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Abstract. In [1,2] Witten derived important consequences of the topological
structure of σ-models. We rederive them from the canonical viewpoint and
outline a systematic approach to similar questions.

1. Introduction

In [1,2], Witten derived several striking consequences of the topological structure
of σ-models. In particular he showed that for the SU(3) σ-model:

i) the Wess-Zumino term in the equation of motion has to occur in integral
multiples of a certain fixed expression, and

ii) the solitons are fermionic.
Our object is to rederive these as consequences of a Hamiltonian approach.

This clarifies the topological aspect of the problem, and gives a systematic way of
studying such questions. The requirement that a certain two-form be integral and
thus represent a curvature on a line bundle gives i). The assertion ii) follows from
the fact that a certain SO(3) action does not lift to the line bundle.

We should note that our work is similar in spirit to that of Finkelstein and
Rubinstein [3] and the more recent papers [4-6]. Other recent references are
[7,8]. Jain and Wadia are investigating the Hamiltonian structure independently.

In the rest of this section we outline our argument.
Let us start, as Witten does, by considering a charged spinless particle in the

field of a magnetic monopole. But instead of trying to write down a Lagrangian we
note (see for e.g. [9]) that the equations of motion can be written in a Hamiltonian
form by changing the symplectic structure in a way that only involves the magnetic
field F 1 ,

{pi9Pj} = const x F y . (1)

1 This corresponds to the following: The configuration space M is R3\{0}. The cotangent
bundle π: T*M^>M is the phasespace, and carries a canonical nondegenerate 2-form Ωo, which
defines the usual Poisson brackets. Let Ω = Ω0 + π*F, where F is the magnetic field 2-form, and
check Ω is again nondegenerate. Then Ω defines the new symplectic structure
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Now one can quantise the system directly. Geometric quantisation [10], in this
special situation gives the following prescription: find a hermitian line bundle (i.e. a
complex vector bundle with one-dimensional fibres and an inner product along the
fibres) L and a unitary connection A on L so that F is its curvature. The Hubert
space of states Jf is then the space of square integrable sections of L and vector
fields on R3\{0} act on Jf by covariant differentiation so that (1) is implemented as
an operator equation.

This gives immediately i) the quantisation of the magnetic charge and ii) the
fermionic nature of the system for odd values of the magnetic charge. The
curvature integrated over a 2-sphere has to give the Chern class, an integer - this
implies i). As for ii), note that L restricted to a two-sphere (~P<c) can be identified
with a power Eo of the so-called tautological line bundle Lo on P^ (given by
associating to each point the one-dimensional subspace of (C2 it represents). Then
it is well-known that the action of SO(3) on P^ [induced by the action of 51/(2) on
C 2 ] lifts to an action on Eo iff r is even. Thus when r = 1 (unit magnetic charge, up
to sign) only SU(2) acts on Lo, and hence the state-space carries a half-integral
spin.

Let us now turn to the σ-model described by Witten. It describes an S U n -
valued field U, and the equation of motion is

d»Aμ + χε^σAμAvAρAσ = 0, (2)

where Aμ=U + dμU and χis a constant. The second term is the Wess-Zumino term.
The "configuration space" 501 of the theory is the space of maps S3-»S£/(3).

This is because finiteness of energy is supposed to force U to go to a constant at
spatial infinity. The space 9JI falls into components - the classical soliton sectors -
labelled by π3(Sl7(3)) = Z, which we shall label Wn\ We have then

a) The components are homeomorphic. We have H2(W{n)) = Z, so that the set
of isomorphism classes of (unitary) line bundles on 9JΪ(M) is again labelled by Έ. Let
if(ι) denote the line-bundle with this integer (the Chern class) equal to i.

b) The equation of motion (2) can be derived by changing the symplectic
structure on T*$R by a curvature term χβ (analogous to the magnetic field) pulled
back from 9JΪ.

c) f represents the "same" cohomology class on each SDΐ(f). [This makes sense
because of (a).]

d) Quantisation would require that χf represent an integral cohomology
class, so as to be a curvature of a connection on a line bundle. If we require that it
represents a generator of ii2(9M(i)) this fixes the least value χ0 of χ: χ0/ is a
curvature on if(1).

e) The group of spatial rotations SO(3) acts on 9K(i). Its action lefts to if0) for j
even, and to i ? ω for j odd if i is even. It only lifts to an SU(2) action otherwise.
Thus, if χ = (odd integer) x χ0, the one-soliton sector is fermionic.

The rest of this paper is organised as follows. Section 2 describes the
Hamiltonian formulation of the σ-model, and the modification needed to take the
Wess-Zumino term into account.

