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Abstract. Previous axiomatic approaches to general relativity which led to a
Weylian structure of space—time are supplemented by a physical condition
which implies the existence of a preferred pseudo-Riemannian structure.
It is stipulated that the trajectories of the short wave limit of classical massive
fields agree with the geodesics of the Weyl connection and it is shown that
this is equivalent to the vanishing of the covariant derivative of a “mass
function” of nontrivial Weyl type. This in turn is proven to be equivalent
to the existence of a preferred metric of the conformal structure such that
the Weyl connection is reducible to a connection of the bundle of orthonormal
frames belonging to this distinguished metric.

1. Introduction

In the past, there have been several attempts to deduce the pseudo-Riemannian
structure of general relativity theory from a few axioms. An interesting approach
in this direction has been worked out by Ehlers, Pirani, and Schild [1], which
starts with a set of events, M, and two families of subsets of M which represent
the collection of all (possible) light rays, and of all (possible) free fall world-lines
of structureless test particles.

From a number of qualitative assumptions about light propagation and free
fall which are mathematical idealizations of well-established facts and which
appear to be minimal requirements of the local validity of special relativity, it
has been shown by these authors that there is a unique Lorentzian conformal
structure, (i.e. an equivalence class of pseudo-Riemannian metrics of Lorentzian
signature) whose null geodesics are identical to the light rays. Moreover, the
freely falling particles determine the affine geodesics (a geodesic path structure)
of a class of projectively equivalent symmetric linear connections. The compati-
bility requirement that the null geodesics defined by the conformal structure
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belong to the (“deparametrized”) geodesics of the distinguished class of connections
leads to a Weyl structure of space—time.

One of the present authors (J. A.) has recently proposed an additional assump-
tion[2], whichimpliesin a natural and convincing manner the space—time structure
of general relativity theory: If one requires that the trajectories of massive wave
fields in the short wave limit coincide with the geodesics of the Weyl space, then
this space is already a Lorentzian manifold, i.e, there is a distinguished metric
of the conformal structure with respect to which lengths and times at different
points can be compared in a path independent manner.

In this paper, we try to improve the technical treatment of ref. [2] by using the
language of fiber bundles. The concepts and methods of fiber bundles provide a
natural and convenient framework for a (global) discussion of the reduction of a
Weyl space to a pseudo-Riemannian manifold, which is along the line of other
examples of bundle reductions which appear in gauge theories (e.g. spontaneous
symmetry breaking). We hope that the structural aspects of the problem will
thereby be clarified.

Section 2 contains a discussion of the geometry of Weyl spaces. In Sect. 3 we
introduce spin structures on Weyl spaces and formulate field equations for massive
spinor fields. The Klein—Gordon theory is generalized to Weyl spaces in Sect. 4.
In Sect. 5 we derive a necessary and sufficient condition that the trajectories of the
WKB-limit agree with the geodesics of the Weyl connection. The geometrical
significance of this condition will be elucidated in Sect. 6 and our conclusions will
be summarized in Sect. 7.

2. Geometry of Weyl Manifolds

Let M be a four-dimensional smooth manifold which is connected and

paracompact.
A conformal structure on M is an equivalence class [ g | of conformally equivalent
Lorentz metrics with signature (+ — — — ). The pair (M, [¢]) is called a conformal

manifold. In a conformal manifold we can introduce the bundle of conformal frames,
which are the linear frames consisting of pairwise orthogonal tangent vectors of
equal length (relative to any ge[g]). We assume that M is space and time orient-
able and that an orientation is chosen. The set W(M) of oriented conformal frames
on M can be regarded in an obvious manner as the total space of a principal fiber
bundle 7: W(M)— M whose structure group G is the subgroup of the conformal
group consisting of all nonzero multiples of homogeneous Lorentz transformations
in L' . Clearly, G is isomorphic to L', x R.

The principle bundle of (oriented) conformal frames, which we call the con-
formal bundle, is a reduction of the bundle L(M) of linear frames. The canonical
1-form 8 on W(M) is just the restriction of the soldering form on L(M). A Weyl
connection is a connection @ on W(M) with vanishing torsion form (i.e. D®6 = 0,
where D® is the exterior covariant derivative belonging to w). Since the connection
form has values in the Lie algebra & of G, i.e., in so(l,3)® R, we can split w
uniquely

o=+ ¢-1, (2.1)
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where & has values in so(1, 3)and ¢ is an R-valued 1-form. Thus, in matrix notation
AT+ nd =0, 0"y +nw =20, (2.2)

where n =diag(l,—1,— 1, —1).

