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Abstract. For the Lie algebra SO (4) (and other six dimensional Lie algebras) we
find some Euler's equations which have an additional fourth order integral
and are algebraically integrable (in terms of elliptic functions) in a one
parameter set of orbits. Integrable Euler's equations having an additional
second order integral and generalizing Steklov's case are presented.
Equations for rotation of a rigid body having n ellipsoid cavities filled with
the ideal incompressible fluid being in a state of homogeneous vortex motion
are derived. It is shown that the obtained equations are Euler's equations for
the Lie algebra of the group G π + 1 = SO(3)x ... x SO(3). New physical
applications of Euler's equations on SO (4) are discussed.

1. Introduction and Summary

We consider two classes of six-dimensional Lie algebras L, which are specified by
the following commutation relations, that are written down in terms of a basis
Xb Yk (i, j , fc= 1,2,3), in the first class, A,

IXi, Xj] = εijknkXk, [Xu Yj] = είjknk Yk,

[Yi9Yj] = εijknkκXk,

and in the second class, B

[Xt, Xj] = εijknkXk, \_Xi9 Ttj]=O, [Yb Yj] = εijkmkYk. (1.2)

Here εijk is the totally skew-symmetric tensor, and nk, mk, K are structure constants.
The following Lie algebras belong to class A: SO(4) (̂ - = 1, κ = l), SO(3,1)
(n1 = n2 = U n3=-l, κ = - l ) , SO(2,2) (w1 = n 2 = l , n 3 = - l , κ = l ) , E3 ( n f = l ,
K = 0), L 3 (nί = n2 = 1, n3 = — 1, κ = 0) etc. The Lie algebras £ 3 and L 3 are those
corresponding to the groups of motion of the three-dimensional Euclidean and
pseudo-Euclidean spaces, respectively. The Lie algebras belonging to class B are

) = SO(3) + S O ( 3 ) ( n ί = l , . m i = l ) , SL(2,JR) + S L ( 2 , £ ) (nx = m1 = n2 = rn2 = l,
,iT) (n—l, m 1 = m 2 = l, m 3 = - l ) e t c .
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Let Xf, Yt* be the basis in the co-space L* to the Lie algebra that is dual to the
basis Xb Yt. Vector elements of the space L* are represented in terms of their
components with respect to this basis, l(t) = ΣMi(t)Xf + Ki(t)Yi*). Euler's
equations are defined in the space L* in class A they are of the form

= Mxω+Kxu, K = ω +

M ^ M K ^ '

where X x Y stands for the vector product of three-dimensional vectors. For class
B Lie algebras Euler's equations are

M - M x A , K = K x B ,

At = dH/dMi9 Bt dHldK M M K ^ ' '

Euler's equations (1.3), (1.4) have the following first integrals:

A:J±=H9 J2=Σ (κntMf + ntKf), J3=Σ n.M.K,,

ί = 1 3 3 " " (1-5)

B:JX=H, J2= Σ ΠiMf, J3 = Σ rniKf.
ί = l ϊ = l

Let G be the Lie group associated with the Lie algebra L, and Θ be the orbits of
the co-adjoint representation of the group G in space L*. The orbits Θ are
determined by the conditions J2 = c2, J3 = c3; they are four-dimensional symplec-
tic manifolds which are invariant with respect to Euler's equations (1.3), (1.4). On
the orbits Θ, the systems of Eqs. (1.3), (1.4) are Hamiltonian systems with a
Hamiltonian H(Mh Kt). In the following we will consider Hamiltonians of the type

H=i Σ (atMf + ic.Mi^i + btKf + Ir^ + 2qtMd - (1-6)
ί = l

Euler's equations (1.3) for the Lie algebra E3 (^-=1, κ = 0) coincide with the
Kirchhoff equations describing the motion of a rigid body in the ideal incompres-
sible fluid; a particular case of these equations is that describing rotations of a
massive rigid body with a fixed point [5]. Classical cases of in tegr ability are known
for these equations; they were found by Steklov [1], Lyapunov [2], Kowalewski
[3], and Chaplygin [4].

According to Liouville, it is sufficient to find an additional first integral J 4 to
make sure that the Hamiltonian system (1.3) [or the system (1.4)] on the orbits & is
integrable. The method which is used in the present work to construct the first
integral J 4 is to find conditions for the coefficients present in the Hamiltonian H,
under which the system of Eq. (1.3) [respectively, (1.4)] implies the pair of
equations

i+ =w+z+ +v+J3, z^=W-Z_+v_J3, (1.7)

where the functions z+ and z_ are (complex-valued) polynomials of first or second
order, and w+ = — w_. If Eqs. (1.7) hold, the system (1.3) has an additional first
integral at the level J3 = 0 [that is the one-parameter subset of orbits Θ (J2 = c2,
J 3 = 0)]; the integral is the second- or fourth-order polynomial, J4. = z+z^.. If
Eqs. (1.7) hold with v+ =υ^=0, the system (1.3) has the first integral J 4 in the
whole space L*. This construction enables one to obtain all the classical integrable
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cases mentioned [1-4] for Euler's equations in the Lie algebra E3, as well as their
extensions to other Lie algebras, having the commutation relations (1.1) or (1.2).

In Sect. 2 we show that there are two families of Euler's equations (1.3) in the
class A Lie algebras [in particular, SO(4)], which are integrable algebraically at
the level J3 = 0. The families are fixed by the conditions

κbxjnγ = 2a2/n2 - a3/n3 , κb2/n2 = 2aλlnγ - a3/n3, .

