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Abstract. Functional integrals that are formally related to the average
correlation functions of a classical field theory in the presence of random
external sources are given a rigorous meaning. Their dimensional reduction to
the Schwinger functions of the corresponding quantum field theory in two
fewer dimensions is proven. This is done by reexpressing those functional
integrals as expectations of a supersymmetric field theory. The Parisi-Sourlas
dimensional reduction of a supersymmetric field theory to a usual quantum
field theory in two fewer dimensions is proven.

It was observed in the physics literature [1-5] that a D-dimensional classical field
theory coupled to an external random source having Gaussian correlations is
related order by order in perturbation theory to the corresponding (D — 2)-
dimensional quantum field theory without external sources.

This connection between random systems and the corresponding pure systems
in two fewer dimensions was first noticed by Imry and Ma [1]. Investigating the
effect of a quenched random magnetic field on phase transitions, they argued that
classical mean field behavior occurred for dimensions greater than 6, instead of 4 as
in non-random systems. Grinstein [2] found that the scaling laws for these random
systems are the same as for pure systems, except that the dimension D is replaced
by D + 2.

Aharony, Imry, and Ma [3] explained those findings by arguing that the
Feynman diagrams which give the leading singular behavior for the random case
are identically equal, apart from combinatorial factors, to the corresponding
Feynman diagrams for the pure case in two fewer dimensions. They showed this
for one-loop diagrams that remain connected after all lines with random source
insertions are opened. Young [4] extended their result for similar diagrams with an
arbitrary number of loops.
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The situation was clarified by Parisi and Sourlas [5], They observed that the
most infrared divergent diagrams are those with the maximum number of random
source insertions, and, if the other diagrams are neglected, one is left with a
diagrammatic expansion for a classical field theory in the presence of random
sources.

Parisi and Sourlas then pointed out that the underlying phenomenon for the
connection between random systems and pure systems in two fewer dimensions is
that a classical field theory in the presence of random sources is perturbatively
equivalent to the corresponding quantum field theory in two fewer dimensions.
Parisi and Sourlas explained this dimensional reduction by a hidden
supersymmetry.

Niemi [6] has rewritten the Parisi and Sourlas argument for the dimensional
reduction in terms of the formal generating function, McClain, Niemi, Taylor, and
Wijewardhana [7] extended Parisi and Sourlas' results to non-scalar theories,
including gauge and fermionic field theories.

Non-perturbative versions of the Parisi and Sourlas argument have been given
by Klein and Perez [8] and by Cardy [9].

In this article we give a rigorous proof of the Parisi-Sourlas dimensional
reduction.

We start by discussing the average correlation functions of a classical field
theory in the presence of random external sources which are distributed as white
noise (i.e., they have "Gaussian correlations"). Parisi and Sourlas rewrote those
average correlation functions as functional integrals by means of a formal change
of variables. (It should be noticed that even at the formal level this change of
variables can only be justified when we have uniqueness for the solution of the
classical field equation and that the connection of these functional integrals with
the average correlation functions remain unclear in the non-uniqueness case this
has been discussed by Parisi and Sourlas [10].) We construct rigorously those
functional integrals and take them as the definition of the average correlation
functions. To do that we introduce the appropriate cutoffs. It turns out that the
space cutoff must not only satisfy certain decay properties so the formal positivity
of certain terms is preserved, but a counterterm depending on the boundary of the
space cutoff must be added to preserve the hidden supersymmetry that is
responsible for the dimensional reduction.

Next we construct supersymmetric field theories and show the dimensional
reduction of a supersymmetric field theory to a usual quantum field theory in two
fewer dimensions. To avoid technical problems in the integration over anti-
commuting variables a momentum cutoff is introduced. This cutoff turns out to be
determined by the requirements that the supersymmetry be preserved and that a
certain formal positivity be also preserved.

Finally, it is shown that expectations of this supersymmetric field theory with
the momentum cutoff give an approximation to the average correlation functions
we started with. Removing the cutoff we obtain the dimensional reduction for the
average correlation functions.

This article is organized as follows:

1. The Problem. The dimensional reduction is stated at the formal level
2. Rigorous Results. Contains the statements of Theorems I and II. Theorem I is the

construction of the average correlation functions. Theorem II is the dimensional reduction of the
average correlation functions
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3. Proof of Theorem I
4. Supersymmetrίes: Some Basic Facts. Lemma 4.5 is the key to the dimensional reduction
5. Super symmetric Free Field Theories
6. Super symmetric Interactions
7'. The Dimensional Reduction for Super symmetric Theories. The precise statement is

Theorem III
8. Proof of Theorem II

Before we start, let us fix some notation that will be used throughout this
article: z, x, y will always denote elements of R β , R β ~ 2 , R 2 , respectively. We will
also write z = (x,j;).

Similarly, in momentum space q,p,k will always denote elements of
R D , R D 2 , R 2 , respectively, and q = (p,h).

We will also use the notation z2 = z- z, y2 = y y, etc.

1. The Problem

Let us consider a classical scalar field theory in D dimensions with Lagrangian

Wψ2 + V(φ), (1.1)

and let ^h(φ) = ̂ (φ) + hφ be the Lagrangian in the presence of an external
source h.

The classical equation of motion is

(-A+m2)φ + V'(φ)=-h. (1.2)

The external sources are taken to be random with "Gaussian correlations", i.e.,
{h(z); z E RD} form a generalized Gaussian system with mean zero and covariance

where y > 0 is a given constant.
Proceeding formally, let φh denote the formal solution to (1.2) given by

perturbation theory and define the average correlation functions

the average being taken over the random sources h, i.e., formally

[ }

Let us now consider a Euclidean quantum field theory in D — 2 dimensions
with Lagrangian (4n/y)J£(</>), where 5£ is the same Lagrangian given by (1.1). Let

ϊexp{-(4π/γ)S&(φ(xj)dx

be the Schwinger functions of the theory.
Parisi and Sourlas [5] argued that

R((x1,0),...,(xπ,0)) = S(x1,...,x I I), (1.4)

order by order in perturbation theory.
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To explain (1.4), Parisi and Sourlas started by rewriting R(zί, ...,zn) as an
integral over the field φ. This is done by performing on the right-hand-side of (1.3)
the change of variables given by (1.2); formally, we get

Λ _ , y ( Z l ) ... <?(;„) exp {-(l/2y)f[(-zl +m2)φ(z)+ V'(φ(z)y]2dz}
J 1 ? 5 Zn) —

• det(-Zl +ra2 (1.5)

Even at the formal level there is need here to assume that V is convex so (1.2)
actually gives a change of variables [uniqueness of solutions of (1.2)] and the above
determinant is positive so absolute values are not needed. (See Parisi and Sourlas
[10] for a discussion of this problem.) But convexity is not needed if (1.5) is taken as
a definition.

