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Abstract. A mechanism is illustrated which can cause a torus to disappear in
dissipative differential equations. Three different examples give evidence that a
collision with a neighbouring unstable periodic orbit, possibly preceded by a
transition into a weakly chaotic attractor, causes the sudden destruction of a
torus.

1. Introduction

An open problem in dissipative dynamical systems is a satisfactory understanding
of the different possible transitions away from quasiperiodic flow on a two-torus.
Those transitions which lead to a turbulent flow on a strange attractor are of
particular interest.

In a fundamental paper by Ruelle and Takens [1], a theoretical study of
differential equations shows that a quasiperiodic motion with two independent
frequencies, when followed by one with three independent frequencies, leads under
generic conditions to the appearance of a strange attractor. Support of this
mechanism for turbulence has been found experimentally by Gollub and Benson
[2] and numerically by Yahata [3]. There are also, however, examples of
transitions from a two-torus directly to a strange attractor. This has been observed
in experiments (see, for example, again [2]) and, with different features, in a
number of numerical studies of nonlinear differential equations. Curry [4] has
found two symmetrically located tori which become unstable and give rise to a
wide chaotic attractor surrounding them both. Arneodo et al. [5] and
Franceschini [6] have shown that chaos can be preceded by a cascade, possibly
finite, of period-doublings of a torus. Schreiber and Marek [7] have given an
example in which a torus becomes a strange attractor producing some kind of
foldings or wrinkles. Riela [8] has exhibited a picture showing a torus which, quite
evidently on a section, disappears after development of corners.

Other approaches to the problem are possible. Shenker [9], Feigenbaum et al.
[10], and Rand et al. [11, 12] have considered mappings of the circle into itself.
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Their theoretical analysis is based on renormalization group techniques, already
successfully used to explain Feigenbaum period-doubling onset of turbulence
[13]. Chenciner and Iooss [14] have provided a set of theorems which concern
bifurcations of tori, though in non-generic circumstances. Curry and Yorke [15]
have studied numerically maps of the plane which exhibit bifurcations from an
invariant circle. Maps of the same kind have been investigated also by Aronson et
al. [16] through a combination of computer experiment and mathematical theory.

In any case, both theoretical and phenomenological analyses appear still quite
incomplete. Here we describe an interesting mechanism which can lead to the
destruction of a torus in a system of differential equations. As an external
parameter varies, the torus grows in size and approaches a neighbouring unstable
periodic orbit. The process causes the torus first to break down becoming a weakly
chaotic attractor, then rapidly to disappear because of the collision with the orbit.
Grebogi et al. [17, 18] have called such a phenomenon of destruction of a strange
attractor a “crisis.” A detailed numerical investigation of the behavior of two
distinct tori in a 12-mode truncation of the planar Navier-Stokes equations sheds
some light on the transition torus-strange attractor and stresses the importance of
the mechanism of crisis in connection with tori. Furthermore, evidence is given for
the fact that also in ref. [8] a collision with two symmetric unstable periodic orbits
is responsible for the disappearance of the torus.

2. A Model of Differential Equations
We consider the following system of first-order non-linear differential equations:
X1=—X1+5%x,(x3 +x4)—3]ﬁ(x3x7 +X4X 10+ XgX 11+ XoX17)
+]/Ex6(x8+x9) ,
Xp=—X,—5x,(x3+Xx,4)— 3[ﬁ(x3x8 — X4Xo+X7X11 —X10X12)
+1/10x5(x10—X7),
X3=—2x; —I—4[/§(x1x7 +X,Xg)— 5[/§x4(x5 +X¢)
Xg= —2x4+4)/50x, %10 XX) + 5]/ 2x3(x5 + Xe) »
Xs=—4x5+4]/10x,(x7 —x10)+ 10x6(x11 —X13),
Xe=—4xs—4]/10x (x5 +Xxg)+10x5(x1, —X11),
X;=—5x, —[/§(x1x3 —Tx,X11)— 3]/Ex2x5 —2ﬂx6x10 +9x,xg, (1)
Xg= —15xg —[ﬁ(xzx3 —Tx1x11)+ ?a]/mxlx5 + 2]/§x5x9 —9x,4%7,
Xg=—5xg+ Vg(xzx4 +7x1%12)+ 3]/Ex1x6 —2]/§x5x8 +9x3%,0+R,
X10=—15X10 —]/g(xlx4 +7x,%1,)+ 3mx2x5 + 2]/§x6x7 —9%3%,,
X11=—8xy, —41/§(x1x8+x2x7),
Xip= —8x12—4]/§(x1x9—x2x10).
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Fig. 1. Sketch of the phenomenology described here and concerning system (1). The R-scale is only
roughly maintained. A continuous thick line represents a stable periodic orbit and a broken line an
unstable one. A hatched tube is used to represent a torus and stars indicate chaotic behavior. The
star at the end of the tubes means that the torus has evolved into a strange attractor before
disappearing. The two period-doubling cascades associated to the orbits Z, and Z, are supposed
to accumulate at R=49.71