2b3/n3 = bί/nί+b2/n2,

iKbJΐii = aj/rij + ak/nk, ij, fc = 1,2,3, (1.9)

and ct — rt = qt = 0. The corresponding additional first integral J 4 is a fourth-order
polynomial, and at the level J 3 = 0 Euler's equations are integrated explicitly (in
Sect. 3) in terms of elliptic functions [for the Lie algebra SO (4)]. Note that, as was
shown in [6], the algebraic integrability of Euler's equations in SO(4) (for
ci = ri — ^i — 0) is possible in the whole space L* only under certain special
conditions [7]. Meanwhile, new integrable cases, given in Eqs. (1.8), (1.9), do not
satisfy the conditions formulated in [7], so they are integrable at the level J 3 = 0
only. The integrable case (1.8) is reduced to the classical system found by
Chaplygin [4] as ^ = 1 , κ-»0. An extension of the system (1.8) with r̂ ΦO and
a1 =a2 is reduced to the case of Kowalewski [3] as n{— 1, κ->0. The family of
Euler's equations which is specified by Eqs. (1.9) has no classical analogue.

A particular case of Euler's equations for the Lie algebra SO (4) = SO (3)
+ SO (3) is the system describing rotation of a rigid body with an ellipsoidal cavity
filled with an ideal incompressible fluid which is in homogeneous vortex motion
[8-10]. These equations were investigated by Steklov [11] as a model for earth
rotation; Steklov mentioned integrable cases corresponding to an additional
quadratic first integral J 4 . From the modern point of view, those integrable cases
[11] constitute a three-parameter family of integrable Euler's equations for the Lie
algebra SO (4) (note that the parameter M in [11, Sects. 3 and 42], is inessential, as
it can be excluded by means of a scale transformation applied to parameters A, B,
C, a, b, c, which are connected by three equalities in Sect. 42). In Sect. 4 of the
present work we present a wider six-parameter family of integrable Euler's
equations for SO (4), as well as some of its extensions corresponding to nonzero
linear terms in the Hamiltonian H. In Sect. 5 new physical applications of the
integrable cases for the Lie algebra SO (4) are considered.

Results of the present work have been announced in our previous publications
[12,13], and were presented to the International Congress of Mathematicians
(Warsaw, 1982) [14]. The author learned at the Congress that van Moerbeke had
recently found conditions under which some Euler equations for the Lie algebra
SO(4) are integrable. However, the corresponding first integrals were not given in
van Moerbeke's report [15]. The conditions given in [15] do not hold for the
integrable cases which are constructed in the present work.

2. Fourth-Order First Integrals J 4

Suppose we have Euler's equations (1.3) for the class A Lie algebras, and some
coefficients in the Hamiltonian H, Eq. (1.6), are zero, namely ^ = ̂  = 0. Let us
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consider solutions of Eqs. (1.7), for which the functions presented there are of the
form

zε = <*! M? + 2εα 3 M 1 M 2 + oc2M
2

2 + βK\ + 2γ1K1+ 2γ2K2 + σ,

wε = 2εxM3, vε = 2εyK3,

where ε= ±1.

Putting the time derivative of ze9 as given in Eq. (2.1), into Eq. (1.7) and taking
into account the dynamical equations (1.3) we get identities for polynomials of
M ί 5 Kί9 which are equivalent to the following system of algebraic relations for the
coefficients

ot3(n3aί —n1a3) = xaί, a3(n2a3 — n3a2) = xa2,

α 1 (n 2 α 3 — n3a2) + a2(n3a1 — n^) = 2xoc3 , xβ = — yn3 ,

aι(n2b3 - n3b2) + β(κnίb2 - n2a^) = 0, oc3(n3b1 - n^) = yn1,

cc2(n3bί - n^a) + β(n1a2 - κn2b^ = 0, a3(n2b3 - n3fe2) - yn2,

soc3n3r x + (nίβκ — n3aί)r2 = y2(κnιb3 — n^a^),

( π 3 α 2 - n2j8κ:)r1 - ew 3 α 3 r 2 = y1(n3a2 - κn2b3),

y2(κn3b1 - n x α 3 ) = 2xy x , y ! ( n 2 α 3 - κ n 3 f o 2 ) - 2 x y 2 ,

The first three equations in this system are a closed subsystem, and one easily gets
from them the coefficients x, and α 1 ? α 2 , α3, which are determined up to an
inessential common factor. The next five equations are used to find the coefficients
y, β and three constraints for the coefficients ab bh that are

κbjn1^2a2/n2-a3ln3, κb2ln2 = 2aγlnx-a3ln3,

2b3/n3 = bί/ni+b2/n2.

The coefficients ri9 yb σ are obtained from the remaining five equations in (2.2).
Finally, the system (2.2) is reduced to three constraints (2.3) combined with the
following relations:

aί = n3aί — nιa3, α2 = n2a3 — n3a2,

(2.4)

Ϊ2= -n3r2-εn2n3xr1(n1a2y
1.

The coefficients α, β, x, y are defined up to a common factor. Under the conditions
(2.3), the system (1.3) has the additional integrals at the level J 3 = 0,

J 4 = {(x.xM\ + d2M\ + βK\ + 2n3(r1K1 - r 2 K 2 ) + σγ)
2

-4α 1 α 2 iV 2 ,
_ _ (2.5)

N = M1M2 + (nln3a2r2K1 — njn3a1r1K2) (n^^l) 1 — n 3 κr 1 r 2 α 3

 2 ,

β=-nl(b1/n1-b3/n3), y=-xβ/n3,

σ2= —κn1

3rγr2x~γ
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so it is completely integrable in the one-parameter subset of orbits & (J2 = c2,
J 3 = 0). In the whole space Iΐ{MbK^) the function J 4 satisfies the equation

3. (2.6)

If ajn1 = a2/n2, one has bj^ = bj/πj because of Eqs. (2.3), so J 4 = 0, and the system
(1.3) is integrable for an arbitrary magnitude of the integral J 3 . If κ = 0, bι = 0 we
have the classical case of Kowalewski [3], and if κ = 0, foj + 0 we are led to
Chaplygin's case [4] for the Kirchhoff equations.

If ajnί φ a2/n2, the function J 4 is an adiabatical invariant for the system (1.3) at
\J3\ <̂  1. In the obtained family of Euler's equations which are integrable at J 3 = 0,
five coefficients aua2,a3,rur2 in the Hamiltonian H, Eq. (1.6), are arbitrary.