Parisi and Sourlas took (1.5) as the definition of R(zu ..., z j , re-expressed it as
an expectation of a supersymmetric field theory, and explored the supersymmetry
to show (1.4) order by order in perturbation theory.

We will now proceed to make their argument rigorous.

2. Rigorous Results

We will start by rewriting the right-hand side of (1.5) in a form more amenable to a
rigorous treatment. By formal manipulations, we get

\φ{zγ) ...

where

= exp {- (l/2y) j V\φ(z)fdz - (1/y)J ( - A + m2)ψ{z)V\ψ{z))dz}

and

exp { -(l/2y)J [ ( - A + m2)φ{z)-\2dz}9φ
dμ(φ) =

The probability measure dμ(φ) can be defined rigorously as the probability
distribution of the generalized Gaussian system {φ(z) z e ΊR°} with mean zero and
covariance (φ(z)φ(z/)} = γG2(z — z'), where Gs(z) = (2π)~D$eιq'z(q2+ m2)~sdq for

Notice that G2(z —z') is the Green's function for ( — A +m 2 ) 2 .
The expression Jf (φ) does not make mathematical sense as it stands. To start

we must introduce a space cutoff to handle the infinite volume integrations. Since
the space cutoff is a variable coupling constant, the correct place to introduce it is
in the definition of the Lagrangian [Eq. (1.1)]. So let / be a positive function on IR1*,
and let if(φ,/)=^(P7φ)2+^m2φ2+/F(φ). Proceeding as before we get

Λ(z l5...,zn;/) =
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where

Jf(φ /) = exp { - (l/2y) J V\φ(z))2f{z)2dz - (1/y) J ( - A + m2)φ(z) V\φ{z))f{z)dz)

>det(I + (-A+m2y1/2fV"(φ)(-A+m2y1/2). (2.1)

Here the determinant is taken in L?(WLD, dz).
To define Jf (φ /) properly, we will need to impose certain conditions on the

space cutoff /. But before we do that we will introduce a momentum cutoff in the
first D — 2 variables (in case D^3). So let χ(p) be a positive bounded integrable
function in R 1 ^ 2 , and define dμχ(φ) as the probability distribution of the
generalized Gaussian system {φ(z); zeR D } with mean zero and covariance

where

h sdq (2.2)

for s^O. Recall q = (p,k).
Notice that G2 χ(0) is finite.
Let

where

) = exp { - (l/2y)f F(φ(

where we denote by Gs χ the operator in L2Q^D, dz) with kernel Gs χ(z — z7) given by
(2.2). In this notation G1/2Λ = (-A + m2yί/2. Notice that Gi/2,χυ2 = Gί>χ as
operators.

It will turn out that with the above definitions the first D — 2 variables play no
role in the dimensional reduction and we will be able to carry through the
momentum cutoff χ.

We will now give the technical definition for the space cutoff we will use. The
definition will depend on a parameter δ that later will be taken to be the degree of
the polynomial V multiplied by the mass parameter m2.

Definition. Let δ>0. A ̂ -appropriate space cutoff is a function / IR^-^IR such
that:

(i) ft Oof class C2.
(ii) feUcΛL2(WLD,dz).

(Hi) f(x,y) =](x,y2) for some function f\WLD~2 x [0, oo)-»R.

(iv) Let f\x9y) = Γ(x,V2)= ~f(^t)\t=y2; then f'^0 and f'eUφiD

9dz).

(v) Af^b2f with b2<δ and AfeLι(ΈίD,dz). D

Notice that since / is of class C2 we must have / of class C1, hence / ' is well
defined and continuous. It follows that f(-,y)eL1(RD~2

9dx) for all j e R 2 .
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We will give examples of such functions. For b > 0, 0 < Tλ < T2, let us define a
function ocbTlT2: [0, oo)-»[0, oo) by otbTuT2(t) = 0 for 0 ^ ί ^ T 1 ?

for T^t^T^

The following functions are (5-appropriate space cutoffs:

a) /(^) = exp{-α& 5 T l > T 2(|z|)}

with b2 < δ and any 0 < Tx < T2. Notice that f(z) = 1 for \z\ S Ά and f(z) = ce~m

for \z\^T2, with c = exp{ib(Γ1 + Γ2)}.
Notice that f(z)=f(z2) for some function / : [0, oo)->[0, oo) and that in this

case j\z) =f'(z2), where / ' has the usual meaning of the derivative of a function of
one variable.

with b\ + b\<δ and any 0 < X 1 < Z 2 , 0 < 7 1 < 7 2 .
As we mentioned before, the dimensional reduction will require a counterterm

depending on the boundary of the space cutoff. We define

> / ) = exp {(4/y)J V{φ{z))f\z)dz}^χ{ψ / ) ,

and letJ?χ(z l 9 . . . ,z m ;/)be defined as in (2.3) but with JS?χ(φ;f) substituted for

•#>;/)•

We can now state

Theorem I. Let V be a bounded below polynomial in one variable, and let δ be its
degree. Let f be a m2δ-appropriate space cutoff. Then J^χ(φ;f) and $χ(φ\f) are in
Lp(dμχ(φ)) for all 1 S V < °° •

If the polynomial V is strictly convex (i.e., V" > 0) and / > 0, the determinant in
(2.3) is strictly positive. Thus it follows from Theorem I that Rχ(zl7 ...,zn;f) and
Rχ(zu...,zn;f) are well defined since the denominators in the respective
definitions are strictly positive and hence not zero.

But if V is not strictly convex, there is no a priori reason for J Jήfχ(φ f)dμχ(φ)
and ^^χ(φ;f)dμχ(φ) to be different from zero, since J^χ(φ;f) can take on both
positive and negative values. But it will follow from Theorem II that
§c$χ(φ, f)dμχ(φ)>0, and hence that R{zu . . .,z n;/) is well defined.

We will now proceed to state the dimensional reduction. Let {φ(x); xeΊR.D~2}
be the generalized Gaussian system with mean zero and covariance <κφ{x)φ{xί)y
= (y/4π)HlίX(x — x'), where

Hr χ(x) = (2π) ~{D ~ 2 )J eip' xχ(p) (p2 + m2) ~ rdp (2.4)

for r^O. Notice that H 1(x — x') (without the cutoff χ) is the Green's function of
— A +m2 on R D ~ 2 . We will denote by dvχ(φ) the probability distribution of the
field φ.
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If 0^0, geLί(RD-2,dx)9 S V(φ(x))g(x)dx is well defined in L2(dvχ(φ)) and
Qxp{-(4π/y)$V(φ(x))g(x)dx} is bounded (e.g., [11, 12]). The cutoff Schwinger
functions for φ are then well defined by

ίφ(Xl)... φ(xn)Qχp{-(4π/y)SV(φ(x))g(x)dx}dvχ(φ)
M u " " X π ? 0) Ww{-(4π/y)SV(φ(x))g(x)dx}dvχ(φ)

The dimensional reduction is given by

Theorem II. With the hypothesis of Theorem I, we have

ίφ(x1,0)...φ(xn90)#x(φ',f)dμχ(φ)

= ϊφ(Xl) ...φ(xn)exp{-(4π/y)SV(φ(x))f(x,0)dx}dvχ(φ)

for allxu...,xneΈLD~2.
In particular,

for all xu...,xneΈLD~2. D

3. Proof of Theorem I

We can write

where

/) = exp { - (l/7)i ( - A + m2)φ(z)V'(φ(z))f(z)dz} ,

Jf4(φ /) = exp {(4/y)J V(φ(z))f\z)dz} .

