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Abstract. We prove for a one-dimensional system of classical particles with
potential energy,

the existence of such a smooth function y(α), 0 ̂  α ̂  αo(ω) that the system with
potential energy l/α> y{a) has the equilibrium state at the temperature T= 0. This
is the incommensurate phase with the ratio of periods equal to the prescribed
irrational number ω, badly approximated by rational ones. A simple geometric
condition for the invariant curve of the corresponding dynamical system is
established under which it is the support of the invariant measure minimizing
PercivaΓs energy functional.

1. Introduction

The main result of the paper contains the solution of the problem stated in [1, 2]
and concerns commensurate-incommensurate phase transitions in one-
dimensional chains. The potential energy for the system has the form

Ua.,y=Σl*V(xn) + F(xn + ι-xn-γ)-]. (1.1)
n

Here xn are the coordinates of particles, V(x) is a periodic function with period 1
having nondegenerate minima at x = n and maxima at x = n+^, neΈ, F is the
potential energy of the inner interaction between nearest neighbours, and α and β
are parameters. We assume also that F is strictly convex, F"^i const >0, F(0)

As it was shown in [1] the phase diagram of the model for the temperature
T=0 is described in terms of invariant measures of mappings of the two-
dimensional cylinder C = S ! x R The transformation for (1.1) is defined as follows:

/(*,)>) = (*',/), where
y= —aV/

/ = F'(x'-x-)0. (1.2)
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In the case of Frenkel-Kontorova model (see [3]) F(x)=^x2, V(x)
= — (2π)~1cos2πx, and the transformation / coincides with the well-known
standard or Chirikov's map in the theory of non-linear oscillations (see [4]). For
any normed measure μ on C with compact support and invariant with respect to /
we put

P(μ) = J l*V(x) + F(xf -x- yWμ. (1.3)

Here x/ = nίf(x9y), πί is the projection of the cylinder C = SX x R to the first
component. According to [1] limit points of Gibbs states of the system in question
when T->0 are the measures on the configuration space concentrating on the space
of trajectories of/, and corresponding invariant under / measures μ on C are those
for which P(μ) takes minimal value. A question naturally arises to describe the
invariant measures μα for which P(μa ) = min P(μ), where 9JL is the set of all

normed measures invariant with respect to / having compact support. The map
(α, y) i—> μα> y is the phase diagram of the system (this map is not necessarily single-
valued). This question is very delicate and difficult to answer in view of the
complexity of the partition of the cylinder C onto invariant sets with respect to /
and the presence of stochastic layers (see [4]). Therefore, we reverse the
formulation of the problem and ask for any given invariant measure μ, whether it is
true that P(μ) = min P(μ). We shall consider the case when the support of μ is

contained in some homotopically nontrivial circle 3 invariant with respect to /.
Such μ is unique if/ is topologically transitive on 3. In this case / restricted to 3 can
be reduced to a rotation and the minimal property is physically interpreted as the
appearance of an incommensurate phase at T=0 (see [1, 2, 12-14]). Theorem A
stated in Sect. 4 gives a simple geometrical answer to this question: let the
invariant circle 3 be the graph of the periodic function ψ(x) with period 1. Then the
invariant measure μ with suppμC 3 minimizes P if and only if 3 bounds zero area,

1

i.e. $xp(x)dx = 0.
0

Let us consider a slightly modified question. Fix the irrational number ω,
which is badly approximated by rational ones. According to Kolmogorov-Arnold-
Moser theory (KAM theory) the transformation / has an invariant homotopically
nontrivial circle with the rotation number equal to ω if α is sufficiently small (see
[5]). In this case such a circle 3ω is unique (see [6]) and the invariant measure μω

with support belonging to this circle is also unique. Do the pairs (α, γ) exist such
that the invariant measure μα y giving the minimum to P(μ) coincides with μω? In
this formulation the problem becomes very close to the variational principle for
invariant sets of KAM theory investigated recently by Percival [7] and Mather
[8]. In the case of the Frenkel-Kontorova model the answer to this question is an
immediate consequence of the theorem mentioned above. To see this, write the
formulas (1.2) for this case as follows:

x' = x + y' + y, y'=y + ccV'(x), (1.4)

and denote the corresponding transformation of C by fΛt v indicating explicitly the
dependence on α and y. If/α 0 has the invariant circle 3ω with the rotation number ω