The second family of integrable Euler's equations (1.3) is obtained under the
conditions (ε = +1)

zε = aγK\ + 2εα 3 K 1 K 2 + a2K
2

2 + βK2, wε = εxM 3 ,

υε = εyK3.

Putting zε into Eq. (1.7), one gets in view of Eqs. (1.3) the following set of algebraic
constraints for the coefficients:

0ί3(κn3b1 — n^s) = xα x , oc3(n2a3 — κn3b2) = xot2,

aί(n2a3-κn3b2) + (x2(κn3b1-n1a3)=-2xa3, xβ= -yn3,

β(nίa2 — κn2b^) — ot1(n3a2 — κn2b3) = 0,

0L3(n3a1-κn1b3) = yπl9

β(κn1b2 — n2a^) + a2(n3a1 — κnxb3) = 0,

a3(κn2b1 — n3a2) = yn2 .

The system of Eqs. (2.8) is solved in the same manner as that in (2.2); it is reduced to
three relations between the coefficients ab bt (i J, k= 1,2,3)

jj , (2.9)

together with the relations

αi=κ« 3&i-Hi03> oc2 = n2a3-κn3b2, oc3 = (aίa2)
112,

x = a3, 2β = nl(a2/n2-a1/n1), y=-xβ/n3.

If the conditions (2.7) are valid, and J3 = 0, the system (1.3) has the additional
integral

(2 2 β 2 2 a 1 a 2 K l K 2

2 , (2.11)

so it is completely integrable (at the level J 3 = 0). In the whole space L* the function
J 4 satisfies the equation

J 4 = 4n3(a2/n2 - aί/nί)K1K2K3J3

it is an adiabatical invariant for \J3\ <ξ 1.
Thus we have proved the following

Theorem 1. There exist two families, (2.3) and (2.9), of Euler's equations (1.3) for
the class A Lie algebras (K Φ 0), which are completely integrable, according to
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Lίouvίlle, in the one-parametric subset of orbits Θ (J2 = c2, J 3 = 0), and have the
additional fourth-order integrals, given in Eqs. (2.5) and (2.11), respectively. For
ajny = a2/n2 the obtained Eulefs equations are completely integrable in the whole
space L*.

For the Lie algebras SO (4) and SO(3,1), Eqs. (2.3) and (2.9) have an open set of
positive solutions a f>0, bt>0. The family of the integrable cases, given in
Eqs. (2.9), does not admit linear terms in the Hamiltonian H, Eq. (1.6), and it is
reduced to degenerate equations as K goes to zero. For the family (2.9) the
integrability in the whole space L* for aί/n1=a2/n2 is evident, while for the family
(2.3) and with nonzero rt it is just a consequence of the existence of the first integral,
given in Eq. (2.5), as in the Kowalewski case [3]. Another extension of the
Kowalewski case, that was related to the groups of motion of Euclidean spaces, has
been proposed by Perelomov [16].

Note that under the conditions c^r^q^ 0, and

a1 bΛfa2 bΛfa3 bΛ (ax bΛ(a2 bΛ(a3 x

nx n3j\n2 nj \n3 n2) \nγ n2) \n2 n3j \n3

(2.12)

Euler's equations (1.3) have the additional first integral

J^ = yiKl + y2K
2

2 + y3Kl (2.13)

where
a2 bΛ(a3 bΛ y2 fa2 bΛ(a3 b2

K — I I K—j, — = 1 /c— K —
n2 n1j\n3 nίj n2 \n2 nj \n3 n2

so it is completely integrable in Liouville's sense [the existence of the integral (2.13)
is verified by means of direct calculation].

For the Lie algebra SO(4) (nt = K=l) the condition (2.12) leads to the known
integrable case found by Manakov [7]. Two families of Euler's equations, specified
by the conditions (2.3) and (2.9), do not belong to the five-dimensional set (2.12),
their intersections are two-dimensional subsets (axi-symmetric metrics). It is a
consequence of the results of [6] therefore that Euler's equations (1.3) under the
conditions (2.3) and (2.9) are not algebraically integrable in the whole space L*. It is
shown in the next section, however, that at the level J3 = 0 one, nevertheless, has
the complete algebraic integrability.

3. Explicit Integration of Certain Euler's Equations for the Lie Algebra SO (4)

The purpose of this section is to transform Euler's equations (1.3) [under the
conditions (2.3) or (2.9)], which are reduced to the invariant two-dimensional tori,
fixed by constant values of the first integrals T^, J^ J3 = (J, J 4, to appropriate
coordinates s1? s2; the dynamical equations for the latter are integrated explicitly
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with elliptic functions of the time. The construction of the coordinates sus2 is
inspired by the work by Chaplygin [4] dealing with Kirchhoff s equations.

Under the conditions (2.3), the first integral J 4 , Eq. (2.5), is nonnegative,
J4 = h2, and for Π^K^ 1 [the Lie algebra is SO (4)] it has the form

J 4 = ((α3 - a,)M\ + (a2 - a3)M2 + (61 - b3)K2)2 + 4(a3 -a,) (a3 - a2)M2M2.

(3.1)

The coordinates sί and s2 are defined, with /z>0, as follows:

S2 = (U-K)/V,
u = (a3 — a1)Ml + (a3 — a2)M2

ι, v = (b1—b3)Kl, s = a3Ml.

Hence we get

V = 2/2/(5! - 52) , M = (Si + S2)Λ/(5i ~ S2) . (3.3)

Let us find the coordinates Mi9 K} as functions ofs1 ? s2 and the constants of motion
Jk. In view of Eq. (3.1) we have

u2 + 2((α3 - αJMf - (a3 - a2)M2

2)v + v2 = h2.

