi-Singer theorem on spectral
flow.

I. Introduction

Despite intensive study over the years, many fundamental properties of quantum
chromodynamics - and strongly interacting gauge theories in general - are
imperfectly understood. These include questions of chiral symmetry breaking,
dynamical mass generation, and confinement.

There has recently been progress in understanding the properties of strongly
interacting gauge theories through the development of rigorous inequalities [1-6].
In particular [2,3], a surprising amount of information about symmetry realiza-
tion in parity-conserving, vector-like gauge theories (like QCD) follows from

relatively simple facts about fermion determinants and propagators in Euclidean
space.

In these theories, after integrating out the fermion fields, we are left with a
measure for the gauge field integration

^ Ύ r F ^ F ^ ] d e t ( 0 + M)πdAa

μ(x), (1)

which is an ordinary, real, positive measure. (The positivity of the measure depends
on the fact that the fermion determinant is positive in four dimensions for fermions
in a real representation of the gauge group; see, for instance [3].) Any inequality
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that holds pointwise continues to hold after integrating with respect to a positive
measure. So, in a vector-like theory, an inequality among fermion matrix elements
that holds in an arbitrary background gauge field A also holds, after integrating
over A, in the exact quantum field theory. Such inequalities have been used to
argue that the axial symmetries are spontaneously broken [2] and the vector
symmetries are unbroken [3] in theories like QCD.

In this paper, we will use the same general strategy to prove another significant
fact about vector-like theories. We will prove that if there are a sufficient number of
quark flavors of zero bare mass (we need at least four flavors), then there is no mass
gap in a channel with the quantum numbers of qq. This absence of mass gap may
reflect the existence of physical massless quarks (if there is no confinement) or
massless mesons or baryons (if there is confinement). Our methods do not
elucidate which option the theory chooses; of course, the real world is believed to
prefer the second option (the pion being massless if the quark bare mass is zero).
We will establish our result about the absence of mass gap by proving some special
cases of the paramagnetic inequalities that have been proposed for Dirac fermions

[7]
That there is no mass gap if the quark bare masses are zero has been shown

previously, by't Hooft [8], through consideration of the triangle anomaly. In fact,
his method gives more information than we obtain (his argument works for two or
more massless flavors; and the anomaly matching gives considerable insight about
the quantum numbers of massless particles). Nonetheless, we believe our results
are interesting for several reasons. The absence of mass gap in the theory with
massless quarks is such a significant result that it is worthwhile to understand it
from various viewpoints. We suspect our approach may ultimately have
generalizations that may not be possible for the anomaly matching argument. Our
results also have some bearing on chiral symmetry breaking, in a way that will be
explained in Sect. II; in a certain sense, we will show that the opposite of chiral
symmetry breaking (a depletion of the Dirac spectrum near λ = 0) cannot occur.
The paramagnetic inequalities relevant in our work also have interest in their own
right. Finally, there is at least one situation in which our method gives results
that would not follow from consideration of anomalies; this arises in 2 + 1 dimen-
sions, where there is apparently no direct analogue oft Hooft's anomaly-based ar-
gument.

The organization of this paper is as follows. In Sect. II, we describe the
inequalities we will prove and their relevance to QCD. In Sect. Ill, we prove the
inequalities. In Sect. IV, we briefly discuss the application of our results to gauge
theories in 2 + 1 dimensions. The paper is written in such a way that readers only
interested in the applications can read only Sects. II and IV, and readers only
interested in the mathematics can read only Sect. III.

II. The Inequalities

Consider a theory with n flavors of massless fermions ψl9 ψ2,..., ψn transforming in
the same representation R of the gauge group G. For k even and equal to or less
than n, let

S(xu ...,xk)= -iXΩ\ψ1ψ2(x1)ψ2ψ3(x2) ...ψM^x^Ω) . (2)
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(The phase is for later convenience.) We will be interested in the quantity

S(k) = ίd*x1...d
4xk-1S(xl9x2,...9xk-l90) (3)

integrated over k — 1 variables, with one held fixed.
If the theory has a mass gap, Green's functions show exponential clustering and

the integral in (3) converges. We will show that the theory with n ̂  4 has no mass
gap by showing that this integral diverges for fc^4. We have chosen the fermion
flavors in (2) to be distinct so that S has no disconnected contribution. A
disconnected contribution would invalidate the argument by causing the integral
in (3) to diverge whether or not there is a mass gap. It is because of this that our
method yields interesting results only for n^4.

In free massless field theory, S(k) can be evaluated explicitly; it is

, (4)

where d(R) is the dimension of the representation R. Notice that for /c^4, S0(k) is
infrared divergent. This divergence is made possible by the absence of mass gap in
the free field theory. S0(k) is also ultraviolet divergent for /c^4. This ultraviolet
divergence is of no interest for our purposes. It can be eliminated, for example, by

Pauli-Villars regularization of the fermion kinetic energy, 0^0 ( 1 + -τy
\

This inserts a factor (1 + p2/Λ2)~k/2 in (4), leaving only the infrared divergence of
interest.

When necessary, we will introduce such a regularization later. (For rigor, we
should also introduce a suitable cutoff in the gauge field integration, such as the
gauge invariant Pauli-Villars procedure that has been rigorously formulated by
Asorey and Mitter [9].)

We will prove the absence of mass gap in the interacting theory by proving that

S(k)^CkS0(k), (5)

where Ck is a definite, finite, computable, positive constant. Inequality (5) proves
the absence of a mass gap in the theory of n ̂  4, because it shows that for k ̂  4 the
integral S(k) in the interacting theory has the same infrared divergence as S0(k).

