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Integrability Conditions for Killing Spinors
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Abstract. The conditions for the existence of solutions of Dμη = ± cyμη are
discussed. In general, it is not sufficient to consider only the first integrability
condition [Dμ,Dv~]η= — 2c2γμvη; in particular, the second integrability con-
dition is needed to explain why, in certain cases, only for one choice of sign does
a solution exist. The Killing spinor-tensors, as defined by Walker and Penrose,
are shown to be the spinorial equivalent of conformal Killing tensors. Their
relationship to the Killing spinors and spinor-vectors used in supergravity, is
given.

In supergravity, Killing spinors are very useful in analyzing the particle spectrum
of Kaluza-Klein theories. They also determine the number N of supersymmetries.
Killing spinors may be defined [1] to be solutions of

Dμη=±cΓμη, (1)

where c is a constant related to the curvature of the background. The naive
integrability condition for this equation [1, 2] reads

[Dμ, Dv-]η ̂ RμvmnΓ
mnη = - 2c2Γμvη , (2)

and is clearly insensitive to the sign in (1). It is known that on the round £7 there are
8 solutions for either choice of sign, because these solutions have been explicitly
constructed [3]. However, on the squashed SΊ, an explicit construction [4] showed
that there exists only one solution and for only one choice of sign. Depending on
the sign in the Freund-Rubin ansatz [5, 6],
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this solution corresponds to N = 0 or N = 1 supersymmetry [7]. A similar situation
obtains for the (p, q, r)-coset spaces of SU2 x SU2 x SU2/U(1) x U(l) [8].

In this article we study the complete set of integrability conditions for (1). The
second integrability condition, obtained by differentiating (2) and replacing
derivatives of η using (1) is sensitive to the sign of c, and explains the results
described above. Before turning to the integrability of (1), we wish to discuss the
notion of Killing spinors and spinor-tensors as introduced by Penrose and Walker
(PW) [9], and relate it to the Killing spinors defined by (1) and to the Killing
spinor-vectors as introduced by Duff and Pope [1]. The latter are defined by

Dμηv + Dvημ = 0, Dμ = dμ + cΓμ. (4)

As we shall show, for spinors both notions coincide, but for vector-spinors the PW
notion defines conformal Killing vector-spinors. As with conformal Killing
tensors we find, on Sπ, that a conformal Killing vector-spinor is a sum of a lower-
spin part yμλ (analogous to gμvC for a Killing tensor Tμv) a derivative of the k= 1
modes of the Dirac operator, and the ordinary Killing vector-spinors defined
in (4).

Penrose and Walker define a spinor x^1;;;̂ ; to be a Killing spinor if

V7(A'0 A\...A'r)_f\ /CΛ
y (B0^Bί...Bs) — U \J)

Here we are working in d = 4 dimensions, with a Minkowski metric, and spinor
indices A and A' take the values 1 or 2. We will soon, however, move to arbirary d.
The unsymmetrized derivative on the spinor in (5) will, in general, be an arbitrary
linear combination of products of Lorentz spinors with εAB or εA,B,. Penrose and
Walker's Killing equation merely requires that the largest irreducible piece of

r$tit:::£ (6)
should vanish.

For example, consider a PW Killing vector. It satisfies

P^W = 0. (7)
Hence

rϊ VB

B' = ΨABε
A'B' + ΨA'B'εAB + ψεABε

A'B'. (8)

Transcribing into tensor notation and going to arbitrary dimensions one gets

, (9)

where Fμv= —Fvμ. Hence

(10)

and thus Penrose and Walker's criterion (7) yields a conformal Killing vector.
For a simple spinor χB, Eq. (5) yields

17A' r\ (Λ ι \
y(AAB)~υ' \LL)

Hence

(12)
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for some spinor λA'. In tensor notation and generalizing to arbitrary dimensions,
one has = .

Multiplying by yμ yields λ in terms of χ

Dμχ = - yμ(I/>χ). (14)

Taking the divergence gives

1 1
(15)

where ,R is the Ricci scalar of the manifold. (Note that in our conventions jR < 0 on a
sphere.)

Assuming that R is a constant (as, for example, on Einstein spaces) one may use
= λ2χ with λ2=^nR(n-l)~l and define

1f>χ9 (16)

to obtain that f>ιp± = ±λιp + . Actually, if the space is Einsteinian,

Dμψ± = ±-γμψ±9 (17)

as one may show as follows. Replace Dμχ in Dμψ+ by (14), and evaluate λ~ lDμ!j)χ
by first commuting the derivative Dμ onto χ and using (14), and then using Ij)]j)χ
= λ2χ in l/>yμJ/>χ, one obtains (17). Thus, a PW Killing spinor is a sum of two
ordinary Killing spinors.