Combining this equality with (3.2), we get

2(α3 - ai)M\ = (/i2 - (M - ί;)2)/2i;, 2(α3 - α 2 )M 2 = {{u +1;)2 - Λ2)/2i;. (3.4)

Putting the expressions (3.3) into (3.4) and (3.2), we obtain the desired expressions
of the coordinates Ml9M29 K3 in terms of sl7s2, h:

(3.5)

Next we shall find expressions for other coordinates Ku K2, M3 in terms of s l 5 s2

and the integrals J f . Putting the expressions (3.2) for M 3 , K3, as functions of v and
5, and the expressions (3.4) into the first integrals JUJ2, Eqs. (1.5), we get

2 ( α 3 - α 2 )

2v(a3—a1)

Thus one has just to find an expression for s as a function of s l 5 s2, Jk. Note that as
J3 = 0, we have in view of Eq. (1.5),

M%K% - 2(M\K\ + M^K|)MfX 2 + (M 2 K 2 - M 2 K 2 ) 2 = 0. (3.7)

Putting the above expressions into Eq. (3.7), one gets the following equation for the
variable s,

4(hva3

 1 ) 2 s 2 - 2 ^ 1 Ps + Q2/4 = 0, (3.8)
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where

yP = (h2-u2-v2)(X1-X2-h2(aί-a2)) + 2uv(X

(Y1Y2),

X1 = (α3 - a2) (u + v) (J1 - b2J2), X2 = (α3 - α j (« - υ) (Jx - M2) >

Y1=(a3-a2)(-u-v + J1-b2J2), Y2 = (a3-a1)(u-v-J1 + b1J2).

Because of Eq. (3.8) we have

4h2vs/a3 = P±(P2-h2Q2)112 . (3.10)

Hence we obtain (s/a3 = M3)

2h(2vy/2M3 = (P + hQ)1/2±(P-hQ)1/2. (3.11)

Using Eqs. (3.9) we find

-hQ) = ((h-u)2-v2)(aίv-β1

where

y(P + hQ) = {{h + u)2 - v2) (a2υ - β2(u - A)),

m2J2 , α2 = m1(J1 — K) — m2J2 ,

βi=(a1-a2)(J1+h)-m3J2, β2^{a1-a2){J 1~h)-m3J2,

mί = 2α 3 — α x — α 2 , m 2 = (α 3 — α2)£>2 + (α 3 — α j ί ? ! ,

m3 = (α3 - a2)b2 - (a3 - aΐ)b1.

Putting the expressions given in (3.12) into Eq. (3.11), and using relations (3.2), we
get

M 3 = [ ( ( s ? - l ) ( α 2 - j B 2 s 2 ) ) ^
(3.14)

Hence we get an expression for s.
Substituting in Eqs. (3.6) the notations of (3.13) for ubβb we can find

, 2(a3-a2)
| s.\p1 o2)r^2 |

2(a3-a1)(s1-s2) a3

Next we put into Eqs. (3.15) the quantity s/a3 = M\, as given in Eq. (3.14), and
obtain

(3.16)
s1)(S 2-l)

(a, - βίSl))112 + ((s, - 1) (1 + s2) (α2 - ^ s , ) ) 1 ' 2 ] .

Thus Eqs. (3.5), (3.14), and (3.16) provide with expressions for all the coordinates
M;,Kj in terms of the new coordinates s1,s2 and the constants of motion
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Jί,J2,J4 = h2 (at the level J3 = 0). Note that the formulae admit a simultaneous
sign inversion for any coordinate pair M f , Kt.

Next we transform Euler's equations (1.3) to equations for the coordinates
su s2. Let us find the time derivatives of the expressions for sl9 s2 in (3.2), applying
the equations of motion (1.3). The result is

a2)(ls1)M2K1/K3,

s2/2 = (a3-a1)(s2 + \)M1K2/K3+(a3~a2)(l-s2)M2K1/K3.

Substituting in these equations the obtained expressions for the coordinates
MuKj Eqs. (3.5), (3.16), we obtain a system of equations, which is closed,

Si = -((l-Si)(«i-iϊ iSi)) 1 / 2 , s2=-((l-s2

2)(a2-β2s2))^2. (3.18)

Because of equations (3.18), s;(ί) are elliptic functions of the time t. Substituting s, (ί)
in Eqs. (3.5), (3.14), (3.16) we obtain an explicit representation for the dynamics
determined by Euler's equations (1.3) in terms of the elliptic functions. The
degenerate case J 4 = 0 is integrated with elementary functions.

Our next purpose is to perform the integration of Euler's equations (1.3) under the
conditions (2.9), bi=^(aj + ak). The integral J 4 is

J 4 = h2 = ((α3 - a2)K2 + (a, - a3)K2 + (ax- a2)K2)2 + 4(α3 - a,) (a3 - a2)K2K2 .
(3.19)

Let us introduce new coordinates sus2,

s2 = (u-h)/υ,

u = (a3- a2)K\ + (a3 - a^K2

2 , v = (a1- a2)K\,

As in the first subsection, we shall find expressions for the coordinates Mb Kj in
terms of the new coordinates su s2 and the constants Jk. Using Eq. (3.19) we get

2(a3 - a2)Kj - (h2 -(u- v)2)/2v, 2(α3 - a^K2 = {(u + v)2 ~ h2)j2υ. (3.21)

Substituting here the expressions for u, v as functions of s l 5 s2, Eqs. (3.3), we have

(3.22)

Substituting (3.20), (3.21), we get from Eqs. (1.5), with the notation 5 = α 3 M 3 ,

(3.23)
u~v (aί—a2)(h2-(u-v)2) a3-ax

(a a)M2-J aJ U + V {^^{{u^vf h2) a3-a2

\a± — a2)ivi 1—j1— a2j 2 — s,

2 4v(a a) a

Putting the resulting expressions for the coordinates M ί ? Kj into Eq. (3.7), (J 3 = 0),
we obtain an equation determining s,

4(hva3

 x ) V - 2υa3 ^ s + Qj/4 = 0, (3.24)
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where

+ 2uv(x1 — x2 — h2(2a3 — a1— a2)/2),

(h2-u2-v2)(y1+y2) + 2uv(y1-y2)

y 1 =(α 3 -α 1 )(α 3 -α 2 ) ?

x2 = (a3-

y2 = (a3-a2)(a1J2-Jί+(u-v)/2).

