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Abstract. We consider the quantum systems of interacting Bose particles
confined to a bounded region A of the configuration spaces Uv. For a class of
superstable interactions we obtain bounds on exponentials of local number
operators for any temperature and activity. The method we use is the Wiener
integral formalism in statistical mechanics. As a consequence any thermody-
namic limit states are entire analytic and locally normal in the CCR algebra. In
some cases these are modular states.

I. Introduction

In this paper we study a class of superstable interactions in quantum statistical
mechanics with Bose-Einstein statistics. There have been extensive studies on the
thermodynamic limit in statistical mechanics of interacting quantum systems and
fairly satisfactory results have been obtained for the thermodynamic functions
[2,12]. The results concerning the equilibrium states for such systems are less
satisfactory. In the dilute regime, detailed properties of the thermodynamic limit
states have been obtained for various classes of interactions [2-4,6,15]. There
are also some results on the thermodynamic limits of the finite volume Gibbs
states of interacting Bose particles for the charge conjugation invariant systems
[5] and for the repulsive systems (with activity less than one) [1]. For the classical
systems with superstable interactions, Ruelle established uniform bounds of the
finite volume correlation functions [13]. Using the bounds he obtained various
results on the infinite volume equilibrium states and the pressure. The results have
been extended to unbounded classical spin systems [14,8]. The main purpose of
this paper is to extend Ruelle's results to quantum statistical mechanics for
interacting Bose particles. The method we develop can be extended easily to
unbounded quantum spin systems and will appear elsewhere [10].

We give a brief discussion of the main result. Let ρΛ be the Gibbs equilibrium
states for a system of interacting Bose particles confined to a bounded region A
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of the configuration space Uv and let NB be the local number operators for B c A.
We shall assume that the interaction between particles is given by a pair potential
Φ. Under the assumption that Φ satisfies one of the following conditions:

(1) Φ is a positive function with non-zero around the origin.
(2) There are constants yί,y2 and λ such that

where λ > 0 will depend on v (e.g. λ > 6 for v = 3), we then obtain the bound of
the form (v < 4 in case (2))

where A(B,a) depend only on the diameter of B and |α|. We will give the exact
definition of models, conditions on the interactions and the main result in Sect. II.
As a consequence of the bounds it will follow that any limit point p of the states
pΛ in the weak* topology is entire analytic and locally normal state on the CCR
algebra.

The basic ingredients of the method we use are the representation of the
partition function in terms of the Wiener integrals [2,6,7], and a modification of
Ruelle's method used for classical systems [13]. In comparison to the classical
systems, the quantum systems are much more difficult to handle. One has to solve
problems originated from

a) quantum statistics,
b) fluctuations of Wiener paths.

In order to control the above, we will use the fact that the Wiener measure of a
subset of the paths with large fluctuations is small. On the other hand, the system
behaves like classical on a subset of paths with small fluctuations. The basic idea
is a decomposition of the Wiener space Ωn of rc-paths into disjoint subsets. On
each subset we utilize the above observation to obtain uniform bounds. For the
details, see Sect. IV. 1-Sect. IV.4.

We wish to make a few remarks on merits and demerits of our method.
Remark, (a) Using our method (with some necessary modifications) one may be
able to get uniform bounds of other objects such as local perturbations of
Hamiltonians. These kinds of bounds are expected to be useful to investigate more
detailed properties of the systems.

(b) We were unable to obtain pointwise bounds on reduced density matrices.
By establishing decay properties one ought to be able to see whether the systems
do exhibit Bose-Einstein condensation. We believe that the method we use can
be extended to give these bounds.

(c) Because of technical reasons, we need additional assumptions in (2) ((2.2.2)
and (2.2.3) in Assumption A in Sect. II.2) more than superstability. These conditions
on the interactions seem to be optimal in our method. We would like to know
whether the additional assumptions (and the restriction v < 4) are necessary.

(d) The Wiener integral formalism we use seems to be inappropriate to handle
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the systems of interacting Fermi particles. These systems involve some negative
terms in the Wiener integral formalism [2,5,6]. Thus it would be nice to develop
a method in the pure operator approach, i.e., in the second quantization formalism.
The method should also given an answer to the problem in Remark (c).

We list the contents of the paper. In Sect. II. 1, we introduce notations and the
definition of models. We then list the assumptions on the interactions (Assumption
A and Assumption A') in Sect. Π.2. We also give some discussions on the
assumptions in the space dimensions v. In Sect. II.3, we give the main result
(Theorem II.3.1), and then we derive consequences from the main result such as
entire analyticity, locally normality and modularity of the thermodynamic limit
states (Theorem II.3.3 and Theorem II.3.4).

In Sect. IΠ.l we introduce the Wiener integral formalism in quantum statistical
mechanics. Some estimates on the Wiener measure are given in Sect. III.2. In
Sect. III.3 we introduce ideas of partial symmetry spaces which will be needed to
control quantum statistics later.

Section IV is devoted to the proof of the main result. The expansion method
used in this paper is developed in Sect. IV.l. We decomposed the space of n-Wiener
paths (trajectories) into disjoint subsets to expand the partition function. In
Sect. IV.2. We give the basic ideas how to obtain uniform bounds on each subset.
With an assumption of one estimate (Theorem IV.2.1) we prove the main theorem
in Sect. IV.3. Section IV.4 is devoted to establishing the basic estimate,
Theorem IV.2.1, in this paper. The additional assumptions more than superstability
on the interactions are needed to get the basic estimate.

Finally in Sect. V we give some discussion on the reason why conditions (2.2.2),
(2.2.3) and the restriction v < 4 for the potentials satisfying (2) seem to be optimal.

II. The Definition of Models and the Main Results

ILL Some Notations and Definitions

We first introduce the Hubert space, the Hamiltonian and the Gibbs equilibrium
states for systems of interacting particles, which satisfy Bose-Einstein statistics,
confined to a bounded open region A of the configuration space Uv. Let

#<ξ\Λ)= ®sL
2(Λ,d*x.) (2.1.1)

be the subspace of L2 (An, dnvx) formed by the totally symmetric functions of
n-variables x.eA. The associated Fock space

&M(Λ)= Θ ^\A) (2.1.2)

describes the states of an arbitrary number of particles. The total Hamiltonian is
given by

HΛ = Φ H i ' (2.1.3)
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in terms of the rc-particle Hamiltonian H^\ which has the form

H(T=-li^A,i + U((xn)), (2.1.4)

where AΛJ is the Laplacian in the variable x. with O-Dirichlet boundary condition
on the boundary dΛ of Λ, and the interaction energy of n particles at the point
(x)n = (xα, x2,..., xn) is given by

U((x)n)= Σ *(Xi-Xj),
1 î<ĵ n

where Φ is a two body potential between particles. If the interaction operator

satisfies the stability condition

U((x)n) ^ - Bn,

for all n and (x)neW\H^ is a self-adjoint operator on ̂ (Λ). Self-adjointness
of H^ ensures that the total Hamiltonian HΛ is a self-adjoint operator on ^{S\Λ)
[2,12].

Let B <= A be a bounded region in IRV. We define the local number operators

NB ϊ*ϊ\Λjl'(Xl > ->Xn)= Σ XB(Xi)Φ(Xl» » Xnl (2Λ'5)
i = 1

where χB is the characteristic function of B. We note that for any ψe^^iΛ),
NΛφ = «^. If the interaction is superstable in the sense that, if A is a cube of
sufficiently large volume and (xJeΛ, then

l/ίMJ^j^-Bn (2.1.6)

with 4̂, B > 0, then the partition function defined by

ΞΛ = Tr^s){Λ)(Qχpl-β(HΛ - μNΛ)) (2.1.7)

is bounded by 1 ̂ ΞΛ ^exp[α|Λ|] for all βe(0, oo) and μeU [6,12].

Therefore if the interaction is superstable, one may introduce the finite-volume

Gibbs states pΛ by

pΛ(A) = Ξ-' Tr^s)(Λ)(A e x p [ - β(HΛ - μNA)) (2.1.8)

for any bounded operator A on έF{s)(A\ and for any βe(0, oo), μeU.