Since (φ(z)φ(z/)} is bounded as (φ(z)2} < oo, the exponents in JtfΊtχ and J^.
are well defined in L2(dμχ(φ)) for fell and f e L 1 , respectively. Clearly
^ i x(φ j /) = 15 a n d «̂ 4.(φ i /) is bounded from above since / ' ^ 0, f e L1, and F is
bounded below.

Thus we need only show that je2(φ /)^f3, χ(φ /) e LF(dμχ(φ)) for all 1 ̂  p < oo.
It will turn out that f̂2

 a n ( 3 ^ 3 cannot be defined as they stand, but their product
J^2^3,χ makes sense thanks to a cancellation.

Let us start with ^2{φ\f). The problem in defining the exponent in the
definition of f̂2 is that

and Gλ χ{z) has a logarithmic singularity at z = 0. But it can be handled in the same
way as Wick powers of the usual Euclidean scalar field in two dimensions (e.g.,
[11,12]). We do not need a full Wick ordering since (φ(z)φ(z')} has no
singularities.



466 A. Klein, L. J. Landau, and J. F. Perez

So we define

&{ψ /) = ί K - Δ + m2)φ(z) V\ψ{z)) -γGu χ(0) V"(φ(z))lf(z)dz. (3.1)

Then

is finite for fe L2. Here < > is the expectation with respect to the measure dμχ(φ).
Thus &(φ /) is well defined in L2(dμχ(φ)). All steps above and in what follows

can be justified by introducing a momentum cutoff for the y variables; the
singularity of Gx z(z) at z = 0 will be logarithmic in the cutoff. We will keep on
supressing this extra cutoff for the remainder of this proof.

We now define

We will show that ^^(φ; f) e Lp(dμχ(φ)) for all l ^
Since V is a bounded below polynomial, we can find c, d ̂  0 such that W(t)

= V(t) + (c/2)t2 + d is convex (W"^0) and positive (W£0).
For a polynomial P let us define <ffl(φ;f; P) by (3.1) with P substituted for V,

and let

;f;P;λ) = <g(φ;f;P)-λϊ φ(z)2f(z)dz.

Then

> /) = <9(φ /; V; 0) = »{φ /; W λ) - <g(φ /; (c/2)t2 λ),

for any λ e R, where t2 denotes the polynomial P(t2) = t2. The constant λ will be
chosen later.

Lemma 3.1. exp { — p&(φ /; W, λ)} e Lι(dμχ(φ)) for any p > 0 and any λ e R. D

Proof. Since the singularity mGι χ is logarithmic, and this is the only singularity,
we can apply Nelson's method (e.g. [11, 12]) so all we need is a bound of the form

\f\ W; λϊ^-C&^Of^fφdz for some constants C l 9 C 2 ^ 0 .
Now,

ί ( - A φ) (z) W\φ(z))f(z)dz = J W\φ{z))\ Vφ(z)\2f(z)dz + J W(φ(z)) ( - Δf) (z)dz

since W"^Q. Here we use the requirement that AfeL1. But we also required that
Af<,b2f, where b2<m2δ. Thus, as W^O,

^ -b2\ W{φ{z))f(z)dz.

Thus

;f;W;λ))
£ 1 [m2φ{z)WXφ{z)) - b2 W(φ(z)) - yGUχφ)W\ψ{z)) - λφ2(z)\f(z)dz

^-CγGUχi$>f-\f{z)dz

for some constants Cu C 2 ^0, since we have b2<m2δ. D
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Lemma 3.2. Given p>0 there exists λ>0 such that exp{p^(φ /; t2 λ)}
eL\dμχ(φ)). D

Proof. We must show that given p > 0 there exists λ > 0 such that

exp{pj :φ(z)(Kφ)(z): dz}eL\dμχ(φ)),

where

:φ(z)(Kφ)(z):=φ(z)(Kφ)(z)-(φ(z)(Kφ)(z)y .

Here / denotes the operator multiplication by /. Notice that since <φ(0)2> < oo we
only added a finite constant.

Since dμχ(φ) is the Gaussian measure with covariance yG2tX(z — z'), it suffices to
show (e.g., [11])

(i) (-Δ+rn2)2-2ypKχ^η>0 for some η>0 and λ>0;
(ii) (-Δ + rn^y^^-Δ+m2)"1 is Hilbert-Schmidt for all λ;
we use the notation A to denote the operator A acting on momentum space (i.e.,

Ά = Jf~1A(f, β being the Fourier transform), and define Aχ by Aχ = χ1/2Aχ112.
To show (ii), let A = (-Δ+m2yίKχ(-Δ+m2y1. Then A has the kernel

Since >4(g, g') is square integrable, ^ is Hilbert-Schmidt.
Let us now prove (i). Since χ is bounded, [(— A + m2)~\χ <; C( — J + m2)2 for some

constant C. We also have (—zJH-m2)2^m4>0. Thus it suffices to show that given
α>0, (-z l+m 2 ) 2 -αX^0for some λ>0.

LetB = (-Δ+ m2). We must show B2 - a[Bf+fB - λf] ^ 0. Now, for any g in
the domain of B and ε > 0,

|ί (Bg)(z)g(z)f(z)dz\ ̂  (c

Hence Bf+fB^ -εBfB-(l/ε)f. Thus

B2~aK^B2- aεBfB + a(λ -

Since / is bounded and positive, we can choose ε > 0 such that 1 — aεf ^ ^. Then
we choose λ such that λ>(l/ε). Then

5 2 -αK^(l/2)β 2 ^( l/2)m 4 >0. D

Thus ^2,χ(ψlf)e If(dβχ(φ)) for all 1 ̂ /? < oo. To finish the proof of Theorem I
we will now show that

is well defined and in U°(dμχ(φ)).
Recall that
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It is not hard to show that

Hence

where detί{I + A) = dQt{{I + A)e~Λ) is well defined for A Hilbert-Schmidt. For A
trace class, det^I + A) = det(I + A)e~TrΛ.