A Weyl connection can be considered as a torsion free linear connection, which
is reducible to a connection in W(M). The restriction of w to any orthonormal frame
bundle 0 (M) = W(M), ge[g], defines the Levi-Civita connection in O, (M).

Since the torsion vanishes, the first structure equation reads

dg+w A 0=0. (2.3)
The curvature Q = D®w is determined by the second structure equation
Q=do+owno, (2.4)
which can be written as
Q=dd+dAd)+do-1. (2.4)

A Weyl space is a conformal manifold together with a Weyl connection.

Matter fields, in particular tensor fields, are described by vector-valued
tensorial forms of type (p, V), where p is a representation of the gauge group in the
vector space V (see, e.g., [3], Sect. IL.5). (These tensorial forms can alternatively be
regarded as sections of the associated bundle with typical fiber V.) In order not to
overload notations and the degree of abstractness, we work in the following mostly
with local expressions belonging to the local sections ¢, which are associated to
local trivializations T,: n~ ' (U,) - U, x G, where {U } is an open covering of M.
The transition functions from T, to T, are denoted by f, ,:U nU, - G.

The local representatives iy, = o* y of a matter field y of type (p, V) transform as

Y, =p(fp ¥, 2.5)
In particular, for the curvature forms Q = ¢*Q, we have
Q= Ad(fagl)Qa. (2.6)

The local representatives of the exterior covariant derivative Dy transform also
according to the rule (2.5). Explicit formulas are

DY), =dy, + p(w) A, (2.7)

where p,_ is the induced representation of the Lie algebra  of G.
The frames a(x) = {eu(x)} ofalocal section g: U - W(U)are dual to the compo-
nents 6* of ¢*0,

0e,) = 5. (2.8)

For any metric ge[g] we can choose local sections such that the frames {e (x)}
are orthonormal with respect to g,

g=n,0"®0". (2.9)

The general formula (2.7) shows that the components of Dg relative to the basis
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{6} are
(Dg)uv = d”uv - wﬁ”lv - wé”y,& = 240'l,w-
In other words,
Dg+ F(g)®g =0, (2.10)

where F(g) is a 1-form locally given by F(g) = 2¢* ¢, if ¢ is chosen such that (2.9)
holds. From (2.10), one finds easily that

F(e*q) = F(g) — dJ. 2.11)

Sometimes the existence of a map F: [g] - A'(M) satisfying (2.11) is taken as
the definition of a Weyl structure [4].

The map F defines the transport of a metric along any curve y: [0, 1] - M.
Let g, be a metric on T, M, p = y(0), where ge[g]. Then we define the transported
metric ry(gp) onT M, q= (1), by

1,(9,) = exp [ﬁ F (g)ng : (2.12)

One sees immediately from (2.11) that, for a given 9,» 1,(9,) is independent of the
representative g, but depends in general on the path y which connects p with gq.
Thus the comparison of lengths of vectors at p and ¢ is path dependent.

If 7, denotes the transport of metrics from p to y(t), one finds easily that

1 .
lim- (, 9,0 = 9,)= —Flg)(0))g,.
t

and thus with (2.10)
.
Vo9, = lim 2z, "G — 9, 2.13)

This formula shows that 7, agrees with the parallel transport of g belonging to the
given Weyl connection w.

Since locally F(g) = 206*¢, we see from (2.12) and Stokes’ theorem that the
parallel transport of metrics is locally path independent iff dg = 0.

The representations (p, V) of the group G have the form

p: i i¥p(A), 2 >0, AL, , (2.14)

where ¢ is a representation of L', and w is any real number, called the weight of
the representation p. V-valued differential forms that transform with the re-
presentation (2.14) in Eq. (2.5) are said to have weight w. The space V' will always
be assumed to have a metric / (not necessarily positive definite) with respect to
which p is orthogonal.

Consider two V-valued k-forms o, § which transform with the same representa-
tion § relative to L', but have in general different weights w(x) and w(f). For each
section g we choose ge[g] such that it has the form (2.9) relative to ¢. Then we can
define a natural scalar product

(o, By = gla, B)h(v, . v,), (2.13)
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where v, is a basis of V, a = o“v,, f = p’v,, and g(o%, B°) is the usual scalar product
for differential forms:

g, fryu =o' A *f". (2.16)

Here p is the volume form and = the Hodge-operator belonging to g.