= (a3-a2)(u-v)(axJ2-J1),

From Eq. (3.24) it follows

and, as M3 = s/a3, we have

2(2v)1/2hM3 = ( i\ + hQxY
12 + (P1 - hQ,)112 . (3.26)

Equations (3.25) lead to

Pi + hQ1 = ((u + h)2-υ2Kv^°2--(μ-h)β2

))γ:1

9

where

, a°2^(J1-h/2)n1-{-J2n2,

jff^(α1-α2)(J2α3-J1+/z/2), (3.28)

nx = 2α3 — aί—a2, n2 = 2axa2 — a3(a1 -ha2).

Using Eqs. (3.3), the expression in (3.26) is transformed to

(3.29)

Putting the corresponding expression for s = a3Ml into Eq. (3.23), we have

9

(sί-s2y
1m+sί)(s2-l) ' )

(α?- j8?Sl))-((Sl - 1) (s2 + 1) (4-βίs,))1^ .

Equations (3.22), (3.29), and (3.30) present expressions for all the original
coordinates MbKj in terms of the new coordinates sί,s2 and the constants of
motion Jk; as in the preceding case, for any pair Mb Kt the sign can be in versed.

Calculating the time derivatives of the coordinates s l 5 s2, as given in Eqs. (3.20),
by means of Euler's equations (1.3), we have

The system of dynamical equations is obtained when we put here the expressions
for Mt, Kj as functions of s1,s2,
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S! = -((l-s?)(«?-i8?Si)/2)1/2, s2=-((l-sl)(a°2-β0

2s2)/2)1i2. (3.31)

Thus, under conditions (2.9) Euler's equations are also integrated explicitly in
terms of elliptic functions.

4. Second-Order First Integrals J 4

In the present section we will investigate Euler's equations (1.3), (1.4) for general-
type Hamiltonians (1.6). We derive conditions for the coefficients ai9 bb cb ri9 qi9

under which Euler's equations are equivalent to a pair of linear equations [cf.
Eqs. (1.7)],

z+=w+z+, z_=W-Z_, (4.1)

where

wε = εxM3 + εyK3, ε = ± 1.

In this case the second-order polynomial J4 = z+z_ is an integral of Eqs. (1.3), or
(1.4). There is a special case of Eqs. (4.1), where z = z+ is a complex-valued function,
w+ is pure imaginary; then z_ = z + , w _ = w + , and the integral is J4 = zz.

I.

For the class A Lie algebras, (1.1), Eqs. (4.1) result in a set of algebraic relations for
the coefficients, which are obtained when the derivatives zε are calculated by means
of the dynamical equations (1.3), as Mi9Kt are arbitrary. So we have

aί(n2a3 — n3a2) + κβί(n2c3 — n3c2) = xa2,

ocί(n2b3 - n3b2) + βx(n2c3 - n3c2) = yβ2,

- n3c2) + βί(κn2b3 - n3a2) = ya2,

8i( - κn3b2 + n 2α 3) = xβ2,

κβ2(n3cί - n^) = xα t,

j81,

3;αl5

1 - «ic3) + β2(κn3bί - w^a) = x^i ,

The system of Eqs. (4.2) is solved explicitly with respect to the coefficients αi5 6f5

cf5 rt , ^j. The first four pairs of equations in (4.2) (these eight equations are a closed
subsystem) are used to exclude the variables of the type nfj — nfi, and we get four
closed equations for three quantities σ 1 ?σ 2, σ3, where (7. = ̂  — ^ . Solving the
latter equations, we get a single relation for the coefficients αi? βb

0, (4.3)

and the expressions for σt in terms of α7 , βk, x, y,
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n3(a1-κb1) = (xC + yB)(2a2β2y\ n3(a2~κb2) = (xC-yB)(2α1j81)"* ,

n1(a3-κb3) = (-xA + yD)(2a2β2y
1,

A = oι1β2 + ot2βl9 B = aίot2-κβ1β2,

C = a1β2-a2βi, D = cc1cc2 + κβ1β2.

We consider next two pairs of equations in (4.2): the first and the third, the fifth
and the seventh. Putting there κbt = at — σ( and using (4.4), one easily gets the
following expressions

n2a3 - n3a2 = (xaίa2 - κβx(xA + yB)/2ocί) (αf - κβ\)"1,

)(oc2

2-κβ2

ίy1,

The remaining two pairs of the equations are used to express ri9qt via the
parameters yb <xj9 βk, x, y,

ri-7l«2

2-κβ2

2'
 Γ2~ Ίl al-κβ\ '

R R ( 4 6 )

a2x-κβ2y axx-β

Equations (4.4) and (4.5) are invariant under the transformation αf->Cαi5

βi-^Cβi, so their right-hand sides depend on four free parameters, under the
constraint (4.3). For κ + 0 the coefficients ai9 bi9 ct are determined by Eqs. (4.4) and
(4.5) up to two-parameter transformations,

where Tt and T2 are the parameters. So 9 coefficients ai9 bi9 ci9 constrained by the
relations (4.3H4.5) depend on 6 free parameters. The parameters auβ1,γί acquire
arbitrary real values, the parameters α2, β2, y2, x, y may be either all real, or all
imaginary, in both cases the expressions in (4.4)-(4.6) are real; except for this
restriction the parameters /y1,y2

 a r e arbitrary.
A consequence of the above consideration is

Theorem 2. Eulefs equations (1.3) (for the class A Lie algebras atκ + 0), with the
coefficients ai9 bi9 ci9 ri9 qt expressed by means of Eqs. (4.4)-(4.6) via the parameters
0Li9 βb yi9 x, y, which satisfy constraint (4.3), have an additional first integral,

(4.7)

and are therefore completely integrable, in Liouville's sense, on the orbits Θ
(J2 = c2,J3 = c3).