Now, if A = G1i2>χί/2gGli2tXi/2, its Hilbert-Schmidt norm can be computed:

(3.2)

ϋgeL2(RD

9dz).
Since

j < V\φ{z))2f{zfydz = < Γ ( # ) 2 > Sfizfdz,

and fetfQB^tdz), we can conclude by Fubini's theorem that

\ for μχ(φ)-a.e.φ,

/ R V z ) for μχ(φ) - a.e. φ.
Hence ^ 3 ί / ( φ ; / ) is well defined for μχ(φ) — a.e.φ.
To show J^3 >χ(φ /) G L00 we will need the following Lemma.

Lemma 3.3. L ί̂ X, A, B be self-adjoint Hilbert-Schmidt operators, with A and B
positive, such that K — A — B. Then

D

Proof. Let us assume first that A and B commute. Then it is easy to see that

Since A^O, 0<det1(/ + 4 ) ^ l as 0<(l +λ)e~λS 1 for 2^0.
Now let {λi; i= 1,2,...} be the non-zero eigenvalues of B, with multiplicity

taken into account. Then

i=ί

00 Ί

Ϊ Σ Ά =<
ι~1 J

Now let us consider the general case. Let P = χ(_00>0)(K), χ(-o0>0) being the
characteristic function of (—oo,0), and let K_ = —KP, K+=K(l—P). Then
K+,K_ are positive, self-adjoint, Hilbert-Schmidt, K = K+—K^, and K+ and
K_ commute. Hence Idet^ l+K)!^ 2 1 1 *-"^.

Since K = A-B, we have that K_ = -PKP<,PBP as PAP^O. Using

Lemma 3.4. Let A, B be self-adjoint Hilbert-Schmidt operators such that Qi^A^B.
Then \\A\\2^\\B\\2. Π
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Proof. B = Λ + C, where C^O, self-adjoint, Hilbert-Schmidt. Then B2 = A2

+ AC + CA + C2, so ||JB||! = TrB 2 = ΎrA2 + TrC2 + 2TrAC = ΊvA2 + TrC2

+ 2Tτ{Cίl2ACll2)^ΎrA2=\\A\\2. ϋ

We now apply Lemma 3.3 to £ = G1/2jχi/2F''(φ)/G1/2)χi/2. Let F£ = F"vO,
F" = — (F"ΛO). Since F is a bounded below polynomial, so is F", hence VI is
bounded above.

Let B(φ) = G1/2>/i/2F"(φ)/G1/2)Xi/2. Then, as in (3.2), we conclude that
^ M ||/1| 2 for some constant M <αo independent of φ.

Thus Lemma 3.3 tells us that for μχ(φ) — a.e.φ,

independently of φ.
Thus J?3 χ (φ;/)
This concludes the proof of Theorem I.

4. Supersymmetries: Some Basic Facts

Supersymmetries are rotations of the "superspace" with "variables" (z, 0,0), where
z 6 RD and 0 and 0 are anticommuting "variables" (i.e., Θ2 = θ2 = ΘΘ + 00 = 0),
which preserve the supermetric z2 + (4/y)00 (e.g., [5, 7]).

In addition to the usual rotations in RD and symplectic transformations of 0
and 0, they include transformations of the type:

θ^θ + γb-zξ, (4.1)

θ-^θ-yb-zξ,

where b,beΈLD and ξ is an anticommuting "onumber" (ξ2

+ θξ = O). We will fix ξ and call the above transformation τ(b,b).
One way to make the above discussion rigorous is to consider a Grassman

algebra ^ 2 with t w o generators 0 and θ, and look at functions F: RZ )->^2 Since
^2 is a four-dimensional vector space with basis 1, 0, θ, and #0, such a function can
be written in a unique way as

F(z) = F0(z) + Fx(z)0 + F2(z)θ + F3(z)θθ,

where FjiR^-^C for f = 0,1,2,3. To emphasize that F takes values in the
Grassman algebra generated by θ and θ it will be useful to use the notation
F(z, θ, θ). In this connection it is suggestive to think of θ and θ as anticommuting
variables.

To define the action of supersymmetries on such functions F(z, 0,0) we need to
consider a bigger Grassman algebra ^ 3 with three generators 0, 0, and ξ, and
imbed ^ 2 in ̂ 3 in the obvious way. If we now consider H: IR1*—> 3̂, we can always
write H{z) = F(z, 0,0) + G(z, 0,0)ξ in a unique way, where F, G: R D ^ ^ 2 .

We will say that F: RD->0 2 is of class C1' ° if F o , F 1 ? F 2 are of class C1 and F 3 is
of class C°;H: R ^ ^ 3 is of class CUΌ if both F and G are.
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The action of supersymmetries on function of class C 1 ' 0 will now be defined.
The action of space rotations and pure symplectic transformations is obvious. The
action of the supersymmetry τφ, b) can now be defined from (4.1) by

where g: R D -+C is a function of class C1. Thus for F: R D - > ^ 2 of class C 1 ' 0 ,

(τ(b, b)F)(z) = F(z, θ, θ) + l(yb zF\(z) -yb zF2(z))

z) b-VF2(z) F)ΰff]ξ. (4.2)

We will say that F(z, θ, θ) is supersymmetric if it is left invariant by all
supersymmetries.

Proposition. Let F(z,θ,θ) be of class C 0 ) 1 . The following are equivalent:
(i) F{z, θ, θ) is supersymmetric.

(ii) F(z, θ, 9) is left invariant by τφ,b) for all b,beIRΛ
(iii) F1(z) = F2(z) = 0,and

(2/y)V F0(z) = zF3(z). (4.3)

(iv) There exists a function /:[0,oo)->C of class Cι such that F(z,θ,B)
=f(z2 + (4/7)09) = f(z2) + (4/y)f\z2)θθ. D

Proof, (ii) => (iii):
If (ii) holds, the term in ξ of the right-hand-side of (4.2) must be zero for all

b, F G R D . We can immediately conclude (iii). (iii) => (iv):
(4.3) implies that F0(z) is a function only of |z|, hence we can write F0(z) =f(z2)

for a function / : [0, oo)—>IR. Since Fo is of class C1 and F3 is of class C°? it can be
shown from (4.3) that / is of class C1 and F3(z) = (4/y)f\z2).

Since (i) >̂ (ii) is obvious and (iv) =̂> (i) is easy to see this concludes the
proof. D

Following [13], we define integration over anticommuting variables by:

z, θ, θ)dθdθ= -F3(z), Jf(z, θ, θ)ξdθdθ= -F3(z)ξ.

Thus the integration is defined simply as a linear functional on ^ 2 or $3.
We will say that F(z, θ, θ) of class C 1 ' 0 is integrable if FQ, VF0, Fl9 VFl9 F2,

VF2, F3 are integrable. For such functions we can define

z, 0, θ)dθdθdz = \\JF{z, 0, θ)dθdθ-]dz = J[jF(z, 0, θ)dz-]dθdθ.