The scalar product (2.15) depends on the section ¢ and transforms with weight
w(at) + w(p) — 2k (but is invariant relative to L1 ). Note also that w(*f) = w(f) +
4 —2k.

For the construction of Lagrangians, it is important that {a, > has weight
zero (i.e., is independent of the section) if

w(o) + w(ff) — 2k +4=0. (2.17)

Consider now a k-form « and a (k — 1)-form f with compact support contained
in an open set U. If w(x) and w(p) satisfy (2.17), {a, D > is gauge invariant and the
following formula holds:

[ <o DB)p=[<0°, pou. (2.18)
U U

Here 6 denotes the covariant codifferential defined by 6 = D «. (For general
dimensions and other signatures of [g], one has to add a sign factor.) For the proof
of (2.18) we use first of all

[ <o dBypu= o0 By, (2.19)
U U

where ¢ is the ordinary codifferential § = *d*. From (2.7) and (2.1) we have

D =dB +p(d) A f+w(B)p A B. (2.20)

Using well-known properties of the x-operation, the invariance of the metric /
with respect to the representation g, and w(xo) = — w(f) (which is implied by
(2.17)), one shows easily that the contributions of the last two terms in (2.20) can be
transformed such that (2.18) holds.

3. Spin Structures and Dirac Equation on Weyl Manifolds

There is a natural extension of the universal covering homomorphism A:
SL(2, C) — L, to a homomorphism A:G= SL(2, C) x R, — G given by A(14) =
AA(A), where AeSL(2, C), AeR, .

A spin structure over the Weyl bundle consists of a principle fiber bundle 7:
W(M) — M with structure group G and a bundle homomorphism p :W(M) —» W (M)
such that the corresponding homomorphism G — G agrees with 4. We assume that
such a spin structure exists. (The existence question is essentially identical to the
one in general relativity and so the results of Geroch [5] apply here too.)

Since the Lie algebras ® and ® of G and G are isomorphic, there is for any Weyl
connection w of W(M) a unique connection & of W(M) such that p maps horizontal
subspaces onto horizontal subspaces. Clearly,

@:Z;IOP*Q)’ (3.1)

where Z*: ® — G is the isomorphism induced by A.
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A Dirac spinor field is a C*-valued tensoriel function 1 : W(M) — C* belonging
to the representation

_ 4 0 —3/2 4
p(2A) = 2 3/2(0 P > = 1732(A). (32)
The weight w(y) = — 3/2 is natural because spinors have dimension [length] ™2
According to the general rules we have, relative to a section, explicitly
Dy = dy + p (OW = dY + ;0,6 + wih) o, (3.3)

where
o =3[ 9"].

The Lagrangian of a Dirac field is generalized in an obvious manner; relative
to a section,

& = {3(hiy*D, + h.c) — myr} p(g). (3.4)

This is gauge invariant if the weight of the mass function m is—as expected from
dimensional reasons—equal to — 1.

The Euler—Lagrange equation of (3.4) is Dirac’s equation

—iy"D 3 + myy = 0. (3.5)

For a formal derivation of (3.5) one needs (2.18) and 6“0 = 0, which is a direct
consequence of the vanishing of torsion.
Equation (3.5) implies that the current

=0y (3.6)
is conserved
Dlj‘ =0. 3.7

For this it is important to note that Dy* = 0, since y* are constant matrices (indepen-
dent of the section).

4. Klein Gordon Fields in Weyl Spaces

Scalar fields have dimension [mass] and thus we assign the weight — 1 to such
fields in Weyl spaces.
The Lagrangian density for a minimally coupled complex scalar field ¢ is

& =50 (D,$)*D s — m*$*$u(g)
=1[{(D¢, D> — m*p*¢]u(g), (4.1)

and is obviously gauge invariant. We could add curvature terms without changing
our main conclusions.
The Euler-Lagrange equation is

5°Dp — m?¢ = 0. 4.2)
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This follows again from (2.18). Equivalently, we can write

(r[“”DaDﬁ +m*)¢p = 0. (4.3)
The current ‘
i
j* = [9*D*6 — (D"¢)¢)] 44
is covariantly conserved
D,j*=0. 4.5)

5. WKB-Limit for Wave Fields in Weyl-Spaces

In this section we study the short wave limit for the unquantized Dirac and Klein—
Gordon fields, and investigate under which conditions the currents belonging to
these wave fields are in lowest order geodesic (relative to a Weyl connection).