II.2. The Assumptions on the Interactions

We now list the assumptions on the interactions. We shall assume that the
interaction between particles is given by a pair potential Φ:

n

U(x1,...,xn)=ΣΦ(xi-xJ),
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where Φ is a Lebesgue measurable function which satisfies Φ(x) = Φ( — x) and which
may take real values and the value + oo.

Let 0 <λeU. For every ΓGZ V we define a cube

Q(r) = {xeUv:(ri-^)λ^xi < {f +\)λ}. (2.2.1)

These cubes form a partition of Uv. If Xe(Uv)m, we let n(X, r) be the number of
points of the sequence X = (x1,...,xj which belong to Q(r).

Assumption A. (a) Strong Superstability: There exist A > 0, B > 0 such that if M is
a finite subset of Z v and

x l J . . . , x w e ( J Q(r), Ar = (x 1 , . . . ,xJ,

then

U(X) ^ Σ [ΛwCY, rK - Bn(X, r)] (2.2.2)

for p'(}t 2), which satisfies the inequality

p' — l v// + (2 — v)'
(223,

(b) Strong lower regularity: There is a positive decreasing function φ on (0, + oo)
such that

J oo, (2.2.4)
o

and for all xeU\

Assumption A''. Positivity: Φ is a positive measurable function with the property
that there exist constants c > 0 and d > 0 such that Φ(x) > c for |x| ^ d.

We give a brief discussion on the assumptions on Φ. Let Φ be of the form

Φ = Φ1 + Φ2, (2.2.5)

where Φx is a stable pair potential and Φ 2 is a positive function. If Φ2 is a continuous
function with Φ2(P) > 0, then the strong superstability condition (2.2.2) holds with
p' = 2. Moreover, if there exists d > 0 such that

Φ 2 ( x ) ^ | x Γ λ , i f | x | gd, (2.2.6)

then (2.2.2) holds with

p' = 1 + A/v. (2.2.7)

We refer to the references [12,13] for more detailed discussions on the super-stable
interactions. The inequality (2.2.3) came from the technical restrictions of our
method in the proof of the main result. Roughly speaking we need non-zero λ > 0
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in (2.2.6) if Φι =f= 0 in (2.2.5). An direct calculation shows that (2.2.3) implies

3 + χ/5
P > γ

p ' > 3 , v = 3.

Notice that the right-hand side of (2.2.3) decreases as v increasing. Thus we need
stronger superstability conditions for higher dimensional spaces. On the other
hand (2.2.4) implies that the attractive part of the potential should decay faster
than |x|~v~2. Thus the Lennard Jones type potentials

= a\x\-a-b\x\-β, a,b>0

satisfy Assumption A under appropriate restrictions on α and β. For instance,
α > 6 and α > β > 5 for v = 3. For pure repulsive potentials satisfying Assumption A'
one does not need any other restrictions. We will come back to the reason why
we need (2.2.3) in Sect. IV.4 and Sect. V.

11.3. The Main Result

We first give our main theorem :

Theorem Π.3.1. (a) Let the interaction satisfy Assumption A in Sect. 11.2. For given
βe(0, oo) and μeU, let ρΛ be the finite volume Gibbs state defined in (2.1.8) for the
interaction. Then for any B a A and oteU, there is a constant A(B, |α|) such that, if
v < 4 ,

p (glαlNB) < eMB,\a\)

holds, where A(B,\oc\) depends only on diam(β) and |α|.
(b) If the interaction satisfies Assumption A\ the same bound as the above holds

for any veN.
We will produce the proof of the above theorem in Sect. IV. Using the method

(with some modifications if necessary) of this paper, one may be able to get the
uniform bounds of other objects such as local perturbations of the interactions.
These kinds of bounds may be useful to analyze the properties of the models in
more detail. Because the proof of Theorem II.3.1. already involves considerable
complications we do not establish other bounds here.

We next consider some consequences of Theorem Π.3.1. We first establish the
following result:

Proposition II.3.2. Let Bi9ί=l92,..., k9 be subsets of A, Bt a A. There is a constant

c such that
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where N + (B) is the minimal number of the unit cubes which cover B.

Proof Let {Aitj} be the set of the disjoint half open unit cubes which covers Br Then

Thus

Using the abstract Holder's inequality for trace norms [11], commutativity of
local number operators and the cyclicity of the trace, we get

(2.3.2)
i=l / i=l

We now use the spectral theorem to obtain \\NAexp(— NA)\\ rgfc! (or one may
use the Cauchy integral formula for pΛ(ezNΔ). Thus it follows that

pΛ(Nk

A)^k\pΛ(exp(NA))^ckl (2.3.3)

by Theorem II.3.1. Applying (2.3.2) and (2.3.3) to (2.3.1) we proved the proposition.
We next discuss the thermodynamic limit of the finite volume Gibbs states pΛ.

We introduce the CCR algebra of the local observables. For the details we refer
to reference [2]. For feL2(A,dγx\ let a(f) and α(/)* be the annihilation and

creation operators defined on &{s\A\ Then Φ(f) = —p(α(/) + a(f)*), for real /,

has a self-adjoint extension, which we write again Φ(f). We write the Weyl operators
by W(f)=Qxp(iΦ(f)l and let <%(Λ) be the C*-algebra generated by the Weyl
operator W(f),feL2(Λ, dvx\ and let

AeU

be the quasi local CCR algebra in the sense of [2]. As a consequence of Proposition
II.3.2 we have:

Theorem II.3.3. Consider an interacting Bose particle for which the interaction

satisfies either Assumption A (with v < 4) or else Assumption A'. Let ρΛ denote the

finite volume Gibbs states for some βe(0, σo) and μeU, and let {pΛ } be a subnet such

that

p{A) = lim pΛa(A)
a

exist for all Ae\JύU(A). Then p defines an entire analytic state over the CCR
Λ

algebra °U. The state p has finite local particle density and hence is locally normal

Proof We adapt the method used in the proof of Theorem 6.3.22 of [2]. We note

that for Φ(f\ supp / c B c A, and for any
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and

PVB,α(/)]=-α(/),

INB, α(/)*]=α(/)*.

See reference [2]. Using the above relation it is easy to check that for L2-functions
fι with compact supports, suppyj. a B( c A,

Following the procedure used in the proof of Theorem 6.3.22 of [2] and using the
bound (2.3.4), we have shown the theorem. For the details of the proof, we refer
to [2].

Let Φ be a real valued function satisfying the estimate: For some ε > 0

jd vx(l + \x\2)v+ε\Φ(x)\2 < oo. (2.3.5)

Then the following result follows from Proposition Iΐ.3.2. and the same method

as in the proof of Theorem 6.3.31 of [2].

Theorem II.3.4. Let Φ be a positive function satisfying Assumption A' and(2.3.4),
and let pΛ be the finite volume Gibbs state for the interaction given by the potential
Φ. Let p be any weak*-limit of pΛ as A^> Uv. Then p is a modular state.
Since the proof of the theorem is the same as the proof of Theorem 6.3.31 of [2],
we do not repeat the proof and refer to [2].

III. The Wiener Integral Formalism

I ILL The Wiener Integrals

We first review the Wiener integral formalism in quantum statistical mechanics
for interacting boson particles. For the details we refer to [2,6,7]. In the remainder
of this paper we will use the following notation:

(x)n = (x19x2,...,xn), xteU\

d(x)n=f[d'xi. (3.1.1)
i = 1

The path space of the Wiener measure can be chosen to be

Ω= X U\
[o,/η

where Uv is the one point compactification of Uv. The Wiener measure Pβ (x,y;dω),
conditioned on those paths ωeΩ with ω(0) = x, ω(τ = β) = y, is σ-additive, finite
measure on Ω. It is the path space measure of the process with transition function
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exp[|ίJ]. The kernel of exp[fίzl] is denoted by p\x,y):

where \x — y\ is the Euclidean distance between x and y. We have

(3.1.3)

For any Borel subset B c [Rv, let χβ

B be the characteristic function of the subset
{ωeΩ:ω(τ)eB for all τe[0,/?]}. We will drop the superscript β from χβ

B if there
is no confusion involved. We set

PβA(x)n,(y)n;d(ω)n) = Π P'Λ(xj,yj;dωj). (3.1.4)

Then Pβ

Λ(x,y;dω) is the path space measure of the process with transition function
], where Δ Λ is t h e L a p l a c i a n with O-Dirichlet d a t a at d/Λ.