Percival Principle for Invariant Measures 513

and 3ω = graphψ9 then /α y has the invariant circle with the same rotation number
which is the graph of function ψ — y. So the value of 7 for which the invariant circle

1

3ω bounds the zero area is 7= $ψ(x)dx. Using KAM theory we have for the
0

Frenkel-Kontorova model the existence of a smooth function y(u\ 0 g α :§ αo(ω),
such that the incommensurate phase with the ratio of periods equal to ω exists for
any pair (α, y(oc)\ 0 ̂  α ̂  αo(ω). This is true when F(y) is a quadratic function. In the
more general case one needs some more complicated considerations to establish
the existence of such 7(0) (see Sect. 8). Another approach to the commensurate-
incommensurate phase transitions is developed in recent papers [13,14].

It is worthwhile to mention a recent result by Zaslavski [9] for the Frenkel-
Kontorova model, where he has shown for 7 Φ n -f̂  that one could find ccί = 0̂ (7)
such that for α > 0̂ (7) the invariant measure μα> γ is concentrated at the hyperbolic
fixed point x = 0, y = — 7.

2. Exact Mappings

In this section we introduce a class of dynamical systems which are useful for
describing the equilibrium configurations of one-dimensional chains. It is more
convenient to work with the universal cover of the cylinder C = S1 x R, that is with
R2. So we consider the translation Γ: R2->R2, T(x, y) = (x + l, y), and projections
π f : R 2 - + I U = l , 2 , defined by πί(x,y) = x, π2(x,y) = y. Let / : R 2 - + R 2 be a
C1-mapping and put

( dπjjx.y) dπj(x,y)\

, !" , J J, (2.1)
dπ2f(x,y) dπ2f(x,y)

dx dy
\\df\\= sup^\\df(x,y)\\9 (2.2)

where the n o r m of 2 x 2 matrix <stf = {aik}ftk=1 is defined by the expression
i,k

Let 3) denote the set of all diffeomorphisms / : 1R2-»R2 belonging to the class
C1, commuting with T, and having the uniformly bounded first derivatives, i.e.

ά& Λ(02)Λ(03), where

(01) / : R 2 - > R 2 is a C^diffeomorphism;

foT=Tof;

\\df\\«x>.

Definition. The map / e 0 is called exact if there exists a C2-function L:R 2-^R
having the properties (LI), (L2), and (L3):

(LI) H^x
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(L2) sup
dxδx'

<00,

(L3) (x,/)=/(x 5 j )oy= ^ — , / =
d χ ,

A function L will be called a generating function for the map / and will be
denoted by Lf if it is needed to indicate the dependence on /. The set of all exact
mappings will be denoted by δ.

Remark. Two generating functions for the same feδ differ only by a constant.
Denote by 3 the set of all curves in R2, invariant with respect to the translation

T, which are the graphs of C2-functions, i.e. 363 <=> [3ip6C1(R,R), ψ(x+l)
= ιp(x), VxeR, and (x,y)e% oy = ψ(x), V(X,J ; )ER 2 ] . Define the mapping
β: 3~>R by the formula

1

0(3) = ί ψ(x)dx, 3 = graph ψ. (2.3)
o

The next proposition characterizes exact mappings.

Proposition 2.1. Let feSί. Then

fe#oI(f)ΛlI(f)ΛlII(J)9

where

/(/) of preserves area and orientation,

c v)
>0 ("twist condition"),

dy

Proposition 2.1 will be proven in Sect. 9.

Corollary 2.2. δ = S>

+u£)_, <ί+n<ί_ =0, where δ± is the set of all feS for which
δπi/(x, v) , Ί .

sign = + 1 (positive and negative twist condition).

3. Measures

Let ̂  be the space of all continuous functions φ: R2-^R, invariant with respect to
T (φ ° T= φ\ with the structure of real vector space defined in the usual manner;
suppφ for φ e ̂  will denote the support of φ, i.e. the closure of the set of points
(x j/)eR 2 for which φ(x,y)Φθ. For b>0 we put Ab = {(x,y)eR2: \y\Sfy (the
strip of the halfwidth b).