(a) Dirac Fields

In the short wave limit we can make the usual WKB-ansatz

l//=eism{¢o+ﬁi‘//1+'":|' (5.1)

If we introduce the representation (5.1) into the Dirac equation (3.5), we obtain for
the coefficient of #° (writing dS = 2,50")

¥"0,S +mpp, =0, (5.2)
and the coefficient of 7 gives
®"0,S +my, + "D Y, =0. (5.3)
The homogeneous equations (5.2) are consistent with y, # 0 if
n* 0,50,8S =<dS,dS) = m?, (5.4

as can be seen by operating on the left of (5.2) with (y"0,S — m). Equation (5.4) is
the Hamilton—Jacobi equation.

Our main conclusion will not depend on (5.3), but let us note the following
consequence of this equation. Taking the adjoint of (5.2) and multiplying the result
with Y, gives Jo(y“aus + m)y, = 0, where we have used the fact that S is real. Now
we can apply Eq. (5.3) and find

Yoy"D Yo = 0. (5.5)

From this equation one deduces immediately the conservation law of the zeroth
order current

D, (Wo1"¥y) = 0. (5.6)

For this current we find from (5.2),

. . 1 T
Jg = Wo?”lﬁo = l//OV‘I< - ;’;‘yvavS)lpo = - Z'POVVUVSV”IIIO,
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or, taking half of the sum of the last two expressions,
1 -
jh=— ;%l//oa“S. (5.7)

Now we determine V, j,:

I I . 2 1.
jeD,jh :Jé[W(DAm)%wO@“S - %xpo(blwo)aﬂs - E%%D@”S]. (5.8)
The first two terms on the right-hand side are by (5.7) proportional to j%. In the
last term we use
Dlaﬂs = Dﬂ@lS, (5.9)

which follows from the general formula, D%y = p (@) Ay, for tensorial forms of
type p, and the vanishing of the torsion. Indeed, since S is a scalar of weight zero
we have

D*S=0= D(0,56") = D/I(G#S)G'1 A 0" +0 SDo"
=D 20,—D,0 B APNC
We note also that
Dy** =Dn,, =0, (5.10)
because n*" has weight zero and thus Dy, = Dy, =0.
Using (5.9) and (5.10) we can write for the last term in (5.8):

I 1 - .
—jggwolpoDla“S = — %t//ol//OD“(akS)]é. (5.11)

This is proportional to D*m, because the derivative of the Hamilton—Jacobi
equation (5.4) gives
mD*m = n“"(D"éaS)aﬂS = D*(2,5)0"S. (5.12)

Using this in (5.11) we finally get
1 -
jiD,jb = -n—/l(l/IOI/IO)ZD”m + terms proportional to j4. (5.13)

This shows that j4 is always geodesic iff

Dm =0. (5.14)

(b) Klein—Gordon Fields

Again we get in zeroth order the Hamilton—Jacobi equation and thus (5.12). The
lowest order of the current (4.4) is

Jb= (g ,)0"S. (5.15)
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From this and (5.12) we find
JoD,j = 2D, $0)0"Sjs + (b5 o) mD*m
=2{¢odS, D, )G + (7 do)*mD m, (5.16)

and we are led to the same conclusion (5.14).

6. Discussion of Dm = ()

We have shown that the WKB-limit leads to geodesic particle trajectories if and
only if Dm = 0. This condition can be discussed in various ways.
Relative to a section ¢ we have

D(a*m) = d(a*m) — c*(@)o*(m) = 0, (6.1)

because m is a Lorentz scalar and has weight — 1. Thus ¢*(¢) = d In(s*m), and
hence ¢ is closed,

dp =0. (6.2)
Consequently, the R-component of the curvature in (2.4') vanishes,
Q=dd+ & A desol, 3). (6.3)
Furthermore,
dF(g)=0 (6.4)

for every g, since F(g) is locally the pull-back of ¢ by an appropriate section map.
From (2.12) we see with Stokes’ theorem that the metric transport is locally path-
independent.

In bundle language we can argue as follows. Dm = 0 implies that m is constant
along every horizontal curve. Thus the set of points W(p) in W(M) that can be
Jjoined with p with a horizontal curve consists of frames with the same mass. By
the reduction theorem, W(p) is a reduced sub-bundle of W(M) whose structure
group is the holonomy group ¢(p) with reference point p, and the connection
in W(M) is reducible to a connection in W(p) (see, e.g., [3], Sect. I1.7). Clearly, ¢(p)
is contained in L', because all frames in the fiber of W(p) through p have the same
length relative to any ge[g].