Let φβ

Λ((x)n; (y)n) be t h e kernel of t h e o p e r a t o r e x p [ - βH^] o n L2(An\ where
H^ is t h e rc-particle H a m i l t o n i a n given in (2.1.4). By t h e F e y m a n n - K a c formula.
see e.g. [ 2 , 6 ] ,

K((x)n'Λy)n) = f Pβ

Λ((x)nΛy)nld(ω)n)exp\- J U((ω(τ))n)dτ\ (3.1.5)
Ωn L 0 J

Let Sn be the group of the permutations of {1,2,..., n} and let A be the multiplication
operator by a function A((x)n) invariant under any πeSn. Then we have

= ^r Σ ί d(x)nA((x)n) I PVΛ((x)n,π(x)n;d(ω)n)exp\-\ U((ω(τ))ndτ\
H' πeSn Λ n Ωn L 0 J

(3.1.6)

where π{x)n = (xπ(l),xπ(2),...,xπ(n)).

III.2. Some Estimates on the Wiener Integrals

We collect here basic es t imates which will be used later. Let A a Uv be a c o m p a c t
subset. W e write

PA(x, y,;t) = ) P'(x, y dω)χA(ω), (3.2.1)

and

WA(x,y,;t) = P(x,y;ή- PA(x,y;t) = $P'(x,y;dω)[l -χA(ω)l (3.2.2)

We note that for fixed ye A (or for fixed xeA) WA(x,y;t) is a solution of the diffusion
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equation

du

with initial condition u(x, 0) = 0, xeA and boundary condition u(x,t) = P(x,y;t)
xedΆ, t > 0. From the maximum principle we have the following (see Theorem 6.3.8
of [2] and its proof):

Lemma IΠ.2.1. Let A cz W be a compact subset whose boundary dA is a C3 -surface.

Then for all x, ye A, O^t^β

- j (d(x, dA)2 + d(y, dA)2)0 g WA(x, y:t)S ev/2{2πt) ~v/2 exp

where d(x, dA) is the distance between x and dA.

Remark. Notice that the right-hand side of the above inequality is independent
of the compactness oϊA and also the smoothness of dA. Thus, by an approximation
argument the inequality holds for any regular subset A c Uv with piecewise smooth
boundary dA.

For a unit cube A and for I ̂  0, we write

A(AJ) = \xeUv: max inϊ \xι - yι\ ̂  ll. (3.2.3)
( 1 ̂  i ̂  v ye A J

That is, A(A, I) is the cube with its volume (21 + l) v containing A at the center. Let
us denote

£Δtl = {ωeΩ:ω{τ)eΔ9ω(τ')eΛ(A,l + 1)\ A(AJ) for some τ,τ'G[0,j8],

and φ")φΛ{A,l + l)c for any τ"elθ,β]}9 (3.2.4)

δΔt_1 = {ωeΩ:ω(τ)eA for any τe[0,β]},

where Ac is the complement of A. Note that any path in gΔ / ? / ^ 0 , must visit Δ

and Λ(Δ, I + 1)\Λ{Δ, /), but not Λ(Δ, I + l) c. We define

KAtl(x,y)= j Pp(x,y;dω)
S' Δ,l

= $Pβ(x,y;dω)χMΛJ+l)(ω)ll-χΛW)(ω)ίl-χΛC(ω)l (3.2.5)
Ω

The second equality of (3.2.5) follows from the definition of $Λl and an easy
observation. Let PΛ{A t) be the projection operator onto L2(Λ(Δ,l)) <= L2(UV\ and let

( ^ + i ) (3.2.6)

We write the integral kernel of KA ι by KΔ f(x, y):
_
^Δ,IX> y) = XΛ(A,I+i)X ί ^ / 2 ( χ , y dώ)χΛiΔtl+
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For 1= — 1, we write

K -i(χ,y)= ί pP(*> y dω) = ί pβ(χ> y dω)χΔ{ω\

K- i(χ> y) = *A(X) ί pfl/2(χ> y dω)XM (3.2.8)

and let KAt_t be the operator corresponding to the kernel KAί_1(x,y).

Proposition III.2.2. For 1= —1,0,1,2,. . . there are constants cι>0 and c2 > 0

such that

a) KAJ(x, y) g cί exp ί - — j KΔtl(x, y\

b) T r L W ( K ^ ) ^ c 2 μ ( Z l , l + l ) | ,

\Λ(AJ+ 1)| is ί/ie volume of Λ(Δ,l+ 1).

(a) We first note that from (3.1.2) and (3.1.3)

(3.2.9)

Using (3.2.5) and Lemma ΠI.2.1 (and the remark below that) we have

•χ«A,u2Aχ)iPβ(χ,:

j (3.2.10)

and

ScKΔJ{x,y). (3.2.11)

Here we have used (3.2.9) and (3.2.7) to get the last inequality. For / ^ 0 , the
proposition follows from (3.2.10) and (3.2.11). For /= - 1, the proposition follows
from (3.2.9).

(b) Using (3.1.2) and (3.1.3) we have

σ m Δ'l~Λ(Ai + i) ~W

This proves the proposition.

III.3. Partial Symmetry Spaces
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Let Sn be the group of permutations of {l,2,...,rc}. As before we write

1 = 1

#H)(Λ) = ®sL
2(Λ,dvx,).

i= 1

Let AnaSn. The subset An is not a necessary subgroup of Sn. Let {ft} be an
orthonormal base for L2(A,dvx\ and let J^^A) be the subspace of J^n(A) spanned
by the following vectors :

where card(v4J is the cardinal number of An. Let P(An) be the projection operator
onto Jt?{Z(Λ). For any feJί?n(Λ) we have

(PK)/)WB = card(^ll)-
1 Σ / ( Φ U (3.3.1)

πeAn

If ^ is an operator of the trace class on J^n(A) which admits an integral kernel
A((x)n9(y)n)9 it follows from (3.3.1) that P(An)AP(An) admits the following kernel:

P(An)AP(An)((AΛy)n) = cavά(Any
2 £ A{π-\x)n,π'-\y)n\ (3.3.2)

π,π'eAn

and so we have

Tv^n{Λ)(P(An)AP(An)) = cΆτd(AnΓ
2 Σ J d{x)nA{n~\x)n^'~\x)n). (3.3.3)

π,π'eAn Λn

The following is obvious: If A is positive operator.

U ) μ ) . (3.3.4)

In Sect. IV.3 we will consider the kernel of operator AP(An). Using (3.3.1) it is easy
to derive that

(AP(An))((^Λyl) = carά(Anr
1 X A((x)n,π-\y)n). (3.3.5)

πeAn

In the applications in the following section, we will frequently take A = Uv.

IV. Bounds on Local Number Operators

IV. J. The Expansions

In order to show Theorem Π.3.1 we employ an expansion method similar to
Ruelle's method [13]. Some modifications are necessary to control quantum
statistics and fluctuations of paths. We first express the expectation of local number
operators in terms of the Wiener integrals. From (2.1.1)-(2.1.5), (2.1.7), (2.1.8) it
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follows that

pΛ{e°NB) = Ξ- ' f z-Tr^^ίel-l"- exp[ - /^>]), (4.1.1)
AJ=O

where z = eβμ and the term corresponding to n = 0 equals 1. In the rest of this
paper we use the following notations:

NB((x)n)=ixB(xi), x,eRv. (4.1.2)
i= 1

From (3.1.6) it then follows that

πeSn Λn Ωn

Since B can be moved to any place by a translation (A will be also moved), one
may assume that B is contained in the ball of diameter diam(£) centered at the
origin. We will also take λ = 1 in (2.2.1) to avoid non-essential complications arising
for λ=/=l in the proof of Theorem Π.3.1. Thus Q(r) is the unit cube centered at
reZv. If superstable interactions satisfy (2.2.2) with λφl, we replace unit cubes
β(r) by the cubes having the length of each side λ. Then the proof for λ φ 1 is the
same as that for λ = 1 with some trivial modifications.