To prove (5), we will prove some inequalities for fermions in an arbitrary
background gauge field A. Let SΛ(x, y) = (X\0A 1\y} be the fermion propagator in
the background field. We will work in an arbitrary finite volume V. Let SA(k) be the
analogue of S(k) in the background field A,

ί d \ Λ < ( ) ( ) y

j<rV-.d**TrS(^ (6)

We will prove that

0(k), (7)
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with a constant Ck that depends on k but not on A. Since S(fe) = J dμ(A)SA(k),
where dμ(A) is the normalized, positive measure of Eqs. (1), (7) implies (5).

Actually, consider the eigenvalue problem φψ = λψ. Let λuλ2,λ3... be the
eigenvalues oϊφ in order of ascending absolute value. Then (6) can be expressed in
terms of λb

SA(k)=^i^[k. (8)

In Sect. Ill, we will prove that in a box of size L (so F=L 4),

λ,ύ\=CV-v\ (9)

where C is a universal constant, independent of the gauge field A. Since

SA(k)^ 77^Γk, this is adequate to prove that SA(k)^ CΓkF ( fc~4)/4; since S(k) is the

average of SA(k) with a positive measure, it obeys the same lower bound,

(10)

For fc>4, this shows that S(k) is infrared divergent, blowing up as V-+oo. In fact,
since the free Green's function S0(k) has the same asymptotic behavior as the right-
hand side of (10),

S0(k)~V{k-4)/4, k>4 (11)

inequality (10) is equivalent to our previous statement (5). Inequality (9), which will
be our first goal in Sect. Ill, therefore implies the absence of a mass gap if there are
at least six massless flavors, so that we may take k = 6. At first sight, it is surprising
that so much follows from a bound on λγ alone.

For k = 4, we need a little more care to separate the infrared divergence from
the ultraviolet divergence. If one adopts Pauli-Villars regularization,
0^0(1 +(0)2/A2), then (8) is replaced by

^ l ' (12)

In Sect. Ill, we will prove, with a little extra work, an inequality analogous to (9) for
excited states,

114. (13)
It then follows that

p£ c

and S(4) automatically obeys the same lower bound, so

(15)
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Thus S(4) diverges as F-»oo for fixed A; this divergence is at least logarithmic.
Inequality (15) is again equivalent to our previous statement (5) since the free
Green's function shows exactly the same logarithmic behavior,

. (16)

Inequality (15) shows that there is no mass gap if there are four or more flavors of
zero bare mass.

Now let us discuss the connection with chiral symmetry breaking. Here we may
be less rigorous, since we can prove no theorems. Turning on a small bare mass m,
the induced vacuum expectation value of xβψ is

If the density of eigenvalues of 0 is Vρ(λ), this is

We want the limit of ζψψ} as m->0. Since lim — = πδ(λ) — ίP- (P being the
m->0 m + lλ A

principal value symbol), and since ρ(λ) = ρ( — λ)ί, we arrive at the formula [10],

lim<y?ψ> = πρ(0). (19)
0m->0

The spectral density ρo(λ) of free field theory obeys ρo(λ)~λ3 and ρo(0) = 0. To
establish chiral symmetry breaking one must show an accumulation of eigenvalues
at λ = 0, giving ρ^(0) φ 0 for the spectrum of the Dirac operator for the relevant
gauge fields A.

Although we cannot prove this, we can show that the opposite does not occur;
there is no depletion of Dirac eigenvalues near λ = 0. The behavior of the free Dirac
eigenvalues is λn~(n/V)1/4', so (13) says that the interacting eigenvalues are no
bigger than an overall constant times the free ones. This means

for any λ and some suitable C. Up to an overall constant, the spectral density near 0
for the Dirac operator with any gauge field is at least as big as the free one.

So far, we have merely stated that the theory with at least four massless fermion
flavors has no mass gap. To lowest order in 1/JV (but not generally), we can be more
specific. We can be more specific. If S(k) is cut in any channel, the intermediate
state has the flavor quantum numbers of a qq pair [in a flavor non-singlet
combination since we started with distinct fermion species in Eq. (2)]. Our results
really imply the absence of mass gap for states in the adjoint representation of the
flavor group.

It would perhaps be worthwhile to conclude this section by clearing up a point
that may be confusing. In massless QCD, the most singular infrared divergence in

1 This follows from simple Dirac algebra: if λ is an eigenvalue, so is — λ, since iϊi0ψ = λψ, then
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S(k) presumably arises from one pion intermediate states in the various channels.
We are accustomed to thinking that {Ω\ψψ\π} = 0. This is true in the conventional
chiral vacuum with <Ω|i/5φ|Ω> φθ, (Ω\ψίy5ψ\Ω} = 0. In a chirally rotated vacuum
with <Ω|i/3ϊγ5φ|Ω)Φ0, one can have <Ω|i/h/;|π>φO. In key formulas as of the
preceding discussion such as Eq. (8), we did not introduce explicit chiral symmetry
breaking [which would correspond, for instance, to taking λi->Λί+ ίm in (8) and
later taking m-»0], so if chiral symmetry is spontaneously broken, our formulas
correspond to averaging over all possible chiral vacuum states, including states
with <Ω|i/3φ|π>φ0. It is in fact in such states that the most singular possible
contribution to S is expected to arise, and the most singular contribution arises
from the maximum possible number of pion poles in the various channels.

III. Proof of the Inequalities

In this section, we will prove the inequalities whose implications for QCD were
discussed in the previous section.

Consider an arbitrary compact Riemanian manifold M (without boundary) of
dimension d, with metric tensor gijm Let A be an arbitrary gauge field on this
manifold (with any compact gauge group G). Let 0A be the Dirac operator for
fermions ψ in some representation Tof G, and let λ{ be the eigenvalues of 0A, in
order of ascending absolute value. We will prove

λxύC9 (20)

with a constant C that depends on M and on the metric gtj but not on the gauge
field A. More generally, we will prove

λnύCnγl\ (21)

with some constant C that depends on M but not on A or on n.
If one rescales the metric of M, 0fj—>ί20fj., the volume F scales as V->tdV, and the

Dirac eigenvalues scale as λi-+λi/t = λiV~ί/d. Inequalities (20) and (21) therefore
mean that for manifolds M of fixed shape and variable volume V, λi<CV~ί/d,
λn<C(n/V) + i/d. The inequalities were used in this form (with d = 4) in Sect. II.