Furthermore, by a theorem of Ambrose and Singer ([3], Sect. IL.8) the Lie
algebra of ¢(p) is equal to the sub-space of ® (Lie algebra of G) spanned by all
elements of the form Q JX,Y), where ge W(p)and X and Y are arbitrary (horizontal)
vectors at q. Since ¢(p) = L, we conclude that Q takes values in so(1, 3), which
shows again that do = 0.

Let U be a simply connected open neighborhood of any point xeM and
consider the induced connection in W[U ==~ (U). From (6.4) we know that
there exists in U a function A such that F(g) = dA in U, where g is a given metric in
[g]. Then by (2.11) F(e*g) = 0, and hence (2.10) implies D(e* g) = 0. Thus the connec-
tion is metrical relative to § = e*g. This means that relative to any orthonormal
tetrad (with respect to g) the connection form  is so(1, 3)-valued. Hence the Weyl
connection w in W|U is reducible to the orthonormal bundle 0,(U)
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We show now that the restriction to simply connected neighborhoods is not
necessary and that there exists a e[g] such that o is reducible globally to O (M).

For proving this we introduce the principle bundle with total space
M ={g :ge€lg], xe M}, projection n: .# — M given by n(g,) = x, and structure
group R operating as g_+—4g_.

There is a natural bundle homomorphism ffrom W(M) onto .#(M) which sends
a frame at xe M to the metric at x with respect to which the frame is orthonormal.
Since m is a Lorentz scalar, but has nonvanishing weight, m projects to a function
m’ on ./ such that m =f*m'. Furthermore, to each connection w in W(M) there
is a unique connection @' in .#(M) such that horizontal subspaces are mapped into
horizontal subspaces by f'(see [ 3], Sect. IL.6). The condition D”m = 0 goes over to
D®m = 0.

The crucial point is now that the bundle .#(M) is trivial. In fact, any ge[g]
defines a trivialization T,: .4/ > M X R by T,(g,) = (x, 4), where 4 is determined
byg. =4g..

Repeating the argument which led to (6.4) we see now that F(g) is (globally)
exact for every g and thus there exists a ge[g] with Dg = 0 on M. Hence we con-
clude that the connection w is reducible to O.(M).

By the construction above, we see that O,(M) =/~ Y(a(M)) as a set, where o:
M — .#(M) is a global section with constant mass m, (and O (M) consists of all
points in W(M) with mass m,!). Clearly, we stay within O,(M) along horizontal
curves, because m remains constant. This shows again that w is reducible to OQ(M ).

7. Concluding Remarks

The previous discussion can easily be generalized to arbitrary spin by studying the
short wave limit of the massive Fierz—Pauli equations on Weyl manifolds.

It should be clear that one obtains in all cases the Hamilton—Jacobi equation
for the eikonal S. Furthermore, the gradient of S is always proportional to the
zeroth order particle current, i.e., tangent to the trajectories of the WK B-limit. As
for the Dirac and Klein—Gordon fields this leads to Dm = 0.

We have shown that this condition implies the existence of a preferred metric
g in the conformal class [¢] such that the Weyl connection of the bundle belonging
to [g] is reducible to a connection in the bundle of orthonormal frames belonging
tog.

In the language developed by Trautman [6] we could regard a mass function
m of a nontrivial Weyl type as a Higgs field, and the equation Dm = 0 as the condi-
tion for spontaneous symmetry breaking of the group G down to L', . With these
remarks, we would like to emphasize that our discussion of the reduction of a Weyl
space to the pseudo-Riemannian structure of general relativity is analogous to the
bundle reductions which occur in ordinary spontaneously broken gauge theories.

In his Banff lectures [7] Ehlers concludes the discussion of his work with
Pirani and Schild [1] with the following remarks:

“It must be admitted that the motivation of (the vanishing of the ‘distance
curvature’) is not very satisfactory; it is an extraneous element of the theory. It
seems that a deeper understanding of it could come from a better analysis of the
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description of matter in a Weyl spacetime. It is quite possible that such an analysis
(may be in terms of possible wave equations for massive particles) would show that
a ‘reasonable’ description of matter is possible only if the Weyl space is, in fact,
Riemannian.”

We hope that our investigation has at least partially fulfilled the expectation
expressed in these sentences.

Finally, we emphasize that the axiomatic scheme of [ 1] excludes from the very
beginning a non-vanishing torsion. It should be clear that the conclusions of this
paper also rest heavily on this assumption.
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