On S7 the spinors in (16) are the fc = 0 modes of the Dirac operator. There are
also 8 + 8 spinors τf± (7=1,8; spinor index suppressed) satisfying (17). We may
prove, for S7, in a simpler way that the fc = 0 modes satisfy (17) by using the
completeness relation ψ±=ΣrΊI±(ήI±Ψ±\ It is easY to show that Ώ(ή+ψ±) = 0,
hence that ή±ψ± = constant. Thus the /c = 0 modes are a linear combination of
the η*±.

We now turn to Killing gravitatinos, but specialize to spheres Sn of unit radius.
The PW definition (5) in tensor notation generalized to n dimensions, yields

where Aμv= -Avμ. Hence

yμφv + y vφμ + gμvλ , (18)

(19)

Contracting with yμ allows us to express ιpμ in terms oϊy-ψ, λ, and χv, and tracing
(19) yields λ in terms of y ip and χv. Remarkably, if one uses these relations to
eliminate ιpμ and λ in (19), the y - ψ terms cancel by themselves, yielding

(n + 2)D(μχv} = gμvD χ + y(μ^χv) + y(μDv}y χ . (20)

Note that (20) is invariant under χv-+χv + yvζ. This invariance should be present
since the original equation (5) does not make any statement about the components
of χ proportional to εAB, i.e., to yμ.
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Instead of algebraic operations, one can also use differentiation. Differentiating
(20) with Dμ yields

(21)

Further differentiation with Dv yields

[D+i(5n + 4)][«D.χ-0y.χ] = 0. (22)

As a check, note that λ = nD - χ — fly - χ is still invariant under χv-»χv + 7v£ Using
D λ = (βf) —%K)λ, one notices that λ is equal to ψ + + ψ _ , which are k = 1 modes of
the Dirac operator,

(23)

The proof is analogous to the discussion following (15).
In order to determine the most general solution of (20), we shift χv so that

y - χ = 0. Afterwards we will add to the solution an arbitrary yμ piece. From (22) we
see that

D χ = a sum of fe = 1 modes of Dirac . (24)

Introducing the Killing spinor operator

Dμ = Dμ-
J-yμ, (25)

where j = ± i, we see that also D - χ is a sum of k = 1 modes. As suggested by the
treatment of conformal Killing vectors, we decompose χv into a transversal and
longitudinal part

, D χτ = 0. (26)

(Note the similarity to coexact plus harmonic, and exact forms.) Substituting this
decomposition into (20), one obtains

[{n + 2)δ<δJ - γμγ'δ°v - y vfδ% (Dρχρ

τ

σ

(27)

Note that we have written the left-hand side, L, in terms ofDμ, but the right-hand
side, R, in terms of Dμ because this simplifies (27) greatly.

Our strategy is the same as that usually followed in the case of conformal
Killing vectors. We will consider the integral J(L - R)(L - R) = 0, and show that L
and R are orthogonal. Then we will derive the consequences from L = 0 and R = 0.

To prove the orthogonality of L and R, we first observe that gμv acting on L
[the terms on the left-hand side of (27)] yields zero, since it always yields (gβσ or
yρyσ)(DQχl + Dσι

τ

Q\ which vanishes due to (26). Partially integrating the remaining
terms in JRL, one must show that the following expression vanishes

)] [_DQχ τ

σ + Dσχ J] . (28)
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The terms containing yμy
βδ^ + yvy

ρδσ

μ vanish separately, as one may verify, using

fyΆ Dτ~] (DρXτ + ί> Yr) = 0 , (29)

and RΛβμv = (gΛμgβv — gΛVgβμ). In the remaining terms, derivatives and gamma
matrices are commuted such that one ends up with only D χτ, y - χτ, Π, and I/), (β
having been replaced by Ij) —\jn.) Next, one replaces D χτ by ^jy χτ according to
(26) and (25). The result is that (28) reduces to

-4(/ι + 2)[^-i/n][D+i(5« + 4)]y.χΓ. (30)

In order to prove the orthogonality of L and R, it therefore suffices to show that
y - χτ is a zero mode of D +^(5n + 4), or, equivalently, a sum of fe = 1 modes of Ij)

with eigenvalue ± π - + 1 ) . Acting on (26) with Dv and using y - χ = 0, one obtains,

with (24),

of k=l modes of p. (31)

The most general solution of this inhomogeneous equation for φ is a sum of fe = 1
modes (the special solution) and the general solution oϊDvD

vφ0 = 0. By considering
ί φQDvD

vφQ = 0, it follows that DVD
V φQ = 0 implies DvψQ = 0. Hence, φQ is either η +

or η^ and does not contribute to the decomposition in (26). Finally, multiplying
now (26) by yv, one sees that y χτ=—i/)φ = (k=l) modes of Jf). Orthogonality is
proven. Therefore, the left- and right-hand sides of (27) vanish independently.