For an arbitrary closed manifold M with arbitrary metric, we will show that
(20) and (21) hold with some constants C and C. For the special case of a torus with
flat metric we will determine the best constant in (20) [but not in (21)].

We will first prove the desired inequalities for odd d. The proof will depend on
simple considerations about the spectral flow of a family of Dirac operators [11];
the relevant facts have been discussed in the physics literature [12]. For any odd
d>l,πd (SU(AT)) = Z for large enough JV. Pick such a value of JV. The fermion field
ψaa already has a spin index α and a G index a; we now take N copies of the fermi
field, giving it a new index i = 1... N. Embedding G in G x SU(iV) in the trivial way,
we regard i a s a G x SU(N) gauge field, and we let 0A act on the fermion field xpaai

that lives in an enlarged Hubert space. The effect of this on the Dirac spectrum is
trivial; the eigenvalues are the same as before, but the multiplicity is bigger by a
factor of JV.

Since πd (SU(JV)) = Z, we can choose a smooth mapping C/:M->SU(JV) of
non-zero winding number; for defmiteness, choose the winding number to be one.
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Fig. l.Ad dimensional ball Bd can be embedded in an arbitrary d manifold M. The topological
classification of mappings U:M-+SU(N) that are constrained to be constant outside Bd is given
by πd(SU(iV))

[Perhaps it is worthwhile to specify that maps of non-zero winding number exist
on any closed manifold, not necessarily a sphere. For instance, one can choose
U(x) to equal 1 outside a ball, as in Fig. L] We will think of U as an operator acting
on the fermion field ψaai. Now, we define the operator

d QTJ
1 j ί ^ ] , (22)

where φj are a local coordinate system on M. Since M is compact and U is a
smooth function, X is a bounded operator. Let

C-normX. (23)

Notice that X is independent of the gauge field A, as the last formula in (22) makes
clear. Therefore, C is independent of A.

We will study the one parameter family of operators

Q(t) = 0A + tX. (24)

Notice that Q(O) = ί0A, while Q(l) = U~i0AU, which is unitarily equivalent to
Q(0). Hence the spectrum of Q{\) coincides with the spectrum of Q(0). However,
according to the Atiyah-Patodi-Singer theorem, as t is varied smoothly from 0 to 1,
the individual eigenvalues of Q(t) do not return to their starting points but are
shifted by one or more units (Fig. 2). The eigenvalues are shifted up or down
depending on whether U has winding number one or minus one. The magnitude of
the shift is the magnitude of the winding number of U times the dimension q of the
representation T2.

The proof of this statement can be found in the original reference [11] and also
in the physics literature [12]. Here is a brief sketch. We look at a Dirac operator on
the d + 1 dimensional manifold MxR, R being the real line. Parametrize R by a
variable τ. Let ί(τ) be a slowly varying, monotonic function such that £(— oo) = 0
and t( + oo) = 1. On M x R we take the gauge field At(φ, τ) = A^φ)- it{τ)U~1diU,
Aτ(φ, τ) = 0, and we look at the Dirac operator

- =Q(t) + ifίL. (25)

2 This factor appears because as far as SU(iV) is concerned, the fermion field consists of q
multiplets in the fundamental representation of SU(iV)
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t = 0

t

t=l

Fig. 2. The spectrum of Q(t) for 0 ̂  ί ̂  1 in a case where N = 2, the original fermion representation
has dimension q = 1 (A is an abelian gauge field) and U has winding number k = 1. Several points
should be noted. Q(ϊ) and Q(0) are unitarily equivalent and have the same spectrum. At t = 0 and
t = 1, but not for other t, the spectrum of Q(t) is doubled since (with N = 2) we took two copies of
the original Dirac field in beginning the construction described in the text. Since qk=l, the
Atiyah-Patodi-Singer theorem predicts an upward flow of the eigenvalues by one unit between
ί = 0 and t = l

Now, the first observation is that by the index theorem [13] the index of D equals
the winding number of U times the dimension of T, so if U has non-zero winding
number, D has at least one zero eigenvalue. Second, if t(τ) is slowly varying, the
equation Dψ = λψ can be solved in an adiabatic approximation. Let the
eigenvalues of Q(t) be λ^ί) with eigenfunctions ψ%φ). Then, since {yφ Q(t)} = 0, the
hermitian operator — iydQ(t) has eigenvalues ±λ-(t)\ call the eigenfunctions ψ\(φ).

dF
To solve Dψ = 0, we try ψ(φ, i) = F(i)ψ\(φ) and find — = + λι(t)F(τ) the solution is

dτ

= exp+{dτ/Ai(ί(τ0). (26)

This is normalizable only if λ{ is positive for t = 0 and negative for t= 1, or vice-
versa. But (26) must be normalizable for some i, because D is known to have a zero
eigenvalue. So for some i, λt changes sign between ί = 0 and ί = 1, and we get the
picture of Fig. (2).