This system is obtained through a 12-mode truncation of the Fourier-expansion
for the Navier-Stokes equations for an incompressible fluid on a two-dimensional
torus. The modes taken into account are k;=(0,1), k,=(1,0), k;=(1,1),
]_(4=(15 _1)9 k5=(0’2)9 k6=(2’ 0)9 k7=(192)> l_(8:(2’ 1)5 k9=(25 _1)5
kio=(1,-2),k1=(2,2), k;,=(2, —2). The external parameter R is the Reynolds
number. We refer to [6, 19, 20] for details on the derivation of the truncated
equations and for an exhaustive description of the numerical techniques useful to
investigate such systems. We report here only on the phenomenology associated
with tori. A complete picture of the model will be presented elsewhere.

Figure 1 represents a graphical summary of the phenomenology for the
parameter range we are interested in. A stable periodic orbit K, arising via Hopf
bifurcation, generates an attracting torus T'(K) for R~47.82. At R~45.77 a pair of
closed orbits W and W#*, the former stable, the latter unstable, appears as a
consequence of a tangent bifurcation. At R~48.71 W also produces an attracting
torus, T(W). Therefore, after this value of R two distinct tori coexist, each of them
with its own basin of attraction. For R~49.44 two new pairs of stable-unstable
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periodic orbits arise via tangent bifurcation, (Z;, Z¥), i=1,2'. At R=49.498 the
torus T(W), (or, more precisely, T(W) changed into a strange attractor) can be last
seen. T(W) disappears because of a collision with the unstable Z¥’s and gives its
basin of attraction to the stable Z;’s. These last orbits undergo a first period-
doubling bifurcation at R=~49.60 and a second one at R=~49.69. The sequence of
period-doublings, presumably infinite, leads to the formation of two symmetric
strange attractors. Their size grows until they merge, giving rise to what seems to
be a single strange attractor. As R increases further, it keeps growing and finally
disappears at R~ 50.33, colliding with the unstable periodic orbit W*. So the torus
T(K) remains the only attractor present. At R =50.709 also T(K) is destroyed; the
cause is again a crisis, again due to a collision with W*. For larger values of the
parameter, a wider strange attractor appears to be responsible for the whole
behavior of the system, except for possible short periodic windows.

3. Breaking of Tori and Crisis

Now, let us describe the details of the process which leads to the destruction of the
torus T(K). In order to follow the evolution of T(K) as R increases, we construct a
Poincar¢ map for the torus by intersecting the flow with the hyperplane
X1, = —1.1. Figure 2 shows a plane projection of 2000 points, together with the
three intersections of the periodic orbit W* with the same hyperplane, for R =50,
R=50.65,and R=150.708. The picture gives clear evidence of the fact that the torus
and the periodic orbit approach each other. As this happens the torus develops
three corners, each of them associated with an intersection of W*. These corners,
rather rounded at first, tend to become more pronounced as R approaches the
collision point. Figure 3, representing an enlargement of the same corner for
R=50.65 and R=50.708, illustrates what happens on a finer scale. While for
R =50.65 the section curve appears completely smooth, for R=50.708 it clearly
shows small foldings, with a point which tends to the intersection of the orbit
associated with that corner. Figure 4, representing a further enlargement of the
squared region of Fig. 3b, indicates an underlying complicated structure. Such a
structure, observed also at the other corners (Fig. 5) and, as far as we can see, only
there, gives evidence that for R = 50.708 the attractor is no longer a torus, but it has
become a strange attractor, even if weakly chaotic. This is confirmed by the
computation of the Liapunov exponents, one of which is positive. On the contrary,
for R=50.65 the two largest Liapunov exponents are both clearly zero, which
indicates we are still in the presence of a torus. We are not able to define exactly
when the breaking of the torus takes place. A detailed investigation of the Poincaré
section indicates that the attractor is still a torus at R=150.703, it is a 29-point
periodic cycle due to phase locking at R=50.704 and R=150.705, it is a strange
attractor at R=50.706. It is then likely that the torus breaks down while the
motion is phase-locked.