Definition. A measure is a map μ:^->R which is 1) linear, 2) nonnegative:
ψ ̂  0 => μ(φ) ̂  0, V φ e c€9 3) normed: μ(l) = 1, and 4) having bounded support in
the y-direction: 3fr>0, VφG^suppφn^ b = 0=>μ(φ) = O. We denote the set of all
such measures by 9JΪ.
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Definition. Let μeϊR. The support of measure μ is the set suppμClR2, which is
defined by the condition: (x,y)ξsuppμ o 3 open set ^ c R 2 such that (x,y)e $
and Vφe^suppφC^=>μ(φ) = O.

The support of a measure is the closed set invariant with respect to T which is
contained in a strip Ab. For φ e %>, let N(φ) denote the set of zeroes of the function
φ. The following proposition is obvious.

Proposition 3.1. Let φ e <&, φ ̂  0, μ e SQΐ. Then

0o supp μ C N(φ).

Remark. 9W is a convex subset of the space algebraically conjugated to ^.
We shall define for / e ^ a linear map / * : ̂ -»# by the formula f*φ = φof9 and

affine map /^:9Jί-»9Jί by the formula f*μ = μ°f*. The maps / * and /^ are
bijections with the following properties: (f°g)* = g*°f*, (f°g)*=f*°g*, supp/^μ
=/(suppμ). The set of all measures invariant with respect to / will be denoted by
SCRj, it is a convex subset of 93ΐ. One could easily verify for any

4. Variational Principle

Let feS and Lf be a generating function for /. We define PercivaΓs functional
Pf: SR^IR by the formula

(4.1)

where

F(x9y) = L/(x,π1/(x,y)). (4.2)

The curve 3 e 3 will be called invariant with respect to / if/(3) C 3. An invariant
curve is said to be a zero curve if (̂3) = 0 [see (2.3) for the definition of

Theorem A. Let the mapping fε<S+ have an invariant zero curve 3^3- Then the
following statements are valid for any measure μεyjlf: 1) // suppμC3, then
Pf(μ) = P0, where Po is the same for all such measures. 2) // suppμ<£3, then
Pf(μ)>P0.

Remark 4.1 .If /e $_ the statements remain valid if one replaces sign > by < in 2).

Remark 4.2. If the curve 3 is not a zero one, i.e. β = ̂ (3) Φ 0? then the statements of
the theorem will be valid if one replaces function Lf(x, x') in (4.1) by Lf(x, x') + β
•(x-xO

Theorem A and Remark 4.1 will be proven in Sect. 7, Remark 4.2 in Sect. 11.

5. Invariance of PercivaΓs Functional with Respect to Exact Transformations

Proposition 5.1. Let f,geS, and/= g°f°g'1 satisfies the twist condition //(/) of
Proposition 2.1. Then feS and Pf = Pγ°g% + const.

This proposition will be proven in Sect. 9.
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6. Straightening Transformations

Let feS and 3 = graphφe3 be a zero curve invariant with respect to /. A
straightening transformation #:1R2->]R2 for the pair (/, 3) is defined by the
formula g(x, y) = (x, y), where

x = x + εy, y = y-ψ(x). (6.1)

This transformation is exact if εφO. The generating function of g has the form:

Lg(x, x) = - J ψ(τ)dτ + y (x - x)2. (6.2)

Note that /J(3) = 0 is equivalent to the condition (LI) for Lg.

Proposition 6.1. Let g be a straightening transformation for the pair (/, 3). // ε is
sufficiently small then / = g°f°g~1 satisfies the twist condition //(/) of Proposition
2.1.

Proposition 6.1 will be proven in Sect. 10.
Proposition 5.1 shows that in this case feS and P / = Pj°^}jt + const.

Moreover, the straightening transformation transforms the invariant curve 3 into
the x-axis. So it is sufficient to prove Theorem A for the case when 3 is the x-axis.

7. Proof of Theorem A

We may assume that fe$+ and

π2/(x?0) = 0 for all x e R .

Let us calculate the derivatives of the function F(x, y) given by (4.2)

(7.1)

dF{x,y)
dx

dF(x,

dy

=

y)

dUx,x')
dx

,d
-y+y-

x'=πχf(x,y)

πj(χ,y)
dx

dUx,xr)

dx' * ' = πi/(

dlix, x')
dx'

dπj(x,y)

dπj(x,y)

dx

= ,

(7.2)

(7.3)

In these formulas y/=zπ2f(x,y). Since / is area and orientation preserving, the
condition (7.1) gives

dπ2f(x, y) =

dy

osil

dπ2f(x,y)

dx

Thus —-^ ' does not vanish and is positive because of commuting property of

dy
>0 and

y>0

y<0

y'=0,

/>o,
y'<0.