Section 3 is devoted to some topological results on the $R(n) and to deriving the
"quantisation" of χ. We conclude this section with remarks on the SU(2) σ-model.
In Sect. 4 we have the results on the spin of the quantised theory.
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Because of the infinite dimensional situation, the differential geometric
statements below are only formally true, and these are marked with an asterisk.
The purely topological statements are true when spaces of maps have the
compactopen topology.

2. The σ-Model

We consider space to be compactified to give S3 = SU(2). We will denote by
{dJi= i, 2,3 a set of orthonormal, left invariant vector-fields. The volume form on S3

will be denoted by τ.
The configuration space of the theory is the space of maps S3-»SC/(3). This is

formally a Lie group, and its Lie algebra ^ is the space of maps S3->sw(3), the Lie
algebra of Sί/(3). We have the tangent bundle

We shall define Hamiltonian dynamics on T3R. [It should, of course, be defined on
T*9Jl, but we have 0 - %* by means of the inner product (At, ΆJ = - f Tr (AtA^)τ.']

Take as Hamiltonian the function

where A—U^dJJ. /'Note that A = ΣAtdx1 is the pull-back of the Maurer-Cartan
\ i

form by the map U\

We have

with coordinates (£/, α, Av β) and we define the symplectic structure by the 2-form

Ω(U,At){(a, β), {μ\ β')} = - J Ύτ{β*'-β'a ~ Atfa α])τ + χ/{(α, β), (μ\ β^)} ,

with

/{(α, j8), (α', j80} =

We will see later that / is closed. Note that it only involves (α, of) and is thus pulled
back from SOΪ.

We now verify that Ω gives the equation of motion (2). Note first that

dH(μ', β') = - J Tr (Atβ' + AMM)*,

where δAi(oί') = dioί' + [Ai,oιΓ\9 so that

dH(a\β')= -
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The Hamiltonian vector field (aH, βH) is defined by

Comparing coefficients of α' and β\ we get

<x.H = A t ,

βH = d*A - xiafjAiAjAk - AμHAjAk

[where d* is the adjoint of d. On ]R3 the term d*A would be equal to d^
= dί(U + diUy\. It is easily seen that this reproduces (2).

Remark 2.1. There is a description of the curvature term / which makes it clear
why it is closed, and will be useful later. Consider the closed form
Θ = Tr(wΛWΛWΛWΛw)on SC/(3), where w is the Maurer-Cartan form. Then the
evaluation map

gives by pull-back a closed 5-form G*<9 on the product, and / is obtained by
integrating along the fibres of the projection (px) to the first factor. Thus

/ = P l G*β. (3)

3. The Topology of SR(n) and the Class of /

We shall systematically identify S3~SU(2). Let as before

Then since π 3(Sl/(3))~Z we have m=[j ΪR(n), where 9M(n) are the path
neZ

components. We shall denote by I the standard inclusion of SU(2) in SU(3)

Sl/(2)9(M)

and take the corresponding element of π3(S[/(3)) as the positive generator. We
have

Proposition 3.1. The yjl(n)'s are topologically ίsomorphic. We have

πi(9N (B)) = 0, π2(Wn)) = Z.

Proof. Let e be the identity of SU(2). Evaluation at e gives a map

Let m{n) be the fibre above the identity of SU(3). Define a map T: 9JΪ-+2R by 7J(
=/(x)I(x). It is clear that Γtakes 9K isomorphically to itself, taking 2R(n) to m(n
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(Since multiplication in πf(G) for G a group can be defined by multiplication in the
group itself, see, e.g. [11]). This proves the first statement. The statement about
homotopy groups follow from the (trivial) fibration

JDl(0)

ΪE

SU(3)

noting πiφl^) = πi+3(SU(3)).

Remark 3.2. By Hurewicz and the universal coefficient theorem (together with the
above proof), we have H2(9W(II))-^> H2φl{n)) = Z.

^Theorem 1. The curvature β represents the same cohomology class in each $R(Π).

// χoβ represents a generator of if2, χ0— — — - 2 '2π 240π

Proof. As pointed out in Remark 2.1, f is obtained by pulling back
0 — Tr (w Λ ... w) under the evaluation map

and integrating along the fibres of the projection to 30ΐ:

/ = P l G * θ .