If κ = 0, it follows from Eqs. (3.2) that the coefficients ai9 bi9 ct must satisfy the
following relations (i, j9 k = 1,2,3)

"MM 1 - nfiϊ ^ (nfi ~ nfj) ~1 = nk(n{aϊι - nka^ι) (nkct - nfk) ~\

nin
2nlbi - nf(nfk- )2rx 2 l b ] { ^ j x
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The coefficients αί5 βi9 x, y are, correspondingly,

ax = C{n3aι - nxa3)
ljl, α2 = C(n2a3 - n3a2)

lf2

x =

y = (nίa2 + n2ax) (n3cx - n1c3)
ί/2(n2c3 - ^ 3 c 2 ) 1 / 2 ( ? t 1 π 2 α 1 α 2 ) " 1 / 2 , (4.9)

1 1 , β2=-

If the relations (4.8), (4.9), and (4.6) are valid, Eqs. (1.3) have the additional integral
(4.7) and are therefore completely integrable. For n( = l the constraints (4.8)
determine the cases of integrability which were found by Steklov [1] and
Lyapunov [2] for the Kirchhoff equations.

II.

For the class B Lie algebras, Eqs. (1.2), the Eqs. (4.1) are reduced to the following
set of algebraic relations for the coefficients, because of Euler's equations (1.4),

α 2(n 3α 1 — n 1α 3) = xa1, aί(n2a3 — n 3α 2) = xa2,

-m 1 & 3 ) = 3;j81, βι(m2b3-m3b2) = yβ2

= xβ2, α 1 π 2 c 3 — β1m3c2 = yα2 .

Besides, they lead to explicit expressions for the coefficients ri5 qb

3βiy,

^ 3 -0.

The coefficients x, y and αi? τβt (with an indefinite factor τ) are easily obtained from
the first two pairs of relations in (4.10). Then one gets c{ and the factor τ from the
third and the fourth pair of the equations in (4.10). Finally, we have three relations
for the coefficients ab 6ί5 cu

ci = (niφi~-miφ[1)qφίφ2φ3,

Ψi = {{nflk - nkaj)/(mjbk - mkb^)112 , (4.12)

q = {mibj ~ πijbi) (npitf) - n^φ2) ~x

(it is easily verified that q is independent of the subscripts ίJJ+j). Other
coefficients, up to a common factor at αί5/?f, are as follows:

oci = (π 3α 1 - nxa3)
112 , α2 = (n 2α 3 - n3a2)

1/2 , x = α x α 2 ,

/? 1 =π 3 m 3 -> 3 (m 3 fe 1 -m 1 fe 3 ) 1 / 2 , β2 = n3m3

ιφ3{m2b3-m3b2)
112, (4.13)

y = (m3bί-m1b3)
ί/2(m2b3~-m3b2)

ίl2.

To conclude, if ai9 bi9 cf satisfy the relations (4.12), and ru qt are given by Eqs. (4.11),
Eqs. (4.1) have the solutions zε,wε, which are determined by Eqs. (4.13).

The above discussion is summed up in the following statement:

Theorem 3. Euler's equations (I A) for the class B Lie algebras, if relations (4.12),
(4.11) hold, have an additional first integral J4 = z+z^, as given in Eq. (4.7), and
they are completely integrable in Liouvilles sense, on the orbits Θ.
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III.

The integrable case (4.12) for the Lie algebra SO(4) (n^m^ 1), containing six
arbitrary parameters ab bb is a generalization of the three-parameter family of
integrable cases obtained by Steklov [11, Sect. 42]. Formulae which were
presented in [11] are too complicated, and that integrable case has not been
investigated at all. We shall describe some properties of a more general case,
specified by Eqs. (4.12), for ri = qi = 0.

As the coefficients ct must be real and satisfy Eqs. (4.12), for at > a^ > ak one has
either bi>bj>bk, or b^bjKb^ Suppose α 1 > α 2 > α 3 , then OLX and βx are real
because of (4.13), while oc2,β2,x,y are imaginary. In this case the integral J 4 is

The conditions (4.12) (for n—m—l) are not changed if the order of the axes is
rearranged. Therefore, for given values of the ab bb cb Eq. (4.1) has two other pairs
of solutions, corresponding to the substitutions 2->3, 3->2 and l->3, 3->l.
Respectively, one has two other integrals of Euler's equations (1.4),

(4.15)

2

The integrals J 5 and J 6 are linear combinations of the integrals J l 5 J2, J 3 , i 4 if the
constraints (4.12) hold, the following identities are valid

2Jί-(a2-c2φ1φϊ1)J2-(b2-c2φ3φϊ1)J3-p1(c2φϊ1J4-c3φ21J5) = 0,

2J1-(ai-c1φ2φ3

ί)J2-(b1-cίφ3φ2

1)J3

V, = ({a2-a3){b2-b3)yv\ p2 = ((ai-a3)Φi-b3)Γ1l2. (4.16)

In the case of the Lie algebra SO (4) the orbits Θ (J2 = c2, J 3 = c3) are compact
manifolds JίAr = S2xS2. The sets of minima of the integrals J 4, J 6 , and saddle
points of the integral J 5 are specified by two conditions, and they are three two-
dimensional tori Ύf in the manifold Ji^ (i =1,2,3). Intersections of these tori with
the equipotential surface of the Hamiltonian, J1 = const, are closed trajectories for
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Eqs. (1.4), which can be integrated explicitly, in terms of elliptic functions of the
time parameter. In the three-dimensional manifold of the common level of the
integrals J l 5 J 2 , J3, the manifold Jίz, these trajectories are, in view of identities
(4.16), the sets of minima, maxima, and saddle points of the function J 4 .