The desired inequality is an immediate consequence. Arrange the eigenvalues
λa(t) of Q(t) in ascending order,

- o o < ..Aa_λ{t)<λa{i)<λa+ γ(t)^ ... < +oo with - o o < α < +oo;

normalize a so that at ί = 0, /̂ (O) is the lowest non-negative eigenvalue. Since
ρ(0) = 0A, the λa(0) are just the eigenvalues λa of 0A. From Fig. 2, λa(ϊ) = λa + ^0),
so

dλn\λa+ί(O)-λa(O)\Sίdt

But
dλ,
dt

dt
(27)

OI S C, since normX = C, so \λa+1 —λa\ < C. In particular, for

a = 09λ1έi0,λo< 0, so this says λ1 <; C, \λo\ ̂  C. This is the desired inequality, since
by construction C depends on the manifold M (and its metric) but not on the gauge
field A. Actually, the more general result \λa+x — λa\ < C is also of note; it shows
that, regardless of A, there can be no large "gaps" in the Dirac spectrum.
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Fig. 3. The spectrum of Q(t) for N = 2, q=l (an abelian gauge field), and k = 2 (U has winding
number 2). The only significant change from Fig. 2 is that now the spectrum flows upward by two

units

This completes the proof of our first inequality for odd dimensional manifolds.
What about the even dimensional case? The following device reduces the even
dimensional problem to the odd dimensional case. Consider two manifolds N1 and
N2 with gauge fields Aγ and A2 and with Dirac eigenvalues λ{ and Xj9 respectively.
If we regard Ax and A2 as gauge fields in commuting groups Gx and G2, they
induce in a trivial way a G1xG2 gauge field on the product N1xN2. The
eigenvalues of the corresponding Dirac equation on N1xN2 are λ*j = ± \/λ2 + λ2.

Now, on a circle S1 of circumference 2π, the Dirac eigenvalues are integers m.
Let N be an even dimensional manifold with gauge field A and Dirac eigenvalues
λt. Then NxS1 is an odd dimensional manifold with Dirac eigenvalues
± γλf + m2. By our previous construction, there is some constant C, independent
of A, such that the smallest positive eigenvalue of 0A on N x S1 is less than C. With
Dirac eigenvalues ± j/Λf 4- m2 o n N x S 1 , the modulus of the smallest eigenvalue
on N x S1 is the same as the smallest modulus of an eigenvalue on JV, and this
shows that also in the even dimensional case, the smallest eigenvalue obeys an
upper bound independent of A.

Notice that this argument does not prove that in the even dimensional case
\λa — λa + ί\^C, and that in fact is not true in general for even dimensional
manifolds. (For a constant magnetic field in two dimensions, the spectrum has gaps
of width 2|J5|, which can be arbitrarily big.)

This reduction of the even dimensional problem to the odd dimensional
problem may seem opaque. A direct proof in the even dimensional case is given in
Appendix I.

Now we turn to the more general problem of proving that λn^Cnιld on a
manifold of dimension d. The previous discussion is the special case w= 1. We
again assume first that d is odd.

The proof of the stronger inequality is a relatively simple modification of what
we have already done. We choose U in the previous construction to have not
winding number 1 but winding number k. We again define X as in Eq. (22), and let
C = normX. More precisely, let Ck be the lowest possible norm of X as U ranges
over mappings of winding number k.

We again study the family of operators φA + tX, 0 ̂  t ̂  1. Now as t varies from
0 to 1, there are not q but qk eigenvalues of i0A that flow through zero (Fig. 3);



266 C. Vafa and E. Witten

recall that q is the dimension of the fermion representation T. However, as one
switches on the perturbation X, of norm Cfe, no eigenvalue can change by more
than Ck. The fact that qk eigenvalues of φA change sign when t goes from 0 to 1
means that 0A has at least qk eigenvalues that are negative but more than — Ck

and at least qk that are positive but less than -h Ck.
Before drawing conclusions about the spectrum of the original Dirac operator

ΦA, we must remember that in passing from group G to gauge group G x SU(JV),
the multiplicity of the spectrum was increased by a factor of JV. What we have
actually proved about the spectrum of the original Dirac operator with gauge
group G is therefore that there are at least qk/N eigenvalues between 0 and Ck.
More generally, the same argument shows that there are at least qk/N eigenvalues
of the original Dirac operator between / and / + Ck, for any real number /.

To proceed, we must learn how Ck depends on k. We will now prove that for a
manifold M of d dimensions, Ck S Ckί/d, with a constant C that depends on M but
not on k. The inequality Ck ^ Ck1/d will complete our proof of the general upper
bound (21) on Dirac eigenvalues, because it means that there are at least qk/N non-
negative eigenvalues less than Ck1/d, or in other words that λn^Cnlld with

It is enough to prove Ck ^ Cklld for the special case k — rd (integer r); the case of
general k follows from this, with a slightly different value of C. To show that
Crd ^ Cr, suppose first that M is a torus with flat metric. Let φt be standard angular
coordinates spanning M, so that φic^φi + 2π9 ί=\... d. Let U:M->SU(JV) be a
degree one mapping chosen so that U(φ1 ...φd)~liϊ any of the φt is 0 or 2π. Since
the φι are angles, we have

for any integers nf. Define X as before, X = iU~1yιdiU, and let C = normX.
Define a mapping α r:M-+M by oLr(φl9...9φd) = oι{rφί9...9rφd). Thus, ar is a

mapping from M to M of degree rd\ it maps M around itself rd times.
Now, let Ur=U°ar; i.e. Ur(φl9 ...9φd) = U(rφl9...9rφd). Then Ur is a mapping

of degree rd. Moreover, if Xr = ίU~ 1yιdiUr, then the norm of Xr is precisely r times
the norm of X [since the derivatives of U(rφ) are exactly r times the derivatives of
U(φ) in absolute value]. So normXr = rC. Since C r d ^normX r , we have Crd^rC,
as desired.

We must proceed now from the case where M is a torus to the general case. In
any d dimensional manifold M, one can embed a cube (Fig. 4). Identify the cube
with the d-fold product Id = IxI... x /, where / is the interval [0,2π] on the real
line. Thus, we have coordinates φi9 i = 1 ... d on Id in M, but we cannot identify
φi = 0 with φι = 2π.

Now for any integer we define a mapping Ur: M->SU(JV) as follows. In Id we
take Ur to be the same function of the φx that we used previously. Outside of Id we
take Ur = l. The two definitions agree on the boundary of Id, since we previously
took [7=1 (and so Ur = 1) for φt = 0 or 2π. The winding number of Ur is still rd, and
the norm of the corresponding operator X is still Cr, so we have again Crd S Cr.