To deduce the consequences of L = 0 and R = 0, we begin by contracting the
left-hand side of (27) with Dμ. After some algebra, one finds

(n+l)(Ώχΐ+±5nχ% = (Dσ+%yσWy χτ. (32)

As a check one may verify that, upon further contraction with yσ, one recovers the
result that y χτ is a zero mode of Π +^(5rc + 4). As we already discussed, this
implies that y - χτ is a sum of fc = 1 modes of Dirac. Hence, the right-hand side of
(32) is of the form Dσ or yσ times k = 1 modes of I/). The latter we denote again by φ +

and φ ~ . Assuming that χ J has the same form as the right-hand side of (32), one finds
the following particular solution of (32)

+ α_(Dσ+i(n + 2»σ-i(n-l)7»_ . (33)

Note the symmetry under ί-> — i. This particular solution satisfies

D- χτ (part) =J^yχτ (part)

Hence, JD-χτ(part) = 0.
Let us fix α+ and α_ such that y χr(part) = y χr. Defining θσ by

Xσ = xJ(part) + θσ, it follows that D θ = γ θ = D θ = Q.It also follows from (32) that
θσ is a zero mode of D +^5n. Hence, p]/)θσ= -^(n + 2)2θσ and decomposing θσ

into θσ = θϊ +θ~ as before, it follows that #θ± - ± -(
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Since the eigen-modes of If) on ιpσ with γ ψ = D - ψ = 0 are given by

λ= ± -(n + 2 + k), we conclude that θσ is a sum of fe^O modes of tf). Using the

completeness of the η*±9 we note that θ^ = Σ*7±^±σ> where the φI±σ = ήI±θ^ satisfy

ϋ]φσ= —(n — \)φσ, and thus are Killing vectors. Indeed, t^η± = -- η± and Dθ^
I » = I " 4 "

, while (Dllή
I

+)(D»θ:)=$(n
The general solution of (32) is thus that χj is the sum of (33) and of θσ. To find

the general solution of L = 0 in (27), we first substitute θσ into L. The result is
C^μ+i^μ)^ + (μ<-»v) = 0. This equation is indeed satisfied, because θ* are a
product of ?/± and Killing vectors. Thus, θ * and θ~ are ordinary Killing vector-
spinors. They contain the obvious solution Dμχ^ + Dvχ^ = Q of (27).

We next substitute (33) into L = 0. Now φ± = Σ*?±^±> where φf± =ΣήI±(P± are

k=l modes of D, which can also be written as τ/ + ̂ . (There are only n - h l
independent k = 1 modes. On S7 they are obtained by contracting ή^ηί. with either
(5jj or yjj.) It follows that the gradient of the scalar k = 1 mode φ is a conformal
Killing vector, DμDvφ = — gμvφ, and using this information, one may check that
also χ^(part) in (33) satisfies (27). (The y(μDv)φ + and gμvφ ± terms cancel separately.)

To deduce the consequences of the vanishing of R, the right-hand side of (27),
we note that R vanishes identically when contracted with gμv or γμ, but contraction
of R with Dμ yields a nonvanishing result

0. (34)

The general solution is a sum of k = 1 modes of I/) [the general solution of D φ
+^(5n + 4)φ = Q'] plus any k = 0 mode of ]/) (conformal Killing spinors were
ordinary Killing spinors as we saw). This information on φ is slightly weaker than
that obtained below (31) since there we showed that only η+ or η_ could be
present.

This concludes our discussion of the PW Killing spinor-tensors. We have
shown that on Einstein spaces PW Killing spinors coincide with the ordinary
Killing spinors of supergravity, but that PW Killing vector-spinors on Sn are a sum
of (i) yμ times an arbitrary spinor, (ii) a sum of ordinary Killing vector-spinors, and
(iii) the gradient of a k = 1 Dirac mode.

We now turn to the second part of our investigation, namely the integrability
of(l).

It is clear that the first integrability condition (2) is necessary for a solution of (1)
to exist. However, by differentiating (2) and using (1) to substitute for Dμη, one may
derive a second integrability condition. Moreover, by doing further differenti-
ations and substitutions, one can obtain an infinite set of necessary algebraic
constraints on η. A sufficient condition for the existence of a solution to (1) has been
given by Schouten [10]: if the (n-fl) t h integrability condition derived in the
manner described above, is satisfied as a consequence of the first n conditions, then
these first n conditions are sufficient for a solution of (1) to exist.

In fact, matters are even simpler than one might think. The first (naive)
integrability condition (2) states that inside the hypersurface defined by the vectors
dμη(x) in (η, x) space, the curvature vanishes. Hence, in that hypersurface, one can
integrate. The problem is to make sure that one does not leave the hypersurface,
while integrating. This is the content of the higher order integrability conditions
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and all one has to do is to find the n for which the n + 1th integrability condition has
the same solutions as the nih condition. If this is the case, one can stop at this point
and integrability holds [11].