In the limiting case where b1=b2 = b3 = b, there are integrable cases with two
constraints,

c1c2c3(c3

2-c^2) = a1-a3, cλc2c3(c2

2-c3

2) = a3-a2, (4.17)

and so containing five free parameters. The coefficients αi5 x are given in Eqs. (4.13),
βί=c3(x1/c2, /?2 =

 c3α2/ci> y = 0 As in the preceding case, Euler's equations (1.4)
with the relations (4.17) have the additional integral,

^-c3K2/Cl)
2, (4.18)

so they are completely integrable on the orbits &.

5. On Physical Applications of Euler's Equations for the Lie Algebra SO (4)

Let us consider Euler's equations (1.4) for the Lie algebra SO(4) = SO(3) + S O (3)
(n^m—l) with the general quadratic Hamiltonian,

2H= Σ (aijMiMj + 7x:ijMiKj + bijKiKJ). (5.1)
i , J = l

The Hamiltonian depends on 21 parameters aip bίp cip

A special case of Euler's equations (1.4) are the classical equations describing
motion of a rigid body with an ellipsoid cavity filled with the ideal incompressible
fluid which is in homogeneous vortex motion [8-10]. In the most general case,
these equations contain 12 parameters which determine components of the tensor
of inertia of the rigid body Iίk and the position of the ellipsoid cavity, Dik. In
particular, in the case of diagonal matrices aip bip cip which constitute a nine-
dimensional space F 9 , the Hamiltonians describing the dynamics of the object in
view constitute a six-dimensional submanifold V6 in V9. The new integrable cases
presented in Sect. 2 [Eqs. (2.3) and (2.9)] depend on three arbitrary parameters,
and their intersection with the manifold V6 is trivial, so these cases has nothing to
do with the physical problem mentioned above. The integrable cases specified in
Eqs. (4.12) depend on six arbitrary parameters, so their intersection with the
submanifold V6 has no more than three dimensions. This is just the three-
dimensional family of integrable cases which was indicated by Steklov [11].

II.

In order to find physical applications for a wider class of Euler's systems for the Lie
algebra SO (4) we will consider the dynamics of a rigid body with n ellipsoid
cavities filled with the ideal incompressible fluid. We choose the coordinate frame
fixed to the rigid body, 5, and put the origin 0 to the center of mass. The cavities are
enumerated by an index α = l , ...,n; let r\,r2

a,r\ be coordinates of the cavity
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centers, and Da be symmetrical operators transforming the unit sphere into the
ellipsoid α-cavity. The eigenvalues daU da2, da3 of the operator Da are the semi-axes
of the α-cavity, and da^=dQtDa = dalda2d0[?). Every cavity is filled completely with
the ideal incompressible fluid with a constant density ρα and the total mass

The motion of the rigid body with the fixed center of mass is determined by an
orthogonal matrix Q(t). Motions of the fluid in every cavity satisfies the equations
of hydrodynamics,

ρdy/dt = — gradp, div v = 0, (5.2)

where ρ is the density of the fluid, v is its velocity, and p is the pressure. In the
following we assume that the motion of the fluid in every cavity is a motion with
homogeneous deformation (see in [17]); in other words, it is given by a
transformation from the Lagrange coordinates ak [which are within the unit
sphere, (α1)2 + (α2)2 + ( α 3 ) 2 ^ 1] to the Euler coordinates x\

*' = Σ (FUt)ak + 6WD, F« = QDaQa > (5.3)
fc=l

where Qa(t) is an orthogonal matrix determining the rotation of the fluid in the αth

cavity with respect to the rigid body.
The equations of motion for the rigid body with n cavities filled with the ideal

incompressible fluid are the hydrodynamical equations (5.2) for every cavity and
the conservation law for the total angular momentum. Let us introduce the
notation

Q = QA0, Q«=-BOaιQa, (5.4)

and use the isomorphism of vectors with the components υ[ in R3 and skew-
symmetrical 3x3 matrices with the components Vjk,

H=-Σ^ (5.5)
i = 1

At this isomorphism the vector product of two vectors, x x y, is mapped to the
commutator of the corresponding matrices, [XY~\=XY~ YX. Let the skew-
symmetrical matrices Ao and BOa be isomorphic to vectors with components A\
4 , i = l , 2 , 3 .

The angular momentum of the fluid in the αth cavity (with respect to the center
of mass 0) is given by

Mα = μ~ \FaFa- FaPa) = μ~ 'Q{D2

aAQ + A0D
2

a - IDβMQ,
3 X ( 5 6 )

^
μ~' = mJ5

(the integral is over the cavity volume). Replacing the matrix notations by their
vector counterparts, we get from Eqs. (5.6) that the total angular momentum
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vector of the system in the reference frame S is

M = / A+ Σ μ;\CaA-2dΰίD;1Ba),

( 5 ? )

where IOik is the tensor of inertia of the rigid body in the reference frame S.
The conservation law for the total angular momentum in the reference frame S

is written down as

M - M x A . (5.8)

For the fluid motions with homogeneous deformations, Eqs. (5.3), the
continuity equation divv = 0, Eq. (5.2), is satisfied identically; the dynamical
equation d\/dt= — gradp is equivalent to the Helmholtz law (the vortex is frozen,
ω = curlv, so dω/dt = 0 along the fluid trajectories). The vortex vector in the αth

cavity, ωα, is mapped by the isomorphism (5.5) to the matrix

KOa = KF« ~ KFa = Q{KlaQa, Klu = D2

aB0Λ + B0βDβ

2 - 2DaA0Da.