1 Theperiodic orbits Z, and Z,, as well as Z§ and Z%, are mutual images one of the other under
the symmetry which changes the sign of the coordinates x,, x5, x4, X, and x,,, and leaves
invariant the remaining ones. On the contrary, K and W, and then the associated W*, T(K) and
T(W), are left unchanged by application of the same symmetry
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Fig. 3. a Enlargement of the rightmost corner of Fig. 2b; b enlargement of the same corner of
Fig.2c after addition of 8000 more intersection points
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Fig. 5. Successive enlargements of the leftmost corner of Fig. 2c, also in this case after addition of
8000 extra points

As far as the torus T(W) is concerned, its evolution appears completely
analogous to that of T(K), though complicated by phase locking. Such an
evolution is displayed by Fig. 6, which shows the same Poincaré section for the
torus and the periodic orbits Z¥ for three different values of the parameter. Part a)
represents T(W) for R=49.30. Parts b) and c) depict T(W) for R=49.45 and
R =49.49, ie. respectively just after the appearance of the Z;’s and Z#’s and a little
before it disappears. The enlargements in Fig. 7 make striking the analogy with the
behavior of T(K). Also in this case a positive Liapunov exponent corroborates the
impression one gets by looking at the foldings of the intersection curve: we are
dealing with a strange attractor. On the other hand, for R=49.403, T(W)is still a
torus because the two largest Liapunov exponents are both zero. This gives further
evidence of the role played by the appearance of neighbouring unstable periodic
orbits in the transition torus-strange attractor. As said before, a complication in
following T(W) during its evolution is the appearance on it of periodic orbits due
to phase locking. We find orbits of period 175, 17, and 23, the period being the
number of distinct intersections with a Poincaré section. Period 175 is found for
R =49.400, period 17 in the parameter range (49.408, 49.447), and period 23 exists
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Fig. 6a—c. Plane projection of 2000 points of a
Poincaré section for the torus T(W) relative to the
hyperplane x, =0 for a R=49.30, b R =49.45, and
¢ R=49.49. The symbols + and x are used to
represent the three intersections of Z¥ and Z%
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Fig. 7a and b. Enlargement of the lower right corner of a Fig.6b and b Fig. 6¢c



324 V. Franceschini and C. Tebaldi

< R=49.900 < R=50.330
ok g S g
o ’/;" o
//
e
e + pubieia NS '
S w5 e
- / / ) _ £
% : / =
. L
I
St
~ e
o \&. o
M el
oL N o -
oL . Q
1 L
a-1.020 X5 ~0.720 p ~1-020 X5 -0.720

Fig. 8a and b. Plane projection of 2000 intersection points for the strange attractor present at
a R=49.90 and b R =50.33. The hyperplane for the Poincaré map is x,, = — 1.1. Differently from
T(K), the strange attractor has three distinct sections with this hyperplane. The three crosses
represent the intersections of the unstable periodic orbit W*

first for R=49.468 and then in the range (49.499, 49.503). For values of R larger
than 49.503 no trace of T(W) can be found. We remark that in this case both
breaking of the torus and disappearance of the strange attractor seem to occur
while the motion is phase-locked. Furthermore, we notice that for R >49.45 phase
locking takes place on a strange attractor. This feature is not uncommon and has
been previously observed in [6].