Proposition 4.2. 7Yze integration over z,θ,θ is supersymmetric, i.e., if F(z,θ,θ) is
integrable of class C 1 ' 0 , and τ is a supersymmetry, then

J τF{z, θ, θ)dθdθdz = f F(z, θ, θ)dθdθdz. D

Proof. The only non-obvious case is when τ = τ(b,b). Then

$F(z,θ,θ)dθdθdz= -\F3{z)dz,
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and

jτF(z, θ, θ)dθdθdz = - |F 3 (z)Jz-2J[P 7 F 1 (z) -b-VF2{z) F]dzξ.

But since Ft of class C 1 , Fb VF{e\}, we have that

)dz = 0 for i = l , 2 . D

The following lemma gave Parisi and Sourlas the dimensional reduction order
by order in perturbation theory. Notice that it explains why the reduction is of two
dimensions.

Lemma 4.3 [5]. Let F(y, θ, θ) be a supersymmetric integrable function of class C 1 ' 0 ,
where y e ΊR2. Then

\F(y, θ, θ)dθdθdy = (4π/y)F0(0) •

Proof. By Proposition 4.1,

F(y,θ,θ)=f(y2 + (4/γ)θθ),

where / : [0, oo)->(C of class C1. Since F is integrable and F0(y)=f(y2), we have
that lim/(ί) = 0.

ί->00

Thus

\F{y,θ,U)dBdθdy= -(4/γ)if'(y2)dy= - ( 8 π
0

•
Remark. Let z = (u,v), where we]RD~k, i elRΛ The above analysis applies to
functions F(u, v, θ9 θ) that are supersymmetric in the v9 θ, θ variables. In particular
Proposition 4.1 says if F(M, V, θ, θ) is supersymmetric in υ, θ, θ, then (2/γ)VυF0(z)
= vF3(z\ and there exists a function / : ΈίD~k x [0, oo)->C such that F(u, v, θ, θ)

Of particular interest for us will be the case z = (x, j;) with x e ΊR0 ~2,ye 1R2, and
the supersymmetry is in the y, 0, θ variables. In this case Lemma 4.3 tells us that if
JF(X? y, θ, θ) is supersymmetric in y, θ, θ, then

ί F(x, y, 0, θ)dθdθdydx = (4π/y) J F 0(x, 0)dx. D

msion of the previous results to disti
d in the usual way by the formal f

T(F) = j T(z, θ, θ)F(z, θ, θ)dθdθdz.

We will need an extension of the previous results to distributions. Distributions
T(z, θ, θ) can be defined in the usual way by the formal formula

Let us write

T(z, θ, θ) = T0(z) + 7ί(z)0 + T2(z)θ + T3(z)θθ,

where To, Tu T4? T3 are distributions in z. Then

T(F) = T3(F0) - T0(F3) + TX{F2) - T2{FX).

If τ is a supersymmetry, its action on distributions is defined in the usual way.
We will say that T(z, θ, θ) is a supersymmetric distribution if for all
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supersymmetries τ we have T(τF) = T(F) for all functions F(z, 0, 0) in the domain
of definition of T(z, 0, 0). Notice that

T(τ(b, b)F) = T(F) + [T3(yb zFJ - T3(γb zF2)

+ Tx(γb z F 3 ) + 2T2(VF0 b) - T2(yb zF3y]ξ . (4.4)

Proposition 4.4. A distribution T(u, v, 0, 0) is super symmetric in v, θ,θίf and only if

T(μ, v, θ, θ) = T0(μ, v) + T3(u, v)θ&,

where T0(w, v) and T3(w, v) are distributions invariant under rotations in v such that

(2/y)VvT0=-vT3. D

Proof. It follows from (4.4) that T(u, υ, θ, θ) is invariant under τ((0, b), (0,5)) for all
b,5"eR kif and only if

for all b,t>eWLk and all F0,Fl9F3 on RD .
Since T(w, υ, θ, θ) is invariant under symplectic transformations in θ, θ if and

only if 7\ = T2 =0, and is invariant under rotations in υ if and only if To, Tu T2, T3

are, the Proposition follows. Π

We will now prove the extension of Lemma 4.3 to distributions. We will state it
under the conditions we will actually use it, but more general conditions can be
easily given.

Lemma 4.5. Let T(x, y, θ, θ) be a distribution supersymmetric in y, 0,0, where y e R 2 ,
swc/z that

(i) T0(x, y) is a bounded continuous function.
(ii) |T3(gf)| ^ C(||gf | | ! 4- ||gf | |2) /or some constant C and all functions g: R D ->C of

class C 1 .
Then, if F(x, y, 0,0) is a function of class C 1 > 0 , supersymmetric in y, 0,0, wzί/i

F o G L1 nL2(RD, dz) and F3 e I}(RD, dz), we have

T(F) = (4π/y) j T0(x, 0)Fo(x, 0)dx. D

Proo/. From Proposition 4.4 we have that T(x, y, 0, 0) = T0(x, y) + T3(x, y)00 with

(4.5)

for all functions f̂ on R D of class C 1 such that F gr e L X (R^ dz), y^ e tinpQR0, dz).
Since F(x,y,θ,θ) is supersymmetric in y,θ,θ, F(x,y,θ,θ) = F0(x9y)

+ F3(x,y)θθwith

(2/y)VyF0(x,y) = yF3(x,y). (4.6)

Let e > 0, we have
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Thus

We now apply To to both sides and use (4.5) to get

T3(y\y2 + sy1Fo)^(4/y)TMy2+^r2Fo) + (Vy)To(y(y2+cr1 p a -

using (4.6) we get

T3(y\y2 + ε)-1F0)- T0(y\y2 + ε)" % ) = (4/?)Γ0(ε(y2 + β) - 2 F 0 ) .

Since as ε->0 y2(y2 + ε)~ * F 0-+F 0 in UCΛL2 and y2(y2 + ε)~ 1F3-+F3 in L\ we can
conclude from (i) and (ii) that

T(F) = T3(F0) - T0(F3) = (4/γ) lim T0(ε(y2 + ε)" 2F0). (4.7)

But

+ ε)" 2F0) = J T0(x? y)ε(y2 + ε)" 2 F 0 (x,

where h(y) = ί T0(x, y)F0(x, y)dx.
By Fubini, fc(y) is defined a.e. But since Fo is of class C1 with (4.6) holding with

F3 of class C°, it follows that ^ ( S ^ G L 1 ^ - 2 , ^ for all y e R 2 and h(y) is a
continuous function.