(5.9)

The Helmholtz law (KOa = 0) is written as

Kla = lKla,BOa}. (5.10)

Hence using the isomorphism (5.5), Klα->Kα and multiplying by μ"1, we get

Kα = KαxBα, Ka = μ;\CaBa-2daD^A). (5.11)
Equations (5.8), (5.11) describe completely the dynamics of the rigid body with

n ellipsoid cavities filled with the ideal incompressible fluid being in a state of
homogeneous vortex motion. After the Legendre transformation A,Bα->M, Kα

(which is evidently symmetrical) these equations are reduced to the system

M = MxA, Kα = KαxBα,

Bxi = dH/dKai,

where the Hamiltonian H is the total kinetic energy of the rotation of the rigid
body and the fluid in every cavity. The Hamiltonian is

α = l

N = M+ Σ 2dαCα"*/);%, (5.13)
α = l

α = l

Equations (5.12) are determined in the space R3n + 3; they are a special case of
Euler's equations in the space L* + 1 which is conjugate to the Lie algebra of the
group G π + 1 = SO(3)x ... xSO(3) (n+1 factors). The Hamiltonian H contains
6n + 6 independent parameters which are components of the symmetrical matrices
7, D l 5 . . . , Dn (note that the parameters μα5 or the densities ρα, are inessential, since
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they are excluded by means of the substitution Da = μ~1/2Da). Scalar products
combining all the pairs Kα, K̂  and Kα, M are present in the quadratic form H in
Eq. (5.13); that is to say, the form H is essentially non-diagonal in the considered
natural basis.

Equations (5.12) have n+ 1 geometrical integrals, besides the Hamiltonian H;
they are

J 0 = (M,M), Jα = (Kα,KJ, α=l, . . . ,n, (5.14)

where Jo is the integral corresponding to the total angular momentum squared.
The level surfaces for the integrals given in (5.14) are orbits & of the co-adjoint
representation of the Lie group Gn + 1 in the space L* + 1. The manifolds
Θ = S2 x ... x S2 (n+l factors) have the standard symplectic structure with
respect to which Eqs. (5.12) are Hamiltonian equations with the Hamiltonian
function//, Eq.(5.13).

III.

Euler's equations for the Lie algebra SO (4) = SO (3) x SO (3) are derived from (5.12)
in two particular cases. The first one is the classical case; it is n = 1 and there are 12
free parameters which are the components Iik, Dik. The second case corresponds to
n = 2 and Jo = 0 (i.e. M = 0); here the equations given in (5.12) are reduced to

Ki-KiXBi, K 2 - K 2 x B 2 . (5.15)

These equations [the corresponding Hamiltonian is that of (5.13) for M = 0]
contain 18 free parameters which are components of Iik9 Dlik, and D2ik. Clearly,
they are Euler's equations for SO(4). In the case where the matrices J,D ί,D2 are
diagonal, we have a nine-dimensional region of homogeneous Hamiltonians of the
type (1.6), with ^ = ̂  = 0.

Let us study the possibility of applying the above physical interpretation to the
integrable cases specified in Eqs. (2.3) and (2.9). For κ = ί the class A Lie algebras
are transformed to the class B Lie algebras with nt = mi by means of the
substitution Xi = \(<Xi+ 3Q, %=\(Xi—. Yj). Thus we get the decomposition of the
Lie algebra SO(4)-SO(3) +SO(3) (n f= 1, κ= 1), and Euler's equations (1.3) are
transformed to Eqs. (1.4), namely, the dynamical equations of (5.15), where
Ku = Mt + Kb K2i = Mi — Kί. This transformation applied to the Hamiltonian of
Eq. (1.6), for cf = rf = gf = 0, that has been considered in Sect. 2, leads to the
Hamiltonian

2H= Σ (ai(K2

li + K2

2d + 2βiKliK2d9 4αί = αi + &i, 4βi = ai-bi. (5.16)

In terms of the new coordinates, the integrability cases (2.3) and (2.9) are given by
the conditions

β3= - α 1 - α 2 + 2α3, (5.17)

and
j8. = 3 α i - α 1 - α 2 - α 3 5 (5.18)

respectively. The corresponding Euler's equations (5.15) are integrable at the level
of the first integrals (K1,K1) = (K2,K2) [i.e. J 3 = (M, K) = 0].
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Let us consider a rigid body with two ellipsoid cavities, the symmetry axes of
which are parallel to the principal axes of the tensor of inertia Iik;in other words,
three matrices /, Du D2 are diagonal simultaneously in the reference frame S which
is related to the axes of the tensor Iik. Suppose the fluid densities ρ 1 )ρ 2

 a n d the
semi-axes of the cavities satisfy the similitude conditions,

du/d^iQi/Qΰ115 • (5.19)

Then we have μΐίl2dli = μ2

ίl2d2i = di. The corresponding Hamiltonian H of the
form (5.13) is reduced to that of (5.16), where

42m2+42)-1)-1>o,
$ U , / c = 1,2,3.

The integrable case Eq. (2.9), or equivalently, Eq. (5.18), does not satisfy the
physical conditions (5.20), as it follows from (5.18) that βί + β2 + β3 = 0, while β( > 0
in (5.20).

After the substitution (5.20), the conditions for the existence of the integrable
case (2.3) [Eq. (5.17)] acquire the following form

+ 32-
d2

+dl

R3I3 = 1M\ + d2

2r\U\d\{d\ + df) + 6(d? - dl)2(d2 - df) (5.21)

+ d

d2)2§=-^2, j=2,3.

Conditions (5.21) determine a relation between the parameters du d2, d3 and give
expressions for the components I2Λ?> i n terms of I1,dί,d2,d3. For dί&d2,
Eq. (5.21) leads to dγ ?zd2zzd3, lγ ^ / 2 ^ 2 / 3 ? so the necessary physical condition
/i + / i >/ f c is fulfilled.

Thus the integrable case (2.3) [or (5.17)] describes the rotation of a rigid body
with two ellipsoid cavities filled with the ideal incompressible fluid under the
conditions (5.19)-(5.21) at the level of the first integrals (M,M) = 0, (K^KJ
= (K2,K2). As it was shown in Sect. 3, in this case Euler's equations (1.3), (5.15) are
integrated explicitly in terms of elliptic functions of the time variable.
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