This completes our proof that for odd d9 λn^C'n1/d

9 and more generally that
there are always at least n eigenvalues between/and/+ C'nlld

9 for any real/. We
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Fig. 4. A cube Id mapped into a general d manifold. The induced metric on the cube may not be the
standard one, but the cube is embedded in the topological sense

still must prove the former statement (but not the latter one, which is not true in
general) for even d. A direct approach to even d can be found in Appendix I; here,
we will show how to infer the even d case form the odd d case.

As before, let d be even and let N be a d dimensional manifold with Dirac
eigenvalues λ?. Then N x S1 is a d + 1 dimensional manifold on which (if S1 has
circumference 2π) the Dirac eigenvalues are + γλf + m2, for arbitrary integers m.
(Each m appears with unit multiplicity, the eigenfunction on S1 being eίmφ.) Let
W(S) be the number of Dirac eigenvalues on N that are between 0 and S (because of
facts noted in the footnote, this equals the number of Dirac eigenvalues on JV that
are between — S and 0). Let Y(S) be the number of Dirac eigenvalues oniVxS1

that are between 0 and S. For ± j/λf + m2 to be between 0 and S, we need \λt\ ^ S
and \m\ <ΞS, so Y(S)<^4SW(S). But for the d+ 1 dimensional manifold N x S1 we
have proved that the nth Dirac eigenvalue is less than C'nίl{d+ί\ so that Y(S)
^Sd+ί/(C)d+\ where C is independent of A. With Y(S)^4SW(S% this gives
W(S) ̂  Sd/(4C'd+1). But that is the desired result, because it means that, with a new
constant C", λn < C"nlld. This result, which we have now established for both even
and odd dimensional manifolds, is a relatively good bound, in the sense that it is
actually true for any A that asymptotically, for large n, λn ~nί/d. (This is related to
the classical limit of quantum statistical mechanics.) However, the proof that we
have sketched certainly does not give the best possible value of the constant C. The
best value of C depends on the topology and geometry of the manifold M. To
determine the best constant in general would be extremely difficult. However, there
is a special case in which methods similar to those we have described can be used to
prove a sharp inequality, with the best possible constant.

Consider a torus P with periodic coordinates φ\ i = 1 ... d (O^φ1^ 2π), and
with a flat metric; thus, the line element is ds2 = gtjdφιdφj, where g is a constant
matrix, not necessarily diagonal. We will consider fermion fields that obey periodic
boundary conditions (the discussion can easily be modified). On the torus, there is
a d parameter family of t/(l) gauge fields which are constant in the sense that each
component of the gauge field At is constant, Ai = (aua2, ...,αd) with some real
numbers a{. For such constant gauge fields, Fij = diAj — δjAi = 0; nonetheless, At

cannot be gauged away. The gauge transformation ψ-+eι iφiψ (nt being integers)

3 The λt are paired. For every non-zero eigenvalue λ there is an eigenvalue —A, the

eigenfunctions being related by ψ-^Γψ, where Γ = γίγ2...ydis the operator that distinguishes the

two fermion chiralities
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shift the at by integers, α,—^ + n{\ but this is the best one can do. The at can thus be
regarded as periodic variables, αf being equivalent to a{ + nt for n ^ Z . We have, in
effect, a family of U(l) gauge fields labeled by the torus (d-fold product)
Q = S1 x S1 x ... x S 1 , with the at being coordinates on this torus. The key facts of
this family of operators have been described by Gromov and Lawson [14], who
used it to prove that the torus does not admit a metric of strictly positive scalar
curvature. The general idea for the argument we will give is similar to theirs.

For at = 0, the lowest Dirac eigenvalue is ^ = 0 , corresponding to an
eigenfunction which is a constant spinor. In general, the eigenfunctions are xpiφ1)
= (expiΣmiφ

i)η, where η is a constant spinor and mf are integers. On such a state
the Dirac operator reduces to yj(πij — aj). The square of that operator
is g^imi — a^im^ — a^ (since yiγj + γjyi = 2gij), so the eigenvalues are

±Ygίj(mί-ai)(mj-aj).
If at φ 0, the lowest eigenvalue λι is not zero. For given ai9 λ1 is the minimum of

Ygίj(mi — cii) (nij — aj) for integers m{. Keeping the metric gίj fixed, but varying a\ let
λM be the maximum value of λx that occurs for any a1. For example if one takes the
standard rectangular metric on the torus, gij = δij, the maximum of λ1 occurs for

aί=a2= ... = ad = 1/2 and is λM = l/2|/d.
For future reference, λM may be characterized as follows. For given a\ choose

integers mι to minimize the norm of y\πij~aj). Let a'—a^ — my As the {α,-} vary in
Rd, the {aft lie in a bounded region in Rd which we may call the "first Brillouin
zone." The maximum of the norm of yjcij in the first Brillouin zone is λM.

Now, λM is the largest possible value of λx for any constant U(l) gauge field
Ai = (α l 5 α 2 , . . . , ad). What we will prove is that for any gauge field with any group G,
λ 1 is at most equal to λM. To prove this we will, as before, study not a single Dirac
operator but a whole family of Dirac operators.

If G does not contain a U(l) factor, we extend it to G x U(l), complexifying the
fermions if they are not already complex. We add to the given gauge field At a
constant piece ab Ai->(A1-\-a1,A2 + a2,...,Ad-\-ad), the αt being real numbers.
Instead of a single Dirac operator 0A, we study the d parameter family of Dirac
operators

Jp + iAj + iaή =φΛ- Σ^cij. (28)

The spectrum of D{ai ~an) is a periodic function of the ai9 with period one, since the
at can be shifted by integers by a gauge transformation. Now, Gromov and Lawson
have shown, from the Atiyah-Patodi-Singer theorem, that regardless of the choice
of A, there is always some value of the at such that D^*--*"^ has a zero eigenvalue.
We will sketch a proof of this shortly, but first discuss the consequences.