A third event of crisis is responsible for the disappearance of the strange
attractor which follows the sequence of period-doublings related to the periodic
orbits Z,. Figure 8 gives evidence for the approach of the strange attractor to the
unstable periodic orbit W*. This provides a clear example of a crisis in differential
equations completely in line with [17,18]. The two cases previously described
have instead the peculiarity of being essentially crises of tori. In fact they are
associated with a strange attractor which has just arisen from a torus and
substantially retains its geometrical shape.

Two kinds of crisis are discussed in [ 17, 18]: interior crisis and boundary crisis.
The former takes place when the collision occurs within the basin of attraction, the
latter when the unstable orbit is on the boundary of the basin. All our three crises
are boundary crises. We have numerical evidence that the stable manifold of the
unstable orbit W* separates the basin of attraction of T(K) from that of the
coexisting attractors (see Fig. 1)>. Analogously, the stable manifolds of the Z¥’s
divide the basin of attraction of T(W) from the ones of the coexisting Z,’s. This
analysis, besides providing a better definition of our crises, completes the
description of the whole phenomenology of the system in the range of interest here.

2 Astable periodic orbit coexists with T(K) when it disappears. This orbit has a long period and
is present in a narrow parameter range around 50.708. The stable manifold of W* separates the
basins of the two attractors. Just after the disappearance of T(K), the periodic orbit undergoes
period-doubling and leads to a strange attractor
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4. Another Example
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We have also considered the 6-mode truncation of the Navier-Stokes equations
studied by Riela in [8]. The system of differential equations considered there is the

following:

Xy =—2x; +4x,x3 +4x,X5,

Xy=—9x,+3x.x3,

X3=—5x3—Txx,+R,

)

X4=—5X4,—X{X5,

Xs= —x5—3x1x4+1ﬁx1x6,
Xo= —x6—]/§x1x5.

The motivation for further investigation of this model is given by a comparison
of Fig. 2 in [8] with ours, suggesting that the process leading the torus to disappear
is analogous. Evidence of this fact is given in Fig. 9, where a section of the torus is
represented together with two neighbouring unstable periodic orbits. These orbits,
which are symmetric with respect to the torus, arise via tangent bifurcation for R
~90.95 at the same time as the two stable periodic orbits observed in [8] to coexist
with the torus until, at R=~91.062, it disappears. The absence of foldings in the
intersection curve and, more conclusively, the Liapunov exponents, indicate that
the torus disappears without evolving into a strange attractor. Although we
cannot exclude a strange attractor on a practically undetectable scale or in a very
narrow range of the parameter, the fact seems to represent a remarkable difference

with the two cases in our system.

5. Return Maps

R=91.061
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Fig. 9. Plane projection of a 1000-point section for
the torus of system (2) for R=91.061, ie. just
before its disappearance. As in [8] the hyperplane
for the Poincaré map is x,=1.6. The symbols +
and x represent the intersections of the two
symmetric unstable periodic orbits responsible for
the crisis

The dynamics on a torus can be studied also through a return map, that is a map of
the circle into itself. To construct such a map, we parametrize the closed curve y,
intersection of the torus with the hyperplane of the Poincaré map, by a curvilinear
coordinate s, 0<s<1, and to each s we associate the abscissa M(s) according to
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the Poincaré map. As long as the torus exists and is smooth, the return map is
invertible and smooth. If, in some way, the torus breaks down, the return map must
develop an inflection point or a singularity (see, for example, Gallavotti [21]).

From the computational point of view, the problem of constructing a return
map lies in the parametrization of a closed curve y known in a set of points {P,},
k=1, ..., N, which are not ordered with respect to a fixed way of running along y.
Our algorithm to put theP,’s in order is the following. First of all, to each P, we
associate an angle 0, 0<0=<2=n, by considering a plane projection of y and a
reference point interior to it. This induces immediately an order. Let us rename
{0,} the sequence of the points ordered with increasing angles. However, if the
projection we used is not a well-shaped closed curve, i.e. without loops or foldings,
such an order is incorrect. So, we always proceed to reorder the Q,’s through a
second step. Let 6, be the angular coordinate of @, and M a suitable integer with
M < N. Among the points Q,, Qs, ..., Q{4+ We look for that having the least
euclidean distance from Q. If this point is different from Q,, we exchange it with
Q,. Then we consider Q5, Q, ..., Q, 1, and we make Q5 to become the point with
least distance from Q,. And so on. If Q, was properly chosen and N is sufficiently
large, this criterium of minimum distance works and the sequence {Q,} at the end
represents the points in the right order. By putting s;,=0 and
§;=8;_1+d(Q;_1,Q)),i=2,...,N, d being the distance, we associate to each P, a
curvilinear coordinate. This provides, after normalization, the desired
parametrization of y.