Since ε(y2-|-ε)~2-»π(5(};) in R 2 as ε-^0 and h(y) is a continuous function, we
conclude that

lim ί ε(j2 + ε)" 2h(y)dy - πh(0).
ε->0

Thus

= (4/y)ίT0(x,0)F0(x90)dx. D

5. Supersymmetric Free Field Theories

Let us consider an Euclidean free field φ(z) in D dimensions with two-point
function (i.e., covariance) (φ(z)φ(z')} = yS(z — z% where y>0.

S(z) is a rotation invariant tempered distribution which we will formally write
as

S(z) = s(z2). (5.1)

Recall that the n-point functions are given by (e.g., [11, 12])

where

Sn(zu...,zn) = 0 for nodd;

Sn(zu ...,zn) = ΣS(zh -zh)... S(zirn-ZjJ for n = 2m,
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where the sum is over all possible ways of writing 1,2, ...,2m as m distinct
(unordered) pairs (h jΊ) , . . . ,(ί m j m ). Thus

zx) ...φ(zn)}=y^2\((zi-zj)
2; i j = l , . . . , n , i<j), (5.3)

where sn is defined by (5.2) and (5.1).
A supersymmetric free field Φ(z, θ, θ) will be defined by the requirement that its

rc-point functions be supersymmetric counterparts of (5.3), i.e.,

/ J j «, ί<j), (5.4)

where {θhθi\ i = l , ...,n} are independent anticommuting variables.
In particular, we must have

(Φ(z, θ, θ)Φ(z\ θ', W)") = ys((z - z'f + (4/y) (θ- W){θ - θ')). (5.5)

If we write

Φ(z, 0, θ) = φ(z) + ψ(z)θ + θψ(z) + ω(z)θθ, (5.6)

(5.5) means

(5.7)

> = 0, (5.8)

(5.9)

<V>(z)v>(zO> = <φ(z)v5(zθ> = 0, (5.10)

<ω(z)ω(zO> = 0, (5.11)

ω(zθ> - <ω(z)φ(zθ> = -^{(z-zf) , (5.12)

<φ(z)ω(zθ> - <ω(z)V(z0> = <v(z)ω(zθ> = <ω(z)v(zθ> = 0. (5.13)

To satisfy (5.7)—(5.13) we may take ςo and ω to be commuting fields and ψ, ψ to
be anticommuting fields.

Before we can give a rigorous construction for the superfield Φ(z, θ, θ) by (5.6)
and (5.7)—(5.13) we must explain what we mean by S(z, θ, θ) = s(z2 + (4/y)θθ), since
s(z2) = S(z) is only a tempered distribution. What we need is a tempered
distribution S(z,θ,θ) which is a supersymmetric counterpart to S(z). By
Proposition 4.4 S(z, θ, θ) will have to be of the form S(z, θ, θ) - S(z) + (4/y)T(z)θU,
where Γ(z) is a rotation invariant tempered distribution such that

VS=-2zT. (5.14)

But a solution to (5.14) is not unique since zT=0 as tempered distributions only
implies that T is proportional to a delta function at zero.

In addition, the construction of the superfield requires a positive definite
solution for (5.14). The following lemma gives sufficient conditions.

Lemma 5.1. Let S(z) = Je ιq'zh(q2)dq, where h is a positive measurable function on
00

[0, oo) such that J h(r)dr <oo. Then (5.14) has a positive definite solution Sj(z)
o
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given by

S1(z) = a)$ei^g(q2)dq,

where

g(r)=]h(r/)dr/ for r^O. D
r

Proof. Notice that g is an absolutely continuous bounded positive function on
[0, oo) such that g\r)= — /z(r)a.e. Thus

Vqg(q2) = 2qg\q2) = - 2qh{q2) a.e.

As tempered distributions,

Vβ{z) = \eiq'ziqh{q2)dq

Thus

is the desired positive definite solution to (5.14). D

We will now assume the hypothesis of the lemma and proceed to construct the
superfield. We define s\z2) = — S^z). By (5.7) we are justified in taking the original
Euclidean free field φ(z) as the scalar part of the superfield.

To satisfy (5.10) we take

where ρ(z), η(z) are identically distributed independent Gaussian generalized
processes; i.e., ρ(z), η(z) are Gaussian generalized processes will mean zero such
that (ρ(z)η(z')} = 0 and (ρ(z)ρ(z')} = (η(z)ηV)}.

Equation (5.12) tells us that η should be independent of φ, but

<φ(z)ρ(z')y=-4S'((Z-z')2). (5.15)

From Lemma 5.1, if s(z2) = \eiqzh(q2)dq, then -As'{z2) = \eiq zg{q2)dq, where
oo

g(f) = j" h(r')dr'. Thus (5.15) is satisfied if we take ρ(z) = (l/y)/( — Δ)φ{z), where l(r) is

a function on [0, oo) such that l(r)h(r) = g(r).
In this case (ρ(z)ρ(z'))=(l/y)L(z-z% where L{z) = leίqzl(k2)g{k2)dk.
Since we need <ρ(z)ρ(z')> to be a tempered distribution we must make

assumptions: We require I(k2)g(k2) to be a polynomially bounded function.
Under this condition ω(z) = ρ(z) + ίη(z) is defined satisfying (5.11) and (5.12).
To finish we must construct the anticommuting fields xp and ψ satisfying (5.9),

(5.10), (5.8), and (5.13). The last two conditions just say ψ and ψ are independent of
φ and η.

We will use Osterwalder and Schrader's method for constructing Euclidean
Fermi fields [14]. Let b*(z)5b(z) and d*{z),d(z) be two independent sets of
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anticommuting creation and annihilation operators:

{b(z), φ θ } ^ {Hz), d*(zθ} - {ft*(z), φ θ } = {*>*(*), d*(zθ} = 0,

such that

{b(z), b*(z')} = { φ ) , d*(z')} = - 4s'((z - z')2).

Define

ψ(z) = b*{z) + φ ) , ψ(z) = d*{z) - b{z).

Then

{ψ(z\ ψ(z^} = {ψ(zl ψW} - {ψ(z)9 W)} = 0.

Let Jf be the Fock Hubert space for the b*(z), b(z), d*(z), d(z), and let Ω be the
vacuum. Let (A} = (Ω, AΩ) for an operator A on Jf.

Then

Having defined the fields φ(z), ω(z), i/3(z), tp(z) satisfying (5.7)—(5.13) we can
define the superfield Φ(z, θ, θ) by (5.6). By construction we have (5.5). It turns out
that (5.4) also holds.

6. Supersymmetric Interactions

We now restrict ourselves to the case when φ(z) is the Euclidean free field in D
dimensions with covariance

<φ(z)φ(z0> = yG 2 + ε , χ (z-z0, (6.1)

where y,ε>0 and G2 + ε,χ(z) is given by (2.2).
G2+EtX(z) is not rotation invariant because of the χ-cutoff, but it is invariant

under rotations of the y variables. We can thus define

sε{x,y2) = G2+ε9X(x,y). (6.2)

The discussion of the last section is still valid and we can construct a superfield
Φ(z, θ, θ) with covariance

except that the expectation functions of the superfield are now only invariant with
respect to supersymmetries in the y, 0, θ variables.