If D(ai'"an) has a zero eigenvalue, then i0A has an eigenvalue that differs from

zero by at most the norm of X(Aί)= Σ 77«, The norm of X{aύ is \ΓΣJg
ijaiap as we

j=l V U

discussed before. Given that D(ai -an) has a zero eigenvalue for some a{, it has a zero
eigenvalue somewhere in the first Brillouin zone, since the spectrum of D{au ~ 'an) is
periodic in the ai9 and at can be shifted into the first Brillouin zone by subtracting
integers mf. The maximum norm of X(aύ in the first Brillouin zone is what we
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previously called λM, so the magnitude of the lowest eigenvalue of 0A is at most
λM, as we wished to prove.

Let us finally sketch a simple proof of the statement that Diau~"an) has a zero
eigenvalue for some at. To do this, we will study a Dirac operator on a torus P x Q
of 2d dimensions, spanned by the original d angular variables φι and d additional
variables, the a\ On this product space we choose the metric ds2 = εgίjdφιdφj

+ Σda\, for suitable small positive ε. For the gauge field, we take the components
in the φι directions to be Ά^φ*, ak) = At(φj) + at - where A^j) is the original gauge
field on P that we are really interested in studying. The gauge field components in
the at directions we take to be zero. Thus, the 2d dimensional gauge field is
(Ax+au A2 + a2, ...,Ad + ad9 0, ...,0). The Dirac operator is

Now, the first step is to show that D has a zero eigenvalue. This follows from the
fact that the index of D is non-zero. In fact, since the index is a topological
invariant, we can compute it by setting Aj = 0. (This tacitly assumes Aj was a
connection on a trivial bundle on P, in the same topological class as Aj = 0.
However, by further study of the index formula we are about to discuss, it can be
shown that the index of D does not depend on which bundle over P we started
with.) With Aj = 0, the index can be computed as a simple integral:

dimTY— ]Ϋ 2 π !

ί ^ 5 d f l A ' 1 4 J W -FίM-lίM (30)
[The factor of dimT comes from taking the trace of the product of U(l) field
strengths in the fermion representation. An index i on Ftj refers to φι if i ̂  d, and to
cii-d if i > d.~] With A{ = 0, the only non-zero components of Ftj are FUd+j = — Fd+j>f

= —δφ and one readily finds indexZ) = dimTΦ0.
From the fact that D has a zero eigenvalue, we now wish to show that D{au ~"an)

has a zero eigenvalue for some value of (α l 5 . . .,α n). To do so, note

(3D

In (31), the last term W — ̂ T ) ̂ s a non-negative operator. In the second term

ΣlyJ\yj+dl has negative eigenvalues, but is bounded below by —Id. If D{ait'-an}

j

had no zero eigenvalue for any value of the ab it would be bounded away from zero,
and the first, positive term in (31) would dominate for sufficiently small ε. If so, D
would be for small ε a strictly positive operator, contradicting the fact that it has a
nonzero index. It must therefore be that D{ait""an) has a zero eigenvalue for some
value of the ai9 as was to be proved.

The same argument can be pushed farther, to yield the stronger statement of
the Atiyah-Patodi-Singer theorem relating the index of D to the behavior of
£)(αlf ...,αn) n e a r v a j u e s of the at where it has zero eigenvalues. We will not enter into
that, however. Similar matters have been discussed elsewhere [15].
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It should be noted that the inequalities we have proved in this section go in the
opposite direction from certain analogous inequalities - the Kato inequalities -
that hold in the spin zero case [16]. (For field dependent upper bounds for
eigenvalues of the scalar operator see Appendix II.) Qualitative reasons that the
inequalities for fermions go in the opposite direction from those for bosons were
proposed in connection with the original suggestions of paramagnetic inequalities
for fermions [7]. We have, however, proved elsewhere [3] an upper bound on the
Dirac propagator that goes in the same direction as the Kato inequality for
bosons.

IV. Gauge Theories in Three Dimensions

In this section, let us briefly discuss one of the few areas in which our work has
implications that cannot already be deduced from anomaly considerations4. This
is the case of gauge theories in 2 +1 dimensions, which have recently attracted
much interest [17-22].

Let us first discuss the basic kinematics of fermions in 2 +1 dimensions. The
basic fermi field is the two component Majorana spinor - a real, two dimensional
representation ψa of O(2,1). Such a field can have a mass term + ime*pipa\pp. The
two signs of the mass are physically inequivalent. They give massive fermion
states with eigenvalue + ft/2 or — ft/2 of the one rotation generator of a world
that has two spatial dimensions. A non-zero mass for a Majorana fermion
violates certain discrete symmetries: time reversal, and the space reflection
symmetry (ί, x, y)-+(t, x, —y). For fermions of spin + ft/2 spin in a right-handed
sense; those of spin —ft/2 spin in a left-handed sense. Of course, if one has two
Majorana fermions, one of positive mass and one of negative mass, the discrete
symmetries are preserved, as long as one defines time reversal or space deflection
to exchange the two Majorana fermions.

When one introduces gauge fields, it is possible [18] to give them a parity
violating, gauge invariant bare mass with a quantized coefficient. This term is
imaginary in Euclidean space, so if it is introduced the Feynman path integrand is
not positive definite. In such a case, our method of proving the absence of a mass
gap when fermions of zero bare mass are introduced does not work. This is just as
well, because when the gauge fields have a parity-violating bare mass, fermions of
zero bare mass get a non-zero mass at the one loop level, and there is in fact a mass
gap.

Setting the gauge field bare mass to zero, we now proceed to couple the gauge
field to fermions. Let the fermions consist of N copies of a real irreducible
representation R of some gauge group G. Then there is a global O(N) flavor
symmetry. (The symmetry is larger if R = Q -f Q for some complex or pseudo-real
representation ζ), but we will assume for the sake of exposition that that is not so.)