In supergravity, the stability subgroup of SO(7) for one spinor is G2, for two
spinors it is SU3 for three spinors it is the same as for four spinors, namely SU2,
while 5 or more spinors have trivial stabilizer. Thus the solution space is at most
4-dimensional (with the exception of the round SΊ for which it is 8-dimensional).
Therefore, one has to check at most five integrability conditions.

By multiplying (2) by /, one may show that

[,Rμv — 4c2(n — 1 )#μv]y
 vη = 0. (35)

Multiplying (35) by η+yρ and then adding the result to its complex conjugate, one
obtains r.^ Λ ~>, 1 N - i / + Λ « . + v 0 Λ /^r\

γ yρη), (36)

and hence

Rμv = 4c\n-l)gμv. (37)

Therefore, the existence of a Killing spinor implies that the space is Einstein.
Using (37), the integrability condition (2) may be rewritten more succinctly

aS[2] Cμvβσf
ση = Q , (38)

where Cμvρσ is the Weyl tensor.
The second integrability condition is obtained by differentiating (38) and

using (1)
η . (39)

Using (38) this may be rewritten in a manifestly co variant form

(DλCμveσ)γ°ση + 2cCμvλρy*η = 0 . (40)

If the Einstein space is a symmetric space (for which DλRμvρσ = 0), it follows from
the same arguments used to derive (37) that Cμvλρ = 0, and hence the manifold must
be a maximally symmetric space (a sphere or a sphere factored by some finite
group). On the other hand, if the space is not a symmetric space, both terms in (40)
are nonvanishing and the null space N of spinors satisfying (38) decomposes into
three disjoint subspaces N+,N_, and N0, where N+ (Λf_) satisfies (40) with — ( + )
sign, and N0 does not satisfy either case. (If one given η lies in both N + and 7V_,
then Cμvρσ = 0.) This explains why on the squashed S7, for which N is one-
dimensional, only one choice of sign in (1) is allowed. From explicit computations
it is known that for one of the (p, q,r) spaces of G/H = SU2 x SU2 x SU2/Ui xU 1 ?

(38) does have a solution, in fact, it has in that case precisely two solutions. Both of
these have been shown to correspond to solutions of (1) with the same choice of
sign. This result could also be deduced from (38) and (40). One would find that
these conditions are satisfied for only one choice of sign, and that for that choice of
sign, both solutions of (38) are solutions of (40). Since the dimension of the solution
space of (38) is not decreased by (40), it follows that Eq. (1) is integrable and has two
solutions.

This concludes our discussion of the integrability conditions of (1). We now end
with a brief discussion on the integrability condition of the conformal Killing
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spinors in (14) when one does not assume, as we did, that the space is Einsteinian.
By evaluating [Dμ, Dv]χ and commuting in Dμί/)χ the Dμ onto χ, we again use (14)
and eliminate the D on χ by (15). Surprisingly, all terms add up to (38). In other
words, a conformal Killing spinor of a non-Einsteinian space still must lie in the
null-space of the de Sitter holonomy group.
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Note added in proof. Following the completion of this paper, we learned of two pieces of work
which have some bearing on our results.

First, Castellani and Romans ("/V = 3 and N = l Supersymmetry in a New Class of
Solutions for d= 11 Supergravity", Caltech preprint CALT-68-1053) have shown that the higher
order integrability conditions can provide non-trivial constraints on the solution space. In
particular, Eq.(38) is shown to have four solutions; whereas the Killing spinor equation (1) can,
depending upon the geometry, have either one or three solutions for one sign and no solutions for
the other sign.

Duff, Nilsson, and Pope ("The Criterion for Vacuum Stability in Kaluza-Klein
Supergravity," Imperial College preprint /83-84/18) have shown that for Einstein manifolds with
Λ = 0, the Killing spinor equation has solutions η+ and 77 _ [with opposite signs in (1),
respectively], if and only if the manifold is a sphere, Sn, for n> 2. Consequently, if one is not on a
round sphere, the solution space of (1) must be empty for one choice of sign. The proof is as
follows. Consider the scalar, φ = ή+η_ and the vector Va = ή+Γaη^.lfφ^Q, then it satisfies VaVbφ
— ~9abΦ> and its gradient is a conformal Killing vector. Yono and Nagano [Ann. Math. 69,451
(1959)] have shown that such scalars can only exist on round spheres (n>2). If φ = 0 then Vaφ$,
but F67βΞ=0. Hence P7

[αPfe]Fα = 0, and thus RabcdV
d = Q, which implies RbdV

d = ΛVb = Q. Therefore,