Consider now the diagram [with G{n) denoting the map G on SDΐ(n) x SC/(2)]:

x S3 -7r-> S17(3)

where H(f x) = (/(x), I(x)), ¥*(/, x) = (/F, x), m{a, b) = ab.
From the Kunneth decomposition of H*(SU(3) x SC/(2)) we see that

= Gf0)Θ. This gives

= [G*
(0)

This proves the first statement.
Let us now look at / on 9Jl(0). We have <fl = Pi*Gf0)Θ. If χOf/ is a generator of
i/2(ΪR(0)) we have χ o / M = l, w h ^ r e ίi is a 2-sphere generating if2(ΪR(()))
= π2(ΪR(0)). That is, χ0G%)Θ[_pΐ1h~\ = \. But then it follows from the fact that
π2(2R(0))~ π5(St/(3)) and the theorem on p. 237 of [12] that

i 1
Xo=~ 2π 240π2 *

î βmαr/c 3.3. The SC7(2) σ-model.
It is instructive to consider in parallel the SU(2) σ-Model. We summarise the

relevant features:
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a) The configuration space, which we denote by 9ΐ, splits up as in the SU(3)
case: ($i = {J 9lin\ We have 9

b) π1(Uim)) = Z/2, π2{Wm)) = Έ/2. This implies that

Ext(£Γl5 Z) = H2(<n(m)) = Z/2.

[Sketch of proof: It is enough, by the universal coefficient theorem for cohomology
and homology, to show H2 is torsion. But if $t(π) denotes the covering space

H2(Wm\ R) c» H2(yi{m\ R) - 0.

The fact that the above map is an injection follows from [13].] We let ££<& denote
the nontrivial line bundle on 9ϊ(m).

c) The curvature /\yί = Q. This follows from Remark 2.1.

4. The Action of the Rotation Group, Spin

We begin with a few general remarks. Let L^M be a hermitian line bundle on a
manifold M, F the curvature of a (unitary) connection A on L, and G a connected
Lie group which acts on M leaving F invariant. Let φg:M^>M denote the action of
g 6 G on M - we have φ 0 ° φ^ = φgg,. Since G is connected, each φg has a lift, to L:

M >M
Ψg

Note that φ 0 is not unique, for one can compose it with automorphisms of L
leaving M fixed (gauge transformations). Under certain circumstances [for
example if H1(M, R) = 0 or if L is trivial and F = 0] there exists a lift φg which leaves
4̂ invariant, and this is unique up to a constant gauge-transformation. Thus one

has central extension:

Here G is a group of automorphisms of L preserving A, 1/(1) is a central subgroup
of G and G = G/l/(l).

In general this will be a nontrivial extension - there may not be a way of
choosing the lifts φg s.t. φgφg, = φgg,, Vg,g'eG. However, if G = SU(ri), and all
actions are continuous the extension is trivial [14]. Note that this means if
G = SC/(n)/(centre)5 its action lifts to an action of SU(ή). We wish to prove:

Theorem 2. The action of the group of spatial rotations on 9Ji(n) (respectively Wl^)
for n odd does not lift to if0 ) for j odd (respectively to J£m).

^Theorem 2. The action lifts otherwise.

Recall that JSfω is the line-bundle with Chern class equal to j times the
generator of #2(9Jί(n)) and £e^ is the nontrivial line bundle on 9t(π).
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Remark 4.1. Under the identification S3 ~ SU(2), the group of spatial rotations can
be identified with the inner automorphisms. The point e, left fixed, is the origin.

We shall first obtain a finite-dimensional manifold M, with a submanifold N
such that we have a commutative diagram of inclusions

N

We will prove -̂ > H\M)-»H\N) ^ -

(4)

(The double arrow -» will denote a surjection.)
Let us first define M. The group SU(3) acts on $R(1) by (g, ψ)-+gψg +. The orbit

of I under this action is defined to be M. Note that we have a diagram

sum
S(t7(2)x[/(1))

where Γis the t/(l) subgroup of ̂ ^/(S) consisting of matrices of the form

la 0 0 \

0 α 0

V0 0

, αel/(l).

(This is the centraliser of I.) We let JV = S£/(2)-orbit of I = fibre above the point
(0,0,1) of P 2 . Note that the inclusion in (4) are clear.

Lemma 4.2.

π 1 (M)-0, π2(M) = Z,

- # 2(M) -̂ > iί2(iV) = E x t M ) - Z/2.

Proof. Note N~S0(3). The rest of the proof follows by looking at the homotopy
exact sequence of the two fibrations. Only (*) requires comment. Note that we have

Applying Hom( ,Z) to this we get

Proposition 4.3. We have

H2(N) ^

(A)

(B)

(C)



362 T. R. Ramadas

Proof. It now suffices to prove (A) and (B). The idea is to take generators of the
homotopy groups πt(N) and π2(M) and to show that they give generators of
π4(Sl/(2)) and π5(SC7(3)) respectively. Let us first prove (A). The path

0 \
) ( ) ί e [ 0 , l ]

in SU(2) descends to a loop in JV, the generator of πx(JV). We have thus a diagram

Sl/(2) x,

t

The map SU(2) x S1 ->Sl/(2) is the 2π-rotation of SC7(2) = S3 and it is well-known
that this gives a generator of π4(>S3) under the identification: π4(S3)
^ π ^ M a p s ^ 3 , ^ 3 ) ) , where on the right we take the identity map as base-point.