We will use the following notations:

Q(r) = {xe Uv: (rι — j) g xι < (rι + ^), reZv},

\r\= sup \Y\TEZ\

Λq= U β(r),ςf=0,l,2,...,

\Aq\ = (2q + l ) v : the volume of Λq9

p0 : a fixed natural number such that B a Apo. (4.1.4)

For any given path configuration {ωj, let n(r,τ) be the number of ωi9 i = 1,2,...,n,
such that ωt (τ)e<2(r). We decompose the space of path configurations {ωj into a
union of mutually disjoint subsets

as follows: For fixed p > Z > 1 which we will choose later, let
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So : the subset of paths {ωt: i = 1,2,..., n) satisfying

sup Σ n(r,τγ<\Λj, (4.1.6)

Sq: the subset of paths {ωt: / = 1,2,..., n) satisfying

sup Σ n(r9τY^\Λq\
ι, (4.1.7)

«[0,j8] r e y l g

and for all q' > q

sup Σ n(r,τ)*<μiβ,|
z. ί4-1-8)

^[0,« reAq

The above is the first decomposition of Ωn into disjoint subsets.
For given q ̂  p0 we further decompose <f9 into a union of subsets as follows.

Since, if Sq is empty, Sq does not contribute in the following estimates, one may
assume that Sq is not empty. Let K be a subset of {1,2,...,rc} and let nκ(r,τ) be
the number of ωf's5 ieK, such that ωι(τ)sQ(r). For any configuration of rc-paths
in Sq, there is at least one smallest subset Kc{ l ,2, . . , ,n} satisfying the following
condition:

sup Σ nκ(r,τ)p= sup Σ *(r>*Y> t 4 - 1 - 9 )
re[O,/ϊ] κ e y i q τe[O,/ϊ] r 6 yl g

and for any i£' cz {1,2,..., n} with card (i£') < card(K),

sup Σ nκ.(r,τY< sup £ njc(r,τ)*. (4.1.10)

τe[0,/ϊ] r e / l q re[0,/?] , e y l q

We define

i q k = {{ω.}eS>

q: There exists a K satisfying (4.1.9)

and (4.1.10) with card(K) = fe}. (4.1.11)
We remark that the paths ω^ίeK, must visit y4q at least one time at τoe[0,/Γ]
simultaneously by the definition of K. We have

From (4.1.7) and (4.1.8) it follows that

\Λf^kS\Λq+1\
1 + «-^. (4.1.13)

The first inequality follows from Lemma IV.4.2(a) in the next section and the
second inequality follows from (4.1.8) and the Holder inequality:

q q

(4.1.14)

Thus, from<4.1.1), (4.1.3) and (4.1.12) we have

PΛ(e*NB)^Go+ Σ Σ Σ G£l, ( 4 L 1 5 )
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where Go is the contribution from $0 :

n= 1 n πeSn A" So

(4.1.16)
and

^ i = 5 ; 1 - r Σ ίΦ)/ 1 " 1 " 8 "* 1 ί Pβ

Λ((^ΦUd(ω)n)e-^-\ (4.1.17)
n πeSn An gq,k

Since, by (4.1.13)

Λ ^ ( M J ^ Σ n(r,τ=0)S\Λq+i\
ί+il-1^ on£q.

rεΛq + i

We have

Go = e x p [ | α | μ ί ) o | 1 + ( i - 1 n (4.1.18)

and

G^UΞ V e x p C l α l l V J 1 ^ " 0 ' ' ' ] ^ , (4.1.19)

where

f P^((x) n , K (x) n ;d(co)>-^H (4.1.20)

The problem is now reduced to obtain uniform bounds of (4.1.20) so that the
expression in (4.1.19) is summable.

IV. Basic Ideas

We recall that for any configuration of paths {ωj in Sqk there is a subset

K c { l , 2 «} with card(X) = /c such that (4.1.9) and (4.1.10) hold. There are
nl/(n ~ k)lkl ways to choose fc-paths among rc-paths. If one reindexes &-paths ωt,
ίeK, so that K = {1,2,. ..,&}, and if one defines

<̂ ,fc = i iωi}e^q: X = {1,2,...,fe} satisfies (4.1.9) and (4.1.10)}, (4.2.1)

it follows from (4.1.20) that

ϊ
> πeSnΛn

)» ί PΛ((x)nMx)n;d(ω)n)e-u^\ (4.2.2)

Notice that we have an (n — k)\ factor instead of n\. The total number of terms in
the above is card(SJ = n!. This is the main problem arising from quantum statistics.

For any configuration {ωj of paths in Sqk we write

k n

ί
k 0

IIΛ

J

+ 1

β

ί Φ(ωf(τ

J Φ(ωf(τ)
0

- ω/τ))dτ Ξ j (7
0

) - ωfτ))dτ = j
0

/ \ \ 7 Γ

0

(4.2.3)
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Then

U((ω)n) = ^((ω),) + W((ω)k9 (ω)n_k) + U2((ω)n__k). (4.2.4)

From the definition of i q k in (4.2.1) and from (4.1.9) and (4.1.7) we conclude that
there exists τoe[0,/}] such that

Σ n(r,τoy^\Λq\
ι on g^ (4.2.5)

reΛq

where π(r,τ0) be the number of ωf's, i= 1,2,... ,fc, such that ωI (τ0)Gβ(r).
We now discuss basic ideas briefly. First, one has to control the divergence

factors in (4.1.19):

which come from the bounds for exp[αNβ] on $ qk (or on $qk). We will obtain
some convergence factors from the interaction terms ^ ( ( ω j j . We note that for
any configuration {ωj of paths in 3qk there exists τ o e[0, β~] such that (4.2.5) holds.
From the strong superstability condition in Assumption A in Sect. II.2, one obtains
that

ftr, τor - Bn(r9 τ 0)]
r

^ Σ An(r,τo)
p-Bk, (4.2.6)

reΛq

where k is bounded by (4.1.13). Using the Holder's inequality and (4.2.5) one gets
that for 1 < / < p < p'

U,{{ω{τo))k)^A\Aq\
ι^ι~l)p'ip-B\Λq+i\

i+{1-^. (4.2.7)

Thus, if the above inequality holds for any τe[0, β], one gets the convergent factors
from exp(— [/^(ω)^)). But one does not expect that (4.2.7) holds for all τe[0,/?],
because of the fluctuations of paths ω ί ? / = 1,2,..., k. If the fluctuations are large,
one expects the contributions are small in the sense of Lemma TII.2.1 and
Proposition IΠ.2.2. On the other hand, if the fluctuations are small, one expects
that (4.2.7) holds approximately. Thus one may be able to permit a small amount
of the fluctuations.

We define the fluctuations of &-paths as follows: We write

V(ω)= sup \ω(τί)-ω(τ2)\2,
τi,τ2e[0,β]

V((ω)k)=Σ v(<°ι) ( 4 2 8 )
/ = 1

The following result which we will prove in Sect. IV.4 shows that if one adds a
small fluctuation term one gets convergent factors from the interactions. We write

γ(v, p') ΞE 1 + (2(p' - l)/vpf - (v - 2)). (4.2.9)

We then have:
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Theorem IV.2.1 a) Let the interactions satisfy Assumption A in Sect. II.2. with p'

satisfying the inequality

v, p')
p'-l

Let p > I > 1 have been chosen such that

(1) l/p<2/v,

(2) ^ύpύy(v,p)
p - 1

Then for any b>0, p0 in (4.1.4) and (4.1.6) can be chosen sufficiently large such
that there is a constant c> 0 independent of q,k and A such that

+ bV((ω)k) + W((ω)kMω)n-k) ^ c\Λq+ ^ +«'" ^

on Sq k for q^. p0.
b) Let the interactions satisfy Assumption A' in Sect. 11.2, and let p> l> 1 have

been chosen such that p rg 7(v, p'). Then for any fixed b>0 there is a constant c>0
independent of q, k and A such that

U, + bV((ω)k) ^ c\Aq+ J [ 1 + ( ( ί - wv.,')/,)]

holds on $qk for sufficiently large p0.
From the fact that γ(v,p')> 1 it follows that

1 + — < 1 + l—y(v,p')9 (4.2.10)
P P

and so we have convergent factors from the interaction by the above theorem.