(7.4)
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Since fe<%+ we have

a π i / ( x ^>0, (7.5)

dy

One can easily deduce from (7.2)-(7.5) that the graph of F is channelwise, i.e. F is
constant on the x-axis and strictly increases if one moves in both y-directions. The
statement of Theorem A is then the consequence of Proposition 3.1. If /edf_ one
should change the sign in (7.5) by the opposite one. So the graph of function F
would be hump wise and we make sure of the validity of Remark 4.1.

8. Existence of an Incommensurate Phase

Let the Lagrangian L(x, xf) have the form

x-γ), (8.1)

as we have discussed in Sect. 1. Here α is a small parameter, F(y) and V(x) are
C00-functions defined on the real axis and satisfying the following conditions: F(0)
= F(0) = 0, F"(y) ̂  const > 0, My e R, V(x +1) = V(x)9 Mx e R. The corresponding
transformation fay is fat7(x9y) = (x',y'), where

x' = x + y + (FT1(y')> y' = y + <*V'(x). (8.2)

As a consequence of Theorem A we have that the unique incommensurate phase
with irrational ratio of periods ω in the one-dimensional chain with potential
energy (1.1) exists if the transformation /α> y have the zero invariant curve 3 e 3 with
rotation number ω. We shall prove the existence of such a curve using the KAM
theory in a modified form due to Zehnder [10] and Hamilton [11]. To apply the
KAM theory we must take ω satisfying the following arithmetical condition:

rcφO, (8.3)

where c o > 0 , σ > l .

Theorem B. Let ω satisfy the arithmetical condition (8.3). Then there exists a
Cx-function y(μ)9 0 ̂  α < α0 = αo(F, F9 cθ9 σ) such that the transformation /α> y(α) has
an invariant zero curve 3 ( O ? αe3 w^h rotation number ω. Such a curve is unique and
C00-depending on α: 3ω > 0 is the x-axίs, y(0) = ω.

Proof. We shall apply the implicit function theorem with a quadratic error (see [115

Theorem 3.3.1, on p. 211]). So we consider the spaces ^ = Cco(S\Έi2)xΈL2

!>

^ = R, ^ = C0 0(S 1,R2)xR, where S1 is the circle Sί = K/Z, and the map
A'.^xg-^Jί? defined by formulas A(φ,<x) = (A1,A2)9 φ = (&

, α) (ί) - 3(ί + ω) ~/α, y, ,(3(0), Λ2(φ9 α) - j5(3). (8.4)

Instead of the transformation /α y : R 2 - > R 2 we shall consider the transformation
fa,y,δ

: ί^1 x IR-^S1 x R, which is defined by formulas /α>y>a(x, y) = (x^ ĵ O?

c), (8.5)
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introducing an additional parameter δ. The lifting of fa r t δ on R 2 is exact if and
only if (5 = 0, then it coincides with fay. Supplying the space in question by
appropriate systems of norms we turn them into so-called Frechet tame spaces,
and the map A becomes the tame map (see [11]). If we take φ o = (0, ω,ω), α = 0,
then

) = 0. (8.6)

One can compute the derivative DφΛ(φ, α) of the map A as follows:

DφA(φ, ot)φ = (DφA^φ, α)φ, DφA2(φ, ά)φ), φ = (3, % δ),

β l = (l ,0), e 2 = (O,l)eIR 2,

1

DφA2(φ, cήφ = f [π 2

o
We take the basis {v(t), w(ί)} in the tangent space to R 2 at the point 3(ί), putting

v(f) = — — , Jx Λ dy(y(i), w(ί)) = 1, and the basis (ι;(ί + ω), w(ί + ω)) in the tangent
at

space to R 2 at the point /(3(ί)) Then in these basises the matrix of df takes the
form