4 Actually, if one assumes parity is not spontaneously broken, then in 2 +1 dimensions, when
fermions are in a real, odd dimensional representation of the gauge group, there is a mod-2 version
of the anomaly matching condition. Gauging of the SXJ(Nf) flavor symmetry gives in such cases
an anomalous breakdown of parity [21], and requiring that this could be understood at the
composite level implies that the theory must have physical massless fermions or breakdown of
flavor symmetry
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Suppose the fermion bare mass is zero. Then the Euclidean Dirac operator 0 is
Hermitian, so the eigenvalues are real. Therefore the fermion determinant is real.

For Majorana fermions, the basic fermion integral is ]/detL0, which is real but not
necessarily positive5. If there are JV flavors, the fermion integral is (det0)N/2. This
is positive if JV is even, and that is the case for which our methods apply.

For JV even and at least four, the arguments of Sects. II and III show that - for
any group G and representation R - the theory with no bare mass for fermions or
gauge bosons has no mass gap. We do not know of another way to prove this with
such generality.

Now let us discuss whether the absence of mass gap can be understood in terms
of symmetry breaking. If fermion masses are generated dynamically, these may be
positive or negative. [We assume the fermion dynamical masses have the same
absolute value, an assumption we will justify shortly by showing there must be an
unbroken O(JV/2) x O(N/2) symmetry.] If k species have positive masses and JV — k
have negative masses, this breaks O(N) to O(k) x O(N — k). There are Goldstone
bosons (and no mass gap) unless fc = 0 (or k = N). Time reversal and reflection
symmetry are spontaneously broken unless k = JV/2.

To determine what value of k is plausible, first suppose the fermions have non-
zero bare masses of equal absolute value m. The fermion operator is now 0 ± im
which is not hermitian; det(L0 + im) and det(i$> — im) are complex - and are
complex conjugates of each other. The fermion integral is real and positive only if
JV/2 fermions have positive bare masses and JV/2 have negative bare masses. In that
case the fermion integral is (det(i|) + im) det(L0 - im)NI*, which is strictly positive.

Such equal and opposite fermion bare masses explicitly break O(N) to O(JV/2)
x O(JV/2). However, since we have kept the fermion determinant positive, we can

invoke the results of reference [3] which show that for m + 0 the O(JV/2) x O(JV/2)
symmetry which is not broken explicitly by the fermion bare masses is also not
broken spontaneously. Hence - for any non-zero m and presumably also for m = 0 -
the theory has an unbroken O(N/2) x O(N/2) symmetry.

Turning off the bare masses, we previously saw that fermion dynamical masses
would break 0(N) to 0(k) x O(N — k). We now see that the only plausible values
are k = 0, JV/2, or JV, since there must be an unbroken O(N/2) x 0(JV/2) symmetry.

To gain more insight, consider probing for a dynamically generated mass by
introducing a tiny bare mass m and taking m-»0. In the two cases of (x) all bare
masses of same sign or (y) JV/2 positive and JV/2 negative bare masses, the fermion
determinant becomes

Ax=lim (det(0 + im))m, Δ = lim det((0 + im)(0-im))m. (32)

5 In four dimensions, d e t 0 is positive for real representations because of y5 symmetry. In three

dimensions det/β is positive for real representations for an analogous reason. We can choose a

2 x 2 basis of gamma matrices (σx, σy, σz). Of these, σy is imaginary, and σx, σz are real. If i0ψ = λψ,

then 0 (σyψ*) = λ(σyψ*). This pairing of eigenvalues ensures that άetφ is positive, so |/deU0 is

real, but nothing forces |/deU0 to be positive. (In certain cases with a pseudoreal rather than real

representation, there is a discrete anomal [21] as a result of which |/deU0 cannot be real and

gauge invariant. In such cases our methods do not apply)
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We see that Δy is real and non-negative, while Δx has the same absolute value as Δy

but may have any phase. The vacuum energy Ex y computed in the two cases (in
a box of volume V) is

e-E*v = idμ(A)ΔX9 e ' ^ = \ dμ{A)Δy. (33)

Since dμ{A) is a positive measure, the phase in Δx can only make the integral in Ex

smaller, so Ex ^ Ey. Thus the vacuum energy is less with fermion dynamical masses
that break O(N) to 0(N/2) x O(N/2) and do not break time reversal than with
dynamical masses that break time reversal but not O(N). [The possibility Ex = Ey

is implausible unless there are no dynamical masses and neither 0(N) nor time
reversal is broken.]

We conclude that if fermions get dynamical masses, the theory has Goldstone
bosons, accounting for the absence of a mass gap.

In a beautiful calculation, Pisarski recently showed [22] that at least for large
JV, the fermions get dynamical masses in 2 +1 dimensions. Though Pisarski did
not check the sign for these masses, we expect further study to show that for even N
his mechanism generates equal numbers of positive and negative fermion masses.

Appendix I

In this appendix we will briefly explain how to prove that λγ^c directly for an even
dimensional manifold, rather than inferring this from the odd dimensional case as
was done in Sect. III. We will also generalize to show λn^cnlld.

Consider a gauge field A with gauge group G on an even dimensional manifold
M. As in Sect. Ill, we first extend the gauge group from G to G x U(P) (for suitable
P, to be chosen) and think of φA as acting on P identical copies of the original
Hubert space; this does not change the value of λί.

Our idea is to find a bounded operator X, of norm c, such that ΦA -\-X has a
zero eigenvalue. X and c will not depend on A. For ΦA + X to have a zero
eigenvalue, φA must have an eigenvalue within c of zero, so λ1 ^c if we can find a
suitable X.

For any even d, there is some JV and some U(N) gauge field Bμ such that φB

has a non-zero index. For d = 2 one takes N= 1 and the magnetic monopole; for
d = 4 one takes N = 2 and the instanton. The corresponding objects for d>4 are
related to πd_!(U(iV)) and are not so well known in physics.