Lemma IV.2.2. Under the assumption in Theorem IV.2.1, one can choose p > I > 1
such that (1) and (2) in the theorem hold for v ^ 3.

Proof. For v = 3 the assumption implies p' > 3 and so

— — 7 < ^ and 7(3,/?') > f.

If one chooses / = 1 -f ε for ε > 0, the condition (1) in the theorem implies that p
has to satisfy p > f ( l +ε). For given p' one can choose ε sufficiently small such
that f(l + ε) < 7(3, p'). Thus p can be chosen so that (1) and (2) hold. The argument
similar to the above gives the proof for v = 1,2. This completes the proof of the
lemma.

2
If v ^ 4, then y(v, p') < 1 + - for any p' ^ 2. The condition (1) in Theorem IV.2.1

v
v

implies p >- and so p > y(v,p'). The bound in the theorem will be failed to hold

in this case. This is the reason why we require v < 4. We will discuss the reason
in Section V in more details.
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IV.3. The Proof of the Main Result: Control of Quantum Statistics

In this section we prove Theorem II.3.1 under the assumption that Theorem IV.2.1
holds. From Theorem IV.2.1, (4.2.2) and (4.2.4), and from the fact that
W((ω)k,(ω)n_k) ^ 0 for repulsive interactions, it follows that

G ^ U e x p | - ^ + 1 | 1 + ( / - - 1 ) y ( v ' ^ ] ^ , (4.3.1)

where

j
πeon A o q,k

ω)k)-U2((ω)n_ύl (4.3.2)

As we have discussed before, there are n\ terms in (4.3.2). Therefore one has to
show that many terms in (4.3.2) do not contribute. The main idea is decoupling of
the paths in {ωjiϊ = 1,2, ...,k} from the paths in {cOi'J =k + l,...,n}. On the subset
Sqk a path ω t ,/ = 1,2,...,&;, may join to a path ω z,/ = fc + l , . . . , n , to form a
composite path, i.e., xπ^ = xt If the fluctuation of ωt is small, there will not be
many ways to form the composite trajectory. O n the other hand, if the fluctuation
is large, there will be a convergent factor by Proposit ion IΠ.2.2. Thus we further
decompose the subset Sq k into a union of disjoint subsets corresponding to large
and small fluctuations. The decomposition is as follow. We remember that
cύiJ = 1,2,...,k, must visit Λq at least one time. Thus we have

q

f Pβ

Λ((x)n,π(x)n;d(ω)n)...
£q,k

= J P{((x)nMx)n -Λω)n) Π [1 - χA%(ωϊ\ ... (4.3.3)

where Λc

q is the complement of Λq. Notice that

[1 ~ χΛo(ωn ύ Σ t 1 - XQ(rAco)l (4-3.4)
reAq

That is, in order to visit Λq at least one time the path has to visit some Q(r) in

Λq. We define

Λ(A,t)9£AJ and gΔt_x

as in (3.2.3) and (3.2.4). We also note that

[1 - &ιc(ω)] = χΔ(ω) + f χΛ(AJ+ 1 }(ω)(l - χΛ(AJ)(ω)) [1 - ^ c ( ω ) ] , (4.3.5)
L / = o J

and

J P>Jx,y\dω) =\PΛ(x,y ,dω)χΔ{ω).... (4.3.6)
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From (4.3.4), (4.3.5) and (4.3.6) one obtains that for any positive function F on Ω

lPp

Λ{x,yidω)ll-χA£ω)]F(ω)^Σ Σ ί Pβ(x,y;dω)F(ω), (4.3.7)
4cylg / = - 1 SΔ,ι

where Σ is the summation over unit cubes A — Q(r) a Λq. Let S^tι ^ e t n e

Δ<=Λq

q

subset iΔ z for the z-path, i — 1,2,..., /c. We write

^((zl1,Z1),...,(zl fc,/ t)) = { ( ω ) n € ^ : ω i e ^ i ί i , J = l ) 2 , . . . , / c } . (4.3.8)

We note that for any configuration (ω)π in Sk

q((Δ1,lϊ),...,(Ak,lk)) and for any

sup \ωi(τι)-ωi(τ2)\2 ^diam(yl ; ι + 1 ) 2 g4v(ί, + 2)2,
τi,τ2e[O,/3]

where diam(^4) is the diameter of 4̂, and so

F((ω) f c )^4v£(/ . + 2)2 (4.3.9)
ι = 1

on ik

q((A1J1%...,(AkJk)). We now apply (4.3.3), (4.3.7) and (4.3.9) (in that order)
to (4.3.2) to obtain the bound

1 oo oo

m y ... y y ... y

where

y)n) = f Pβ

Λ((x)n>(y)n'Λω)Jexpl- U2((ω)n_k)l
Sk

q{{Δχ,h),...,{Δk,lh))

We recall that for any configuration of rc-paths (ω)n in $q

:((AίJ1),...,(AkJk)), the
path ωi9i = l,2,...,/c, must stay inside of Λ(4,Zf + 1) by (3.2.4) and (4.3.8). This
means that ωi,i=l,2,...,k, cannot form a composite path (trajectory) with any
path ωt if ωt(τ = 0)eΛ(Ai, I. + l)c. According to the bounds in (4.1.14) there are at
most

number of paths which can hit A(Ai,li + 1) c Λq + h + 2 at τ = 0 (or τ = β). Thus, if
li9 ί = 1,2,..., k, are small, many terms in (4.3.11) will vanish. If ί.'s are large, there
will be convergent factors by Proposition IΠ.2.2. This is the idea of controlling
quantum statistics.

We will use the following abbreviated notation:

\Λq + h + 2\
1+il~1)/P' (4 3 1 2 )

•expΪ4vb Σ (h + 2)2^F\({Δ,,I,),...,(Δk,\k)), (4.3.10)

F\{{Δ,,I,),...,(Δk,lk)) = Σ ί d{x)nK{{x)nMx)n),
πeSn Λn

(4.3.11)
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We also introduce the following notations:

S(k,ή): the subgroup of Sn consisting of the

permutations of {k + 1, k + 2,..., n},

E(m9m'): the subset of Sn consisting of the interchanging

of m with one of m, m + 1, ...,ra' for m^mf ^n. (4.3.13)

We make the following convention: E(m,m;) = E(m,n) if m' > n, and for any

π,σeSn,πσ means that σ followed by π;fc->π(σ(fc)). We define

for i = 1,2,...,*},

\ * = {^ = Λ ^ 2 Λc Λ e £ 0 > ) for i = l,2,...,fc}. (4.3.14)

Here we have used the symbol [α] for the greatest natural number which is not
greater than a, and M(/t) has been defined in (4.3.12). We note that

Sn = EntkS(k9n) = {p(7:Pe£Λifc,σeS(fc,w)}, (4.3.15)

and

cardίJE^, . . . , ϋ ) = carά(Ek(h, •, ϋ ) = Π 2M(y. (4.3.16)
i = l

For any σeS(k,ή) we will use the following notation:
χσ : the characteristic function of the subset

{(x)Be(Rr:iiχ,(t+1)ιι ^ ι ι^ + 2, ι ι ^ - siix^ii}, (4.3.1?)

where ||x|| = max \x% We then have

Σ V ( ( 4 , ) = Σ Xe(<r'(*Ό = l> ( 4 3 1 8 )
σ'eS(k,n) σ'eS(k,n)

where eeS(k,n) is the identity element.

Lemma 4.3.1. K((x)n,(y)n) be defined as in {43.11). Then

Fk

q((Ax, ι,χ...,(Λ, y) = fc! X Σ ί ^ ω W J K ^ ' M π > MxΌ.
PeEk(h,...lk) σ',σeS(k,n) Λn

Proof. Substituting (4.3.18) into (4.3.11) and doing a change of variables

(*'(*)„->(*;)„), we obtain

F\{(Δ x, /,),..., (Δk, lk)) = Σ Σ ί ΦUβίWJKίσ'W,,, PσMJ. (4.3.19)
PeEn,k σ',σeS(k,n) Λn

Here we have used the fact the Sn = EnkS(k,ή). Under the assumption that
Zt ^ 1 2 ^ '* ^ 4 , we will show that the summation over PeEnk in the above can be
replaced by the summation over PeE^l,,...,lk). Then for general lt,l2,...,lk, the
lemma follows from reindexing ωί,ω2,...,ωk such that lx g Z2 ^ Zfc in the new
indexes. This is the reason why we have k! in the lemma.