If S j \ >ί/ / Λ l / Λ At / . . X Z - X / 7 V * /

χ~^12lΓJ

where Aγi(t) and i412(ί) are the components of Ax(φ,α)(ί) in the basis
{ί;(ί + ω), w(ί + ω)}. Let us construct the approximate right inverse operator
V(φ, α): J f -•J^, provided (φ, α) is sufficiently close to (φ0,0). For h = (hx, h2) e ̂ f
= C^CS1, R 2 ) x R, we denote by h11{t) and h12(t) the components of h^t) in the
basis {ι;(ί + ω),w(ί + ω)}. We shall define the operator V(φ, α) by the formula
V(φ, α)/i = (3, y, δ\ where 3 G C G 0 ( S 1 , R 2 ) , y , ^ e R a r e defined as a solution of the
following system:

+ωj^ίOαίOfcWΛίOy^ίO^Λiiίί), ( 8 8 )

^ ( 0
1

ί [π23
0

(8.9)

- j aΐ2(ήdty- J a22(t)dtδ= f Λ
0 0 0

1 1 1 1

- ί a(t)fo(t)dt- J aγi{t)dty- Ja2 1(t)dtδ= j Λ
0 0 0 0

Here 3x(ί) and 32(ί) are the components of §(ί) in the basis {ϋ(ί)> w(ί)} flj/O are the
components of ef in the basis {ϋ(ί + ω), w(ί + ω)}. We shall require the periodicity
of 3y(ί) with period 1.

The solution of (8.8) is

3/0= Σ (eίn2™-iy%n + zj0, (8.10)
Φ0
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where ftjnj= 1,2, are the Fourier coefficients of the functions h11(t)-\-a(t)-haίί(t)γ
+ fl2i(0^> h12(t) + a12(t)y + a12(t)δ, respectively, 3 j 0 e R. Note that (8.9) give us the
zero Fourier coefficients hjoj =1,2. Let us consider (8.9) as the system of equations
with respect to real variables (3iO>32o??><5) This system is linear. If (φ, α) is
sufficiently close to (φo>0)> then the determinant of the system (8.9) is separated
from zero, and (31 0,32 O, f, S) are smooth functions of (φ, α). We can solve the last
pair of equations (8.9) separately and substitute (γ, δ) into (8.8). Then 3/ί) will be
defined by (8.10), where lj0 in turn will be defined as the solution of the first pair of
(8.9).

We have

DφΛ(φ, α)V(φ, α)ft = A + J ( 4 , ft), (8.11)

where

, α))12(ί).

Let UC^x^ be a sufficiently small neighbourhood of (φOj0)j i n which the
preceding considerations are valid. The maps V C / x J f - ^ and
J ί/xJfx^f-^Jf satisfy all the conditions of Hamilton's theorem 3.3.1 [11],
and we can assert the existence of solution (3, y, δ) of the system A(φ, α) = 0 in some
neighbourhood of α = 0 smoothly dependent on α. The curve 3 will be the invariant
zero curve with respect to fayδ having rotation number ω. Since fayδ preserves
area and has an invariant curve, its lifting is exact, and so δ = 0. The uniqueness of
the invariant circle with irrational rotation number is proved in [6,
Proposition 4.1].

9. Proof of Propositions 2.1 and 5.1

Lemma 9.1. Let fe@9 then /(/) Λ //(/) o 3 C00-function L : R 2 ^ R , satisfying
conditions (L2) and (L3) of Sect. 2.

Proof. <=) Let f(x9y) = (x/,y/). (L3) yields

yfdx'-ydx = dL{x,xf), (9.1)

and dy' Λdx' = dyΛdx, so /(/) is valid. By differentiating the equation

dπj(x9y) ίQOλ

<3L(x, xθ
v = , one can write

dx

1 - dxdx' dy '

which yields the equivalency of (L2) and //(/).

=>) Consider the function Φ(y) = πίf(x,y) — x', provided x and x' are fixed.
Condition //(/) yields

dΦ^->c>0 (9 3)
dy
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so Φ: R->R is the bijection. Define the function g: R2-*R, which is the unique
solution of the equation

π1/(x,0(x,x')) = x/. (9.4)

It follows from (9.2) that geC1. Let

g'(x, xθ = π2/(x, #0, xθ) (9.5)

Consider the 1-form
ω = 0'(x, x^dx' — #(x, y!)άx. (9.6)

Since /(/) holds, this form is closed, i.e. exact (in R2). Therefore, there exists
Le C2(R2,R) such that ω = dL. Equations (9.4)-(9.6) yield (L3), (9.2) yields (L2).