We have studied return maps for all the three tori previously discussed, in the
cases of T(K) and the torus of system (2) with special care. Figure 10,
corresponding to T(K) at R=150.703, shows how one of these maps looks. A
feature, common to all cases, reflects the fact that the tori draw near periodic orbits.
As the collision point is approached, the maps behave as if they tended to develop
periodic orbits with the same periodicity of the neighbouring unstable periodic
orbits. Evidence of this is given for T(K) in Fig. 11, representing the return map at
R =50, R=50.65, and R =50.703, this last being the largest value of R for which
T(K)isfound as a torus. If we look at the return map to try to understand the cause
of the breaking of T(K), nothing conclusive can be stated. A loss of smoothnessin a
few points seems to be a plausible cause. However one fact is clear: no well defined
inflection point is present.

M(s)

o e Fig. 10. Return map for T(K) at R =50.703
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Fig. 11a—c. Return maps for T(K), constructed by
using the third iterate of the Poincaré map, at
a R=50, bR=50.65, and ¢ R=50.703
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Fig. 12. a Return map, associated with the second iterate of the Poincaré map, for the torus of

system (2) at R=91.061. b Enlargement of the squared part ofa
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A further remark about this subject has to be made. As said before, in order to
construct a return map we must parametrize the closed curve y. After the breaking
of the torus, the section of the attractor is no longer a closed curve. So, also the
parametrization is no longer possible. In practice, however, we parametrize a finite
set of intersection points. As long as the points seem to belong to a closed curve, the
parametrization and the associated return map we get are reliable. On the
contrary, if the points do not lie on a closed curve, either for some reason we do not
succeed in obtaining a parametrization, or we obtain a meaningless one with a
return map which is expected to be clearly non one-to-one. Hence, the return map
can be used also to establish whether an attractor is a torus or not. In agreement
with this, the parametrization of the section of T(K) fails at R =50.706 and, as far
as the torus of system (2) is concerned, every return map turns out to be invertible
and smooth up to R=91.061 (Fig. 12). In our opinion the use of return maps to
distinguish between tori and weakly chaotic attractors bifurcated from tori is more
efficient and requires less computer time than the use of the Liapunov exponents.
In fact, as it is well known, near a bifurcation point the Liapunov exponents
converge very slowly and it is often impossible to establish whether any of them is
zero or very small.

6. Conclusion

To conclude, let us make some more comments about the results of our numerical
investigation. We have described in details, as much as we have been able, two
interesting phenomena: a transition torus-strange attractor and the disappearance
of an attractor by crisis.

Concerning the latter phenomenon, we have given strong evidence for its
occurrence in differential equations, to our knowledge for the first time in more
than three dimensions. However, the fact which appears more relevant is a strict
connection of events like crisis with tori. We have provided two different examples
in which a weakly chaotic attractor, just arisen from a torus in consequence of its
breaking, is destroyed by the collision with an unstable periodic orbit. A third
example shows that even a torus can disappear in the same way.

We have illustrated two phenomena of breaking of a torus. Our analysis
suggests three hypotheses, which seem to hold in both cases: i) the breaking is
strictly connected to the presence of nearby unstable periodic orbits; ii) the
breaking occurs when the flow on the torus is phase-locked; iii) the return map
constructed on the section curve of the torus becomes non-smooth, rather than
non-invertible. A transition torus-strange attractor with these characteristics
secems to be essentially only one possible step during a process which leads the
torus to destruction. In spite of this, we think that our phenomenology is
significant in a wider context and provides a further small contribution to the
understanding of the extremely complicated behavior of tori in dynamical systems.
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