We now assume that lx ^ / 2 ^ ^lk. Assume that PφEk(ll9...,lk) in the
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integrand of (4.3.19). Then there is at least one Pi$E(i,[2M(li)']) such that
P = Pί... Pt... Pk and PjeE(j9 [2M(/7 )]) for all < i. Write

\m i)

Then m > 2M(/ ) and m- < m for all j < i by the assumption I. ̂  /• for j < i. A simple
inspection shows that Pσ(i) = P1... P^ί) = Pι...Pi_1(m) = m. We recall that by the
definition of K(σ'(x)n,Pσ(x)n), ωf(j8) = xPσ(ί) = xm. Since coiE$>%)

ul. in the definition
of K((x)n,(y)n) in (4.3.11), (θi(β)^Λq + lί + 2, and so xmeΛq + lι + 2. Because of the factor
χe((x)n) in the integrand in (4.3.19), the integration variables xp h + 1 ̂ j ^ m, should
be restricted to xjeAq + h + 2. This means that at least m — k paths have to pass
Aq+li + 2 at τ = 0 (and also at τ = β). In the definition of tK((x)n,(y)n) the integration
over path configuration space has been restricted to Sk

q{(Δι,lι\...,(ΔkJ^)^Sq,
and so more than M(/f) paths can not pass Λq + lt + 2 at τ = 0 by (4.1.14). We
note that m-fc>M(/ f ) by (4.1.13). Thus K(σ'(x)n,Pσ{x)n) must be vanished if
PφEk{lx,..., lk). This completes the proof of the lemma.

Let P{S(k,n)) and PiE^l^...,^)) be the projection operators onto ^%\^n){A)
and 3tf?E)

k{iί,...,ιk)(A) respectively, which we have introduced in Sect. III.3. For any
σeS(k9n)9 let χσ be the (projection) operator defined by (χσf)(x)n = Xe(σ(x)n)f((x)n)
for any fe^βΓ). From (4.3.18) we have

Σ Xσ = 1- (4 3 2 0 )
σeS(k,n)

In order to avoid notational complication we will use the following abbreviated
notations:

C12 = card(5(/c, n))2card(£ f c(/1,..., lk)). (4.3.21)

Let K be the operator on J^n(Λ) defined by its kernel K((x)n9 {y)n\ where K((x)n9(y)n)
has been defined in (4.3.11). We recall the definition of Ek{l^...,lk). Using (3.3.2)
and (3.3.5) in Sect. III.3, the following is easy to derive:

Σ Σ j d(x)nχe((x)n)K(σ'(x)n,Pσ(xn (4.3.22)
PeEk(h,...,lk) σ',σS(k,n) Λn

and so by Lemma IV.3.2 we have

Fk

q((A,, /,),..., (Δk9 lk) S k!Clt2 Tr^^P,KP^χJ. (4.3.23)

Thus if P2 and χe commute with each other and if IK is positive, one may use
(3.3.4) to eliminate P2 from the above trace. Then our job will be done. Although
P2 does not commute with χe, we will show that P2 and χe almost commute with
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each other. To do this we use (4.3.20) to obtain

Tr J f f l (χ e P 1 KP 1 P 2 χ e )= Σ τ^SXePi^Paσ"PiXel (4.3.24)
σ"eS(k,n)

TrjeJJleP1KP1χa.P2χe)=C:ιi ^Σ Σ
PeEk(h,...,lk) σ',σeS(k,n)

• J d{x)nχe{{x)n)K{σ\x)n,Pσ{x)n)χe{Pσ"(x)n).
Λn

We define ( 4 ' 3 ' 2 5 )

A{k,n) = {σ"eS(k,ny.Ύΐ^n(χeP1KPιχσ,,P2χe) φ 0},

y , γ (4.3.26)

We then have the following:

Lemma IV.3.2.

card(^(/c, «)) ^ card(£ fc(/x,..., lk))My l/(My - k)!

Proo/. Because of χ^MJχ^Pσ'Xx),,) in the integrand in (4.3.25), the trace for
σ"eS(k,n) will vanish if the following set

has measure zero for any Pe£Λ(/1 ?...,ZΛ). This means that for given σ" the
sequence < Pσ"(m): m ̂  k + 1 and Pσ"(m) ^ fc + 1 > must be a subsequence of
<fe +l,fe + 2,...,π> for some P to give non-zero contributions. Since σ"eS(k,n),
we have Pσ"(0 = P(z), i ^ /c, for any σ"eS{k, ή). We assert that if

Pσ"{m) ^ fe for some m> Mγ, (4.3.27)

then the integrals in (4.3.25) are zero. We note that xieΛq + y + 2 for / ̂ k (ωieS>ij)

ιΛ).
Thus, if (4.3.27) holds, Mγ-integration variables in (4.3.25) must be restricted to
Λq + γ + 2 by the factor χe{Pσ"{x)^. This is impossible by (4.1.14) and the definition
of K((x)n,(y)n). This proves our assertion. For given PeEk(lί9...,lk), Pσ" = π will
have the following form.

2 ... fc fc + 1 ... Af, ... B \

i m2 Wk π{k + \)..A1..A2..Aι...π{My)...π(n))'

where ^6(1,2,...,^} and mi = P(i)^My. By the assertion, m^My for π(m) = ij.
We recall that the sequence (π(m):m ^ fe + 1 and π(m) ̂  ^> in (4.3.28) must be a
subsequence of < 1,2,..., n), and so π(My + 1) = My + 1,..., π(n) = nin (4.3.28). For
fixed P, the ίjs will be moved if one changes σ" .σ" should not change the

order of π(m). Thus, for given P there will be at most k! ( γ I number of <τ"
\ fc /

which belongs to A(k,ή). Varying PeEk{lί,...,lk) we arrive at the conclusion in
the lemma.

From (4.3.23), (4.3.24) and from the definition of A(k, ή) in (4.3.26), it follows that

Fk

q((A 1 , / J , . . . , ( Δ k 9 l k ) ) ^k\CU2σ,,Σ T^SXePi^PiXo-PiXel (4-3.29)
σ".eA(k,n)
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The next step is to get a bound for (4.3.29). From (4.3.8) the following is obvious:

From the definition of K((x)n,(y)n) in (4.3.11) it follows that

ί
K ( ( χ ) π , G 0 J ^ ( x « L ^

(4.3.30)

where we have used the fact that

ezp(-βH*-k))((x)n_k, (y)n.k)= f Pβ

Λ{{x)n-kΛy)n-k Aω)n_k)exp(- U((ω)n_k)).

(4.3.31)

We now use the definition of KΔtl(x, y) and KΔtl(x, y) in (3.2.5) and (3.2.7) respectively
into (4.3.30), and then use Proposition IΠ.2.2 to arrive at

k Γ / Z? \ Ί
^((X)n, (y)n) ^ Π \ C 1 e X P ( - J^o ) 7 ( M « > (y)nl (4.3.32)

where

ΓΛ - Ί
Y((χ)n,(y)n) = \ Π κAuit(χi>yi) E e χ p ( - j

(4.3.33)

Notice that the above is the kernel of the operator

Γk)l (4.3.34)

which is a positive operator on jen(Uv). From (4.3.25), (4.3.29) and (4.3.32), it follows
that

X Tr^(XePiYPa«P2). (4.3.35)
σ".eA(k,n)

We now use the positivity of Y and the abstract Holder's inequality [11] to
conclude that

^ i i (4.3.36)

A direct computation gives us that for any σ"eS(k,n),

T r / ( ( χ , . ί Ί yPi) = card(S'(/c, n))" 2 Σ

= i(n-k)\T2 Σ \d(x)nle{σ'{x))Y({x)n,σ(x)n)
σ',σeS(k,n)



24 Y. M. Park

\d(x)nY{{x)n,σ{x)n)
σeS(k,n)

We substitute the above equality into (4.3.36), and then we use the definitions of