Proof of Proposition 2.1. Since Lemma 9.1 holds, it is enough to check that for
V/e0,

/(/) Λ //(/) => [///(/) o (LI) for the generating function of Lemma 9.1].

(9.7)

Let / ( / ) Λ / / ( / ) be fulfilled. Since Lemma 9.1 holds, there exists a C2-function
L(x, x") for which (L2) and (L3) are fulfilled. Let 3 e 3 be a curve passing through
the points (xo,yo) and (xo + l,j/o). From (L3) it follows that —ydx + y'dx'
= dL(x,x/), where (x', /)=/(x, y). Integrating along the segment, connecting
points (xθ9yo)

 a n d (xo + l,yo), one gets

xo + l Λ O + 1

- J φ(x)rfx+ f φ(x)dx = L(xo + l,x/

o+l)-L(xo,x'o), (9.8)

where graph φ = 3, graph φ = 3=/(3). This identity proves the required
equivalence.

Proo/ o/ Proposition 5.1. The variables in the following formulas are related as it is
shown in the diagram

(x,j/)Λ(x',yO

Ί Ί (9.9)

(x, y) A (x\ f ) .

As ?=g°f°g~ί, then

i/(x, y) = ̂ ( x ; /) d/(x, y) [dflf(x, y)] " x (9.10)

[see the notations in (2.1) and (9.9)].
The estimate (D3) for /follows from the inequality ||d/|| ^8 | |^ | | 2 | |d/ | | , which

in its turn follows from (9.10), (2.1)-(2.2). We introduce the following notations:
L(x, xθ = Lf(x, xθ, «S(x, x) = Lg(x9 x), L(x, x7) is the generating function for /, which
exists since Lemma 9.1 holds. According to the definition of generating functions
we have „,„

fliS(x, x) = — yαx + yαx,

^^(x; xθ = - j 'dx' + fax!,

, xθ = — ydx + /fa/
dΐix, x') = — ydx + fax!.
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Hence it follows that

d[L(x, x') - L(x, %')] = dlS(x, x) - S(x\ x')] , (9.12)

L(x, x') - L(x, x') = S(x, x) - S(x\ x') + const. (9.13)

As the functions L and S possess the property (LI), then from (9.13) it follows that
the same is true for L. From Proposition 2.1 and (9.7) it follows that fe δ. Let us
reproduce (9.13) expressing all the terms as the functions of (x,y) [see diagram
(9.9)]. Let

Fx(x, y) = L(x, πj(x, y)), F2(x, y) = L(π^(x, y), πjo g(χ, y)),

F3(x, y) = Ux, πj(x, y)), F4(x, y) = S(x, πxg{x, y)),

F5(x, y) = S(πJ(x, y\ πjo g(χ, y)).

According to the definition,

F2 = g*F3, F5=f*F4. (9.14)

Calculating the value of μeSJlj on the left and right of (9.13), we have

Pf(μ) - Pjg^μ) = μ(F4) -/*μ(F4) + const. (9.15)

The terms containing μ in the right part of (9.15) cancel out due to the invariance of
μ with respect to /.

10. Proof of Proposition 6.1

We use formula (9.10) substituting for dg(x, y) the explicitly calculated matrix. Let
df(x,y) = {fίk(x,y)}lk=1. Then in terms of the diagram (9.9)

fufc y) -fiά^ y)l

(10.1)

Due to (D3) the coefficients at ε and ε2 in the right part of (10.1) are uniformly
bounded. Since //(/) holds, |/i2(^9};)l^c0>0. If ε is sufficiently small, the right
part of (10.1) is separated from zero.

11. Proof of Remark 4.2

The map g(x, y) = (x, y), where x = x, y = y — a transforms the curve 3 invariant
with respect to / into zero curve 3 invariant with respect to / = g °f ° g ~1. It is easy
to see that fe δ, and Lj{x, x') = Lf(x, x') + a(x — x\ and

Since g% maps measures μe^Rj with suppμC3 into measures fieWlj with
suppμ C 3, and is a bijection, then Remark 4.2 follows from Theorem A and formula
(11.1).
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