The proof of (B) takes a little more work and we relegate it to an appendix.

Remark 4.4. We have the diagram

where the horizontal maps are by multiplying by powers of I, and hence
isomorphisms. We can thus conclude H2(m{n))-»H2(<il{n)).

Remark 4.5. Define N{n) to be the Sl/(2) orbit of Γ (n φ 0). (Thus N = N{1).) Then the
proof of (A) above can be imitated to show that H2(yi(n))^H2(N(n)) is an
isomorphism for n odd, and the zero map for n even. We can now proceed with the

Proof of Theorem 2. Note that the action of the rotation group leaves 9l(n)

invariant. By Remark 4.3 it suffices to prove that the action on 9t(ι) for i odd does
not lift to JSfjR. By Remark 4.4, it suffices to prove it for N{i) (noting that N{i) is also
invariant under the rotation group). But under the identification JV(ί)~SΌ(3), it
only remains to remark that the left action of SO(3) on itself does not lift to the
nontrivial line-bundle on it.

Proof of * Theorem 2. We know that the action lifts to a SU(2) action. But by
/-I 0\

Remarks 4.3 and 4.4 it is clear that the element I I acts trivially on the

fibres above N{n\ and hence everywhere. For n = 0 note there exists a point of 9Jί(0)

left fixed by SO(3). Then SU(2) has to act trivially on the fibre above this point.

(Concluding) Remark 4.5. In the published version of [1], which appeared after
this work was completed, Witten considers the space M and remarks that the
Wess-Zumino term can be regarded as a "magnetic field" on it. The monopole
harmonics are sections of the line-bundle if(3) restricted to M. Since this is induced
by a representation of T, the Frobenius reciprocity theorem can be applied to give
information on the representations of SU(3) that appear.



Wess-Zumino Action 363

Appendix: Proof of Proposition 4.2(B): We outline the proof in steps:

i) Define a map K: Sl/(2)->Sl/(2) as follows. If a = ( °L ) e SU(2) (which
\-b άj

is true iff |α| 2 4- |fo|2 = 1)

Ku =
1 a2 -b2

:\a\4+\b\y2\b2 ά

If H is the torus <! ( _ , α e (7(1) Λ we have
\0 α/ J

and X induces a map K:

51/(2) > SU(2)

i i
H\SU(2)-^SU(2)/H9

where K is of degree 2.

ii) Define J:S17(2)->S17(3) by Ju = ί
0 0\

Ku

SU(2) > 5(7(3), Iw satisfies

α 0
α 0 0\

KJM IM) 0 α 0 ,
l 0 0

Then the map

and thus induces a map H\SU(2)—> M. The induced map H\SU(2)-*Ψ2 is given

0

by and represents twice the generator of π 2 (P 2 ). Thus Σ represents

a generator of π 2(M).
iii) We shall prove (the square-brackets indicating homotopy classes of maps)

IS2, M]->[S2,9JΪ ( 1 )] - — [S 2, 5,5(7(3)]

gives an isomorphism π 2(M)~π 5(5(7(3)). Let i; denote the vector
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The map SU(3)-±S5(h eSU(3)^hv) takes a generator of π5(Sl7(3)) to twice a

generator of π 5(S 5). One can verify that it thus suffices to prove that in the diagram

SU(2) x SU(2)

H\SU(2) x SU(2y

ϊ
s5

the map L is of degree ± 2. Here L is defined by

L(u,g) = Jululg(lu)+ (Ju) + υ.

iv) That L is of degree ±2 will follow from the following fact: Let (B) denote

the ("bad") set (e)xSU(2)u(-e)xSU(2)u(H\SU(2))xe in H\SU(2)xSU(2),
(I 0\ /-I θ\

where (e) denotes the /7-coset I I and ( — e) that of I ). Then: a)

outside (B) the differential of L is nonzero b) outside the image of (B) every point

has two pre-images, and c) the complement of (B) is connected,

v) Let w = (Ju)(υ). Then

where (,) denotes the inner product in (C3.

The claims a), b), c) in iv) above follow from ( # ) and a rather tedious analysis of

possibilities, which we omit.

It is possible to give a slightly shorter proof using f\M and the theorem of [12]

that is used in the proof of Theorem 1.
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