Px and Y in (4.3.21) and (4.3.34) respectively to obtain

Π / ί β i / r ' ' ) ] ) (4.3.37)

for any σ"eS'(k9ή). Here we have used Proposition IΠ.2.2 to obtain the third
inequality in the above. We now combine (4.3.35) and (4.3.37) to obtain

j^!,/!),...^,/^^ (4.3.38)

where

M(/c, q; Z 1 ? . . . ,/fe) = ^ * Π

From the bound in Lemma IV.3.2,

c, ή)) £

(4.3.39)

and from the definition of My in (4.3.26) it is easy to check that there are constants
c' and c" such that

j 9 2))

gexp(c"fclogMg + 1 | + c"(y + 2)). (4.3.40)

Here we have used the fact that felogx < 2x + fclogfe for Λ: ̂  1, and the bound in
(4.1.13). From (4.3.16) and (4.3.12) we also have that for some dί9

Π i + 2)). (4.3.41)

We recall that y = max{ZJ. We combine the definition of C1 > 2 in (4.3.21), and
(4.3.40) and (4.3.41) to (4.3.39) to conclude that there are constants c1 and c2 such
that

- J - | (4.3.42)

We now substitute (4.3.42) into (4.3.38), and then (4.3.38) into (4.3.10) to obtain
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the following bound:

FW ^c\ exp(c2klog\Λq+ι\) Tr^ si f e

Σ e x p Γ - - ^

βH^ky)). (4.3.43)

Here we have chosen b such that 4vb < 1/32/? to get the second inequality. Using
(4.1.13) and the fact that γ(v,p') > 1, it follows that for any constant |α|, cl9c2 and
c there are constants D1,D29D3 > 0 such that

SD1-D2q-D3k, (4.3.44)

by (4.1.13). We finally combine (4.3.43), (4.3.1) and (4.1.19), and we then use (4.3.44)
to obtain

<> ύΞ V e x p ^ - D2q -

for some positive constants DX,D2 and D3. Thus

Σ Σ Σ Gftϊe's

for some D > 0. The theorem now follows from (4.1.15), (4.1.18) and the above
bound. This completes the proof of the main theorem.

IV.4. The Proof of Theorem IV.2Λ.

In this section we produce the proof of Theorem IV.2.1, and so we complete the
proof of Theorem II.3.1. From (4.2.5) we recall that for any configuration (ω)n in
iqιk there is τoe[0,β] such that

£ ή(r,τoy^\Λq\
ι, (4.4.1)

reΛq

where n(r,τ0) is the number of ωf,i = 1,2,.. .,k, such that ωI (τ0)eQ(r). If the
interaction satisfies either Assumption A (strong superstability) or else Assumption
A' (positivity) in Sect. II.2, we have

ί/,(Wτ)) t ^ Σ UfUr, τψ - Bή(r,τ)l (4.4.2)
reΛ

where U^(ωiτ))^ has been defined in (4.2.3). From the definition of 3qk in (4.2.1)
we also have that for any q' > q,

X rir,τY<\Λq\
ι onZ q J e (4.4.3)

rεΛq.

For a given configuration of paths (ώ)n in ϊqn, we pick τoe[0,/Γ| so that (4.4.1) is



26 Y. M. Park

satisfied, and we define

V([(ω(τ)k) = j t K(τ)-ω ;(τ0)|2 (4.4.4)

From the definition of V((ω)k) in (4.2.8) it follows that

V{{ω)k)^\v{{ω(τ))k)dτ. (4.4.5)
0

For p' ^ 2 we have written in (4.2.9)

y(v, p') = l+ , , o r. (4.4.6)
vp + (2 — v)

If the interaction satisfies Assumption A, the following inequality holds:

-~—<y(v,p') . (4A7)

For the interactions satisfying Assumption A we choose p > I > 1 such that the
following inequalities hold:

l/p < 2/v (4.4.8)

<y(v,p'). (4.4.9)

In Lemma IV.2.2. we have shown that, if v ^ 3, we can choose p > I > 1 so that
(4.4.8) and (4.4.9) holds simultaneously. We will discuss other choices of p and /
in the next section in more detail. For the replusive interaction (Assumption A')
we only impose the condition

P<y(v,p') (4A10)

We now begin to prove Theorem IV.2.1. For any fixed constant a,b>0 and
for a given configuration of paths (ω)n in ϊqk, we write

B(τ) EE aU^ωiτ),) + bV((ω(τ))k). (4.4.11)

We have the following:

Propos i t ion I V . 4 . 1 . For 1 < I < p , there exist constants cx>0 and c2>0 such that

for any given (ω)n in SqM.

Proof From (4.4.2) and (4.4.4) it follows that

B(τ)^ Σ \aAh{r,τY +\ Σ KW - ωf(τ0)|2 \-aBL
reΛ L " ω,(τ)eQ(r) J

Let nr.(r,τ) be the number of paths ωui = l ,2,. . . ,k, such that ω^eQir) and
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u>i(τo)eQ(r') Since ωi(τo)eΛq for any i = 1,2,... ,&, we have

rc(r,τ) = £ nr,(r,τ).

Since n(r, τ) and nr> (r, τ) are non-negative integers, we have that for any p' §; 2 (see
Lemma IV.2.2. below)

Thus

reΛ P ωι(τ)eQ(r)\
ω,(τ)eQ(r')

(4.4.12)

As before we denote [α] the greatest integer number which is less than or equal
to a.

We first consider the case in which for a given q > 0,

card ({ω ί:ω i(τ0)6ρ(r/)and H τ ) - ωt(τ0)\ g n(r',T0)
e}) ^ [^(r ' ,τ 0 )] .

Note that

Since the number of r's such that \r — r'\ ^ n(r\ τo)
q is not larger than [2ή(r\ τo)

q + 1]v,
we use Holder's inequality (or Jensen's inequality) to obtain

^ ci(v,p')w(r', τo)
vβή(r', τ o ) α " v ^ ' - ci(v,p)

for some constant c\,c'2 >0. On the other hand if

card({ωέ :cofc0)GQ(r') and |ωf(τ) - ωi(τo)| S n(r\τo)
q}) < [in(r',τ 0)],

then

Σ |ωf(τ) - ω ^ l 2 ^ [in(r',τ0)](n(r',τo)
β - I)2

ω feβ(r):
ωf(τ0)e<2(r')

^c;n(r ' ,τ o ) 1 + 2 ^-ci

for some constant c'ud2 > 0. By choosing q such that

vq + (l- vq)pr = 1 + 2qf

(i.e., q = (pf — l)/[vp' -f- (2 — v)], and by (4.1.13) we have proven the proposition.
The following facts are probably well known. But we produce the proof.

Lemma IV.4.2. Let {n(l),n(2),...,n(k)} be a finite sequence of non-negative real
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numbers. Then

(a) i

(b) Σ»or^fΣ«(o
i = 1 \ ί = 1

Proo/. (a) The inequality obviously holds if p, is a natural number. For a
non-natural number /?, the inequality follows from the Hadamard three line
theorem [11] for the function

with a non-negative integer p.
(b) The inequality holds for g = 0 and g = l . For M > 0 and 0 < g < l , let

/ be the function on [0,^M] defined by f(x) = (M - x)« + xβ. Then it is easy to
check that f(x) is an increasing function on [0,^M], thus if we set n(l) = M - x
and n(2) = x, then n(l) + n(2) = M and n(l)g + π(2)« is increasing as |n(l)-n(2) |
tends to zero. Now the lemma follows from an induction argument.

Theorem IV.4.3. Let 1 <l < p be chosen such that p S y(y, p') Then for any given
a > 0 and b > 0 there exist constants cγ > 0 and c2>0 such that

aUMω),) + bV((ω\) ^ cJΛJt1 + ( ( i " 1 W v "' ) / p ) - c2\Λq+1\1+('~υ/P)

on i q χ

Proof. We note that from (4.4.5) and (4.4.11)

0

Let p and γ be given numbers. If 1 ^ p ^ y,we use Holder's inequality to obtain

i = 1 i = l

If 1 ^ y ^ /?, one may use Lemma IV.4.2. (b) to obtain

The above inequalities imply that
Σ o q γ^p, (4.4.13)

Σ n(r,τ0Y^\Λ

q\
Wp, y up. (4.4.14)

ί eylg

If one chooses y = y(v,p% then the theorem follows (4.4.13), Proposition IV.4.1.
and (4.4.12)
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Proof of Theorem IV.2.1 (b). The theorem is a consequence of Theorem IV.4.3.
and the fact that y{v,pf) > 1 for any v and p' ̂  2.