From now on supersymmetry will mean supersymmetries in the y, 0,0
variables.
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If we let s'ε(x, y2)= -^-sε(x9 r)\r=y*> it follows from Lemma 5.1 that

Thus the superfield

Φ(z, θ9 θ) = φ(z) + ψ(z)θ + θψ(z) + θθω(z)

is defined with φ(z) given by (6.1),

<φ(z)φ(z0> = ( l+β)- 1 G 1 + ε, /(z-z0, (6.3)

and

ω(z) - [y(l + ε)] ~ \ - A + m2)φ(z) + w/(z),

where
2G ε, χ(z-z0. (6.4)

The reason for introducing the extra cutoff ε is that G1+εχ{0) is finite for ε > 0 so
φ(z), φ(z) are bounded operators and we can avoid technical difficulties when
integrating over anticommuting variables.

The precise form of the cutoff comes from requiring l( — A) (defined in Sect. 5) to
be equal to — A + m2 up to multiplication by a constant. This is needed so we can
use the proof of the integrability of ^2,χ{ψ\f) °f Sect. 3.

In Sect. 8 we will let ε->0 to obtain Theorem II.
Let us recall some facts about anticommuting fields. We have

| |φ(z)| |^[2(l+β)-1G1 + ε 5 ; ((0)]1/2

Ξα<(X), (6.5)

where α depends on ε and χ; || || is the operator norm in the Fock Hubert space jf.
Moreover, z~>ψ(z) is a continuous function in the operator norm topology, we
actually have

Those results and estimates also hold for φ(z). Thus, if )
Jψ(z)ψ(z)g(z)dz is well defined as a bounded operator on jf, and

\\iψ(z)xp(z)g(z)dz\\^2\\g\\1. (6.6)

We can thus define exp{— $ψ(z)ψ(z)g(z)dz} as a bounded operator on Jf, and

||exp{-ίφ(z)φ(zMz)dz}|| ^ e x p ί α ^ U J . (6.7)

We recall that ([13] for the finite dimensional case; the extension to the present
case is straightforward since all operators are bounded)

K z ) ^ (6.8)

where as before we denote by Gs χ the operator with kernel Gs χ(z — z'). Notice that

so the determinant is well defined.
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We are now ready to define polynomials in the superfield. Let P be a
polynomial in one variable. Then

P(Φ(z, θ, θ)) = P(φ(z)) + P\φ(z))ψ(z)θ + P'(φ(z))θψ(z)

)ω(z) + P\φ(z))ψ{z)ψ{z)-]θθ.

All the terms are well defined as they stand except for the term involving ω(z)
which must be defined in the distributional sense.

So let F(z,θ9ΰ) = F0(z) + F1(z)θ + F2(z)ff+F3(z)ΰθ, and

z, θ, θ))F(z, θ, θ)dθdθdz

= ί P\φ(z))ω(z)F0(z)dz + J P\φ{z))xp(z)xp(z)F*0(z)dz

z)dz. (6.9)

We will use U norms in the commutative variables and operator norms in the
anticommuting variables. Our independent commutative variables are φ and η, let
(g, dλ(φ, η)) be the underlying probability space. Let ^(jf) the Banach space of
bounded operator on jf. We will define P(Φ, F) as an element of Lf(Q, &(tf)\ dλ)
for 1 <,p< oo. From (6.8), (6.1), (6.3), (6.4), (6.5), (6.6), it follows that it suffices to
require Foeϋrλl}, Fί,F2,F3eL1, and that

(6.10)
for some finite constant C that depends only on P, p, and ε (y, m2, χ, etc. being
fixed). If F is supersymmetric, it follows from Proposition 4.1 that F(z,θ,θ)
=f(x,y2 + (4/γ)θθ), where f(x,y)=f(x,y2) = F0(x,y), and f'(x,y)

δ ~
= γj(x,t)\t=y2 In this case we will write P(Φ,f) for P(Φ,F), and

P(Φ,f) = j P'(φ(z))ω(z)f(z)dz + f P"(φ(z))ψ(z)ψ(z)/(z)ί/z - (4/y) j P{ψ{z))f\z)dz.

Thus
e)]" f ί ( -

+ if P'(φ(z))η(z)f(z)dz + J P"(φ(z))ψ(z)ψ(z)f(z)dz

-{4ly)\P{φ{z))f\z)dz. (6.11)

Let now F be a bounded below polynomial of degree δ and / a m2δ-
appropriate space cutoff as in Theorem I. Let us consider the function e~F(φ>/>.
Then

+ (4/y) J P(φ(z))f'(z)dz + a2 j \P"(φ(z))\f(z)dz} = r(φ f) .

By the methods of Sect. 3, Ψ~(φ,f) is in all If for 1 ^ p
For a function Γ(Φ) of the superfield let (Γ(Φ)}=$(Ω, Γ(Φ)Ω)dλ(φ, η). We will

be concerned with expectations of the form <Γ(Φ)e~F(Φi/)>. Notice that

\\p\\n<P,f)\\p-
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7. The Dimensional Reduction for Supersymmetric Theories

We keep the framework of Sect. 6. In particular, supersymmetries act only on the
y, θ, θ variables and leave the x variables fixed. Thus any function of φ(x, 0)
is supersymmetric.

Theorem III. Let Φ(z, θ, θ) be the superfίeld defined in Sect. 6 and let Vbea bounded
below polynomial of degree δ and f a m2δ-appropriate space cutoff as in Theorem I.
Let Γ(Φ) be a function of the superfield which is left invariant by all supersymmetries
in y,0,U9 such that \\Γ(Φ)\\ sUQ for some po>l. Then

<Γ(Φ) exp { - 1 V(Φ(z, θ, θ))f(x, y2 + (4/y)θθ)dθdθdz} >

= <Γ(Φ)exp{-(4π/7)ί F(φ(x,0))/(x,0)dx}> . D (7.1)

Proof. Let

V{ΦJ) = J V(Φ(z, θ, 0))/(x, y2 + (4/y)θθ)dθdθdz,

V(φ9f) = ίV(φ(x90))f(x90)dx.

For 0 ̂  s ̂  1 and any function G(Φ) let

{G(Φ)}S = <G(Φ)Γ(Φ) exp{ - ( 1 -s)V(Φ,/)-s(4π/y)V(φJ)}> .