For our first try, we take N = P and take X — iyμBμ, where φB has non-zero
index. Thus φA + X = ίyμ(Dμ

Λ) + Bμ). So ΦΛ + X is the Dirac operator associated
with the GxU(iV) gauge field Aμ + Bμ. It is indeed true that ΦA + X has zero
eigenvalues, for any A, because of the non-zero index due to the choice of Bμ

6.
However, this choice of X is not suitable. In fact, ΦA and φA + X do not even

act on the same Hubert space, since Bμ is a connection on a non-trivial bundle. A
more prosaic way to state the difficulty is that X as defined is an unbounded
operator. The norm of X would have been the pointwise upper bound of iyμBμ,
but this is infinite, because of the gauge singularities in Bμ on a compact manifold.

6 We assume here that the index ofφA + X comes only from B. IfφA had non-zero index, then
λ1 = 0 and there was nothing to prove to begin with
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To avoid the difficulty, we pass from U(JV) to U(2JV). We introduce a U(JV)
gauge field Bμ of topological quantum number opposite to that of Bμ, and we
define the U(2JV) gauge field

B" i 0

0
(34)

Thus, the total winding number of Bμ is zero; it is a connection on a topologically
trivial bundle.

Now, to refine our previous effort, let X = ίyμBμ. It is again true that 0A + X
has zero eigenvalues for any A. (Although the index of 0A + X is zero, it is
presented as a direct sum of two operators of equal and opposite index.) We have
improved on the previous situation from a conceptual point of view, because at
least ΦA and 0A + X act on the same Hubert space. However, X is still an
unbounded operator, because of the gauge singularities in Bμ and Bμ.

To get a bounded operator, note that since Bμ has zero net winding number,
there is a U(2JV) gauge transformation that would remove the singularities from
Bμ. Thus, for some mapping F:M-H>U(2JV), Bμ = V'ιBμV-V~ιdμVis nonsin-
gular. [Of course, one cannot choose V to lie in U(iV)xU(iV).] Now we let
X' = iyμBμ; Xr is, at last, a bounded operator. And ίDA + X' has zero eigenvalues
since 0A + X'=V~1(0A + X)V9 and we already saw that 0A + X has zero
eigenvalues. If C = normX', these facts show λγ ^ C for any A.

Now we wish to show λn^Cnlld for any n. The generalization is as it was in
Sect. III. If JV is a torus with angular coordinates φ\ let B'Xφ1) — rBXrφ1), X'γ = iyBf

ir.
Then the winding number of B'r is rd and the norm of X'r is rC. These facts, applied
to ίDA + X'r show λrd ̂  O, so λn S C'nlld. If JV is not a torus, one picks a cube in JV
and carries out a similar argument, as in Sect. III.

Appendix II

In this appendix we will obtain upper bounds for eigenvalues of the scalar operator
— DμD

μ on the torus with a flat metric. The Kato inequality [16] implies that on
the average the eigenvalues of the interacting scalar operator go up, compared to
the non-interacting case, in the sense that

Ύτe-P(-DμD^^ττe-β(-dμd^9 (35)

where (— dμd
μ) is the free scalar operator. In particular this inequality implies that

the lowest eigenvalue goes up as we turn on the gauge field.
It is not difficult to see that unlike the case for the Dirac operator there does not

exist any field independent upper bound for the eigenvalues of the scalar operator.
Consider for example, turning on a constant magnetic field B in 2 dimensions. For

a very large box (i.e., L2^> — ) one obtains the Landau levels shown in Fig. 5a. The

lowest eigenvalue is proportional to the magnitude of the magnetic field. This is
basically a consequence of the uncertainty principle. The stronger the field, the
more localized the state in space and thus the higher the uncertainty in momentum
and energy. So by increasing the field strength the lowest eigenvalue could be made
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5 B

3B

8B

(α)

6 B

4 B

2 B

(b)

Fig. 5a and b. The spectrum of the scalar operator a and the Dirac operator b for a constant
magnetic field B in 2 dimensions. The magnetic moment interaction splits the levels of the scalar
operator to give the spectrum of the Dirac operator

as large as one pleases and therefore there is no field independent upper bound for
the eigenvalues of the scalar operator.

However, as we will see, field dependent upper bounds do exist for the
eigenvalues of the scalar operator. We consider the following identity:

(Φ)2=-DμD*+frιvFμv9 (36)

where σμv=^[yμ,yv]. This identity implies that the eigenvalues of (φ)2 and

- DμD
μ cannot differ by more than the norm oϊ%σμvFμv9 which we denote by F Λ.e.,

F = max\^σμvF (x)|, where || denotes the norm of the matrix Y If we label the
X )

eigenvalues of (L0)2 by λn and those oί( — DμD
μ) by λ° in an ascending order, we

have
(37)

From Sect. Ill we have λn ^ — 1 n2/d, so we get
C

( 3 8 )

In particular in the limit that L->oo we have λ^F, which is saturated by a
constant magnetic field. In the particular case of constant B field in 2 dimensions
the eigenvalues of the Dirac operator are simply obtained from the eigenvalues of
the scalar operator by noting that the spin term in Eq. (36) splits the levels, as
shown in Fig. 5b. In particular we see that the spectrum of the Dirac operator

starts from zero, as it should ί from our inequalities λ1 ^ • 0 1. Thus the
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fact that magnetic moment interaction cancels the zero point energy is not limited
to this example.

For odd dimensional tori we have a further result. In these cases the number of
eigenvalues of the scalar operator between ρ2 — F and (ρ + δ)2 + F is at least
C'{Lδ)d. This follows from the corresponding estimate for the spectrum of the
Dirac operator.

Looking at Fig. 5a and b and noting that the first eigenvalue of the scalar
operator cannot be raised above zero by more than what it has been for the case of
the constant field, makes one speculate whether all the gaps in the spectrum are
maximal for a constant B field. We do not know the answer to this question.
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