The rest of this section is devoted to prove Theorem IV.2.1. (a). We write
K(ω) = {ω 1

! ω 2 , . . . , ω j . Applying Assumption A(b) in Sect. II.2, we have that on $qk

-k) = 2 Σ ί ΦicoJtτ) - ω3{τ))dτ
ωfeK(ω) o

^ - 2 Σ
(ω) 0

ωJeK^C

Z - cJ X φ(|r -r'\)n(r,τ)n{r',τ)dτ (4.4.15)
0 reΛ

for some constant c, where n(r',τ)= card ({ωI (τ):ωι e[K(ω) and ωI (τ)eQ(r/)}).
For a given configuration of paths (ω)n in $qk we write.

WAτ) = c Y (\r-r'\)n(r,τ)n(r\τl

W3(τ) = c Σ ψ{\r-r'\)n{r,τW,τ). (4.4.16)

reyl§

From (4.4.15) it follows that

mω)kΛω)n-k) ^ - ί [Wtfτ) + W2(τ) + ̂ 3 W 1 ^ . (4.4.17)
o

For any given constant a > 0, we use (4.4.2) to obtain that on $qk,
^-W^τ^aA £ n(r\τ)p'- c £ φ(|r - r' \ή(r\ τ)n(r, τ)π(r, τ) -

r'eΛiq reΛ4q
r'eΛ2q

^ Σ φ(\r-r'\)[a'n(r',τy-cή(r',τ)n(r,τ)l-aBk,
reήAq
r'sΛ2q

Γ Ί " 1

where a' = aA\ ^ φ(\r\) \ . We note that a'\x\p> - c\x\ \y\ ̂  - c'\y\pΊp>"x for some
Uzv J
-reZ

constant c\ and so

^ -c[

(4.4.18)
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Here we have used the condition (4.4.9), Holder's inequality and (4.4.3) to derive
the above inequality. If one choose p ̂ p'/p' — 1, one may use Lemma IV. 4.2(a)
instead of Holder's inequality to obtain the bound:

aU((ω(τ))k) - Wx{τ) ̂  - c\ \Λj*Ί«*'-" - c\k. (4.4.19)

To estimate W2(τ), we use (2.2.4), (4.4.8) and the fact that n(r,τ) < \Λjlp<c\r\vllp

for any \r\ ̂  q (by (4.4.3) and Lemma IV.4.2. (a)) to obtain

X φ(\r - r'\)n(r,τ) S c £ φ(\r - r'\)\r\2 ^const,

\r-r'\t2q \r-r'\ilq

and so it follows from the definition of W2(τ) in (4.4.16) that

- W2(τ) ̂  - c"2k (4.4.20)

for some constant c2 > 0. Finally we estimate W3(τ). Since ω ί (τ0)£ylg

? i = 1,2,... ,/c,
we have

|ω,.(τ) - ω . d o ) ! 2 ^ {\r'\ - q - I ) 2 if cofc)eQ(r') c= Λc

2q,

and since n(r,τ) < \r\vl/p for \r\ > q by (4.4.3), it follows from (4.4.4) and (2.2.4) to

conclude that for any given b > 0

-W3(τ) + bV((ω(τ))k)^- £ n{r\τ)\c £ φ(\r - r ' | ) | r | w /*--( |r ' | - q - I ) 2 ]
r'eΛSq L rsΛ%q β J

rΈ^§g L 4 P J

> 0 ' (4.4.21)

if p0 is sufficiently large (q ̂  p0). Since

M4,l/M,+ i l ^ const,

by (4.1.13), integrating (4.4.18), (4.4.20) and (4.4.21) with respect to τ and using
(4.4.17) and (4.4.5), we arrive at the following bound:

W((ω)k,(ω)n_k) + aU^ω), + bV((ω)k) ^ - cm\Λq+1\
ι +i{l~1)pΊpip'-1}) (4.4.22)

We now use the assumption (4.4.7) and Theorem IV.4.3. to conclude that for any

given a > 0, b > 0 there is a constant c such that

(ω)k) + 2bV({ω)k) + W({ω)k,(oj)n_k) ̂  c\Λq+ι\
1+w-1M^)lp]

on Sq k. This completes the proof of Theorem IV.2.1. (a).

V. Discussions

There were two restrictions for choosing \<l<p in the proof of Theorem
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IV.2.1. (a), namely, (4.4.8) and (4.4.9). We first discuss the condition (4.4.8):

l/p<2/v. (5,1)

We have used (5.1) to derive the bound in (4.4.21). That is, one has to bound the
following:

lan(r, τ) - b\ω(τ) - ω(τo)\2 ^ a\r\lv/p - b\r\2.

where ω(τ)eβ(r) and ω(τo)eΛq9 and n(r9τ) < \Λ{Λ\
ιtp by (4.4.3). If (5.1) does not hold,

more than |r( 2—paths pass a unit cube Q(r) at some time τe[0,β). In this case we are
not be able to control W3(τ) by the fluctuations of paths V((ω(τ))k). Thus the
condition (5.1.) seems to be essential. If v ^ 4, we have to choose p ^ 2. Since y(v, p')
< 1 + (2/v) for any p' ^ 2, p > γ(v, p) for v ^ 4. In this case we use (4.4.14) instead of
(4.4.13) to obtain the result similar to that of Theorem IV.4.3. with the following
replacement of 1 + ((/ - l)/p)y(v, p') by (l/p)γ(v, p'\ One notices that lγ(v, p')/p < 1
for v ^ 4 if (5.1) holds. Thus we do not have enough convergent factors from the
iteraction terms to control local number operators.

We next consider the condition (4.4.7):

(5.2)
p'-l

The above condition gives the restriction on p' for the interaction satisfying
Assumption A. If γ(v,p') < p'/p' — 1, there are three possible ways to choose p. If
we choose p^y(v,p'), the exponent in the right-hand side of (4.4.18) should
be replaced by lp'/p(p' - 1) by Lemma IV.4.2 (b). Combining with Theorem IV.4.3
we need the following necessary condition to get the bound in Theorem IV.2.1:

P < ! + y ( v , p % for p^γ(vp')^ P

pp'-l p ' p'-l

Since 1 — y(v,p')/p^l if p^y(v,p'), the above is a contradiction. If we choose
y(v,p') ύpύp'/p' — 1, by the reason discussed in the previous paragraph, we have
the following necessary condition:

' P' l , ,
- - — Γ < -y(v, p ), for y(v,

The above is a contradiction. An argument similar to the above gives us a
contradiction for p ^p'/p' — 1 ^y(v,//)

Thus, in order to remove the condition (5.2) one has to somehow improve the
bounds in Theorem IV.4.3 and in (4.4.18). Choosing specific configurations in Sqtk

one may able to show that these bounds are optimal. We first consider the bound
in Theorem IY.4.3. To improve the bound one has to improve the bound in
Proposition IV.4.1. Consider the following configuration (ω)n of paths: For a given
unit cube A a Aφ assume that ωi(τ0)eΔ,i= 1,2,...,/c, for some τ o e[0,^] . Without
loss of generality we may assume A to be the unit cube centered at the origin.
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Then the problem becomes the minimalization of the following expression:

reΛ L ωf(τ)e(2(r)

which is related to the minimalization of the following non-linear functionals:

J " ' + / ( x ) x 2 ] (5.3)
d

under the restrictions:

Sf(x) = K, (5.4)

where K is a given number. In our case K = |ΛJZ/P. Using a variational method
the following fact can be proven: The minimum is achieved at

= 0, \x\>y/c9 (5.5)

where c is determined by (5.4). From (5.5.) and (5.4) it is now easy to check that
there is a constant b > 0 such that H(f) = bKy{v'p'\ From the above fact we conclude
that the bound in Proposition IV.4.1. is optimal.

For (4.4.18) one may choose a specific configuration to show that the bound
in (4.4.18) is optimal. Thus, in order to remove the condition (5.2) one may need
a further decomposition of Sqtk into a union of disjoint subsets.
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