This is well defined if \\G(Φ)\\ eLqo for some 1 <q0 such that — + — < 1.
Po Qo

We define g(s) = {l}s. To prove the theorem we must show that g(0) = g(l).
Since ||Γ(Φ)||eL">withpo>l and \\V(Φ9f)\\, V{φJ), and | |exp{-(l-s)F(ΦJ)
— s(4π/y)V(φ,f)}\\ are in all IP for l^p<oo, we can differentiate under the
expectation and get

g\s) = {V(ΦJ)}s-(4/y){V(φJ)}s. (7.2)

We will use Lemma 4.5 to conclude that g'(s) = 0 for all 0 ^ 5 ^ 1 and hence that

0(0) = 0(1).
Let us consider the distribution T(z,θ,θ) given by T(F) = {V(Φ,F)}S, where

F(z, θ, θ) has Fo G ϋr\l} and FUF29 F3 e L1. T(F) is well defined and a bound like
(6.10) holds.

Moreover, since V(Φ9f) and Γ(Φ) are supersymmetric in y, θ, θ, it follows from
the supersymmetry of the expectations of the superfield Φ that Γis supersymmetric
in y, θ, θ. Thus, we have from Proposition 4.4 that T(F) = T3(F0)-T0(F3), and it
follows from the (ό.lθ)-like estimate that |Γ(F)| = C ( | | F 0 | | 1 + | | F 0 | | 2 + IIF3II1), for
some finite constant C.

Moreover, from (6.9) we have that

T0(F3) = {f V(φ(z))F3(z)dz}s = J { V(φ(z))}sF3(z)dz,

since V(φ(z)) is a bounded continuous function of z e R u with values in IP for
1 ^p< 00. Thus To is given by a bounded continuous function T0(z) = {V(φ(z))}s.

We can now apply Lemma 4.5 to T and to the function /(x, y2 + (4/y)θθ) to
conclude that

{V(ΦJ)}S = (4π/y)J {V(φ(x9 0))}s/(

Thus it follows from (7.2) that #'(s) = 0. D
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8. Proof of Theorem II

Let φ(z) be the Euclidean free field in D dimensions with covariance given by
(6.1); we will denote by dμχε(φ) its probability distribution.

For such φ(z) we constructed the corresponding superfield Φ(z, θ, θ) and
proved Theorem III. If we now take Γ(Φ) to be some function of {φ(x, 0);
x e R D " 2 } [e.g., φ(x 1 ? θ). . . φ(xn,0)] which we will write Γ(φ( ,0)) we can rewrite
both sides of (7.1) as functional integrals over φ.

We have

- / j VXφ(z))η(z)f(z)dz - J V\φ(z))ψ{z)ψ(z)f{z)dz + (4/y)f V(φ(z))f'(z)dz}}

+ (4/y) J K(φ(z))/'(z)dz} <exp { - ί j F(φ(z))^(z)/(z) dz} }η

• (Ω, exp { - j V"(φ(z))ψ(zMz)f(z)dz}Ω))φ.

But since VXφ(z))f(z)eL2 for μχ>ε(φ) — a.e. φ, we get from (6.4) that

<exp{ - i\ VXφ(z))η(z)f(z)dz}yη

= exp{-(2yΓx(l +β)~2JJ VXφ(z))VXφ(z'))f(z)f(z')GεJz-z')dzdz'} .

From (6.8), we get

(Ω, exp { - f FXφ

for μχε(φ) — a,.G.φ. Thus

where

Jtχ,e(φ f) = exp {(4/y) J V(φ(z))f'(z)dz}^ c(φ / ) ,

1 J ( - J +m2)φ(z)V'(φ(z))f(z)dz}

Now let us rewrite the right-hand-side of (7.1). From (6.1), (2.2), (2.4), we get by a
simple integration that

(φ(x, 0)φ(x', 0)> = (y/4π)iίx + < > z ( x - x ' ) .

Thus let φ(x) = φ(x, 0), and let dvχε{φ) be its probability distribution. Then

<Γ(φ( , 0))e " <4»/">"<*. />> = I r ( 0 exp {- (4π/y) J V(φ(x))f(x, 0)dx}dvχM.

Thus Theorem III says that

jΓ(φ(•, 0 ) ) ^ , ε ( Φ f)dμXtε(φ) = f Γ(^) exp {- (4π/y)f V(φ(x))f(x, 0)dx}dvχ,ε(φ).

(8.1)
To get Theorem II we need only to let ε->0.
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To do this let us fix the Gaussian generalized process {φ(z); zeTR.D} with
covariance (φ(z)φ(z')y = yG2 χ(z — z'). Its probability distribution is dμχ(φ). Let
φε(z) = [_(-A +m2yεl2φ](z). Then

ί φε(z)φε(z/)dμχ(φ) = γG2 + Ef χ(z - z')

i.e., the probability distribution of φε is dμχε. Thus the left-hand-side of (8.1) is
equal to

Similarly, let {φ(x\xelRD~2} be the Gaussian generalized process with
covariance <κφ{x)φ(x/)y = {yl4π)H1 χ{x — x'). Its probability distribution is dvχ(φ).
Define φε(x) = ί(-A +m2y^(x). Then $φε(x)φε(x')dvx(φ) = (4π/γ)Hί+ε,χ(φ);
i.e., the probability distribution of φε is dvχε. The right-hand-side of (8.1) is thus
equal to

J Γ(φε) exp [ - (4π/y)J V(φε(x))f(x9 0)dx}dvχ(φ).

Thus (8.1) can be rewritten as

J Γ ( φ e ( ^ 0 ) ) ^ , ^

(8.2)

Now, let Γ(φB( , 0)) be such that Γ(φε( , 0)) -> Γ(φ( , 0)) in some If(dμχ(φ)) with 1 < p,
e.g., Γ(φε( , 0 ) ) - φ ε ( x 1 ? 0 ) . . . <pβ(xB,0). By standard methods (e.g., [11, 12])

exp {- (4π/y)J V(φe(x))f(x, 0)dx} -^exp {(- 4π/y)| F(^(

in LP(dvχ(φ)) as ε->0 for all 1 ̂ p< oo.
We can break down ^ ε ( φ ε ; / ) as

\,zΛrJWχ,UvJ) (8.3)
in the same way as in Sect. 3. Again standard methods as used in Sect. 3 (e.g.,
[11, 12]) give convergence in LP(dμχ(φ)) as ε->0,1 rg p < oo, of each factor in (8.3) to
the similar factor without the ε. Thus we can conclude that $χ>ε(φε; /)-» J^ χ(φ; / )
in If(dμχ(φ)) as ε->0, for all 1 ̂ p < oo.

We can now take the limit as ε->0 in (8.2) to obtain

ίφ(x 1 ? θ) ... φ(xn,0)&χ(φ;f)dμx(φ)

= jφ{xι)... φ(xn) exp{ — (4π/y)J V(φ(x))f(x, 0)dx}dvχ(φ).

This completes the proof of Theorem II.
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