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Abstract. We use the polymer representation of <^4-quantum field theories to
prove an infinite family of correlation inequalities, called "skeleton inequal-
ities", for the 2n-point Green's functions. As an application, we show that
they imply that Feynman perturbation theory is asymptotic in less than four
dimensions.

I. Introduction

Recently there has been a revival of interest in Symanzik's polymer representation
[1] of quantum field theories. The probably most important results of this
development so far have been the proofs of the triviality of the continuum limits of
the Ising- and ^4-models in dimensions larger then four, due to Aizenman [2] and
Frohlich [3,4].

In recent papers, Brydges, Frohlich and Sokal [5,6] have shown, however, that
the polymer representation may also be useful to study the theory in lower
dimensions. Their main result was a new, very simple proof of the existence and
nontriviality of the continuum limit of φ4 in two and three dimensions. The new
proof of Brydges et al. rests on new correlation inequalities, called "skeleton
inequalities", which may be described as follows.

Call a full skeleton amplitude a Feynman diagram without selfenergy
insertions where all the lines stand for full propagators. The "skeleton series" is the
power series in ( — λ) with coefficients given by the full skeleton amplitudes
associated with the skeletons of perturbation theory. Then, the partial skeleton
series to even (odd) order are rigorous upper (lower) bounds for the corresponding
Green's functions.

In [5] this conjecture has been proven up to order n = 2m( — λ).In the present
paper we give a complete proof to all orders in (— λ). As an application we will use
these bounds to obtain a new proof that perturbation theory gives asymptotic
expansions for the continuum Green's functions for the one and two-component
φ4 theory in dimensions less than four. Again, this is a known result [8,9], but our
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proof is considerably simpler and possibly more transparent than the original

ones.

Despite the advantage of enormous simplicity, we would like to mention a few

shortcomings of the present approach. First, it has not been possible so far to

establish Euclidean invariance of the continuum limit within this framework.

Second, the method only works for one and two-component theories, basically

because one needs to know Griffith's inequalities. An exception is the "zero-

component model" (known as the Edwards model [10]), for which we have

recently proven results analogous to those presented here [11]. In fact, in many

respects the proofs for the Edwards model are even simpler than for the ^4-theory,

and in particular the proof of the skeleton inequalities there is recommended as a

warm-up for the more complicated one given in the present paper.

The remainder of this paper is organized as follows. In Sect. II we collect a

number of definitions and facts regarding the polymer representation that we will

need later on. In Sect. Ill we present our proof of the skeleton inequalities to all

orders. Section IV contains the proof of the asymptoticity of continuum per-

turbation theory in two and three dimensions. In Sect. V we draw our con-

clusions.

II. The Polymer Representation

This section is intended to provide some basic facts about the polymer

representation of ^-theories which we will need later. Since everything in this

section is well-known, we do not give proofs or derivations. For detailed reviews

see, e.g. [5, 6, 12].
Let φ(x) be an JV-component real scalar field on a lattice (aΈf, {tx} a field of

real, positive "local times." We define a probability measure dμ(λ)(φ)[£] on φ

depending on the local times tx by

β*<+ "+>. (2.1)
xe(aTL)d

where 2 is the off-diagonal part of the Laplacian operator,

(φ, ̂ lφ)Ξ j dxdyfy(x) Axvφ(}0 — J dx ^ ~ —, (2.2)
fl α μ=ι α

^μ is a unit vector in the μth direction, and

f(u) = e~ad*u2~ 2"αdv«τ + m / C9 3^7 \α/ — ̂  \Zj"Jj

We adopt the convention to write

a xe(aZ)d

Z(ί) is the partition function defined by demanding the measure (2.1) to be

normalized. dμ(λ\φ) [0] = dμ(λ\φ) is the ordinary measure of the lattice — φ*-

theory. Notice that the local times tx could alternatively be viewed as introducing a

space-dependent mass
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The following identity gives rise to the polymer representation for the propagator.
We have [1, 12]

, y)(t) = <Φί(χ)Φi(y)> (0 = ί tfWjKyW^ΦΪ W
= Σ ίdvω(t')Z(t + t')/Z(t). (2.5)

Here the sum is over all random walks ω going from x to y. The ω-dependent
measure dvω(f) is given by

dvω(t) = (ad-2)^ Π dvMω)(g, (2.6)
xe(αZ)<!

with

V(n-l)! for n>0

for » = 0 (2'7)

nx(ώ) is the number of times ω visits the site x, and |ω| denotes the length of ω.
In particular, (2.5) with t = 0 allows us to express the propagator of a <^4-theory

as a sum over random walks,

Gw(x,y) = Σ dvω(t)z(t) (2.8)
co:x-*y

withz(f)ΞZ(ί)/Z(0).
Corresponding expressions hold for general Green's functions. Let

F?\Xl>yι ... xH, yn) = ^ _£ ί Π dv^z ( Σ ί;) (2.9)

Then

Pl -Pk / = \

(2.10)

Here the sum is over all pairings pi of2nt objects, respectively. Finally, let us define
the four-point Ursell-function u(^ by

(2-11)
P

From the above equations it is obvious that

p £;ί$££|J! (2.i2)
and further

!#>(*!,...,x4) = Σ Σ ί dvω(t)z(t)[G(A)(xp(3),xp(4))(ί)-G(λ)(xp(3), xp(4))(0)]

" ω"P<1^Xp<2> (2.13)
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We conclude this section by stating an important lemma on the splitting of
paths. For a proof see [5].

Lemma 2.1 (Brydges, Frόhlich, Sokal) [5]. Letg(t) be some function of the local
times tx. Then

Σ ϊdvω(t)txί...txng(i)
ω : x -» y

= Σ Σ ίldvωι(l?)g(iA. (2.14)

Here σn denotes the group of permutations of n objects.

III. The Skeleton Inequalities

In this section we prove the skeleton inequalities for 2p-ρoint Green's functions,
that have recently been conjectured by Brydges et al. [5]. Before stating the precise
form of our main theorem, we introduce some convenient notation.

Let <&n be some graph arising in the perturbation series for a p-point function.
We call Ήn a "skeleton graph", if by cutting no more than two lines no subset of
inner vertices can be disconnected from the external points of the graph; that is to
say, if the graph contains no self-energy insertions [13]. With a graph <&n we
associate an amplitude A(λ\^n) defined as

(y1,...,yn)=$ Π &»(xet,x,J Π dxfj. (3.1)
α lines £ vertices

in^n /j in^n

Here XA, x/2 are the endpoints of the line /, and f is the vertex associated with the
spatial point x, This amplitude is a function of the p points y l 5 ...yn which are
associated with the external points of &n If λ is put equal to zero in (3.1), we call
A(0)(^n) a "bare" amplitude, otherwise a "full" amplitude. If $n is a skeleton graph,
we call A(&n) a (full or bare) "skeleton amplitude". Mostly, in this section, we will be
concerned with full skeleton amplitudes, and skeleton amplitude will mean "full
skeleton amplitude," if not otherwise indicated.

In the course of the proof we will frequently have to deal with skeleton graphs
with some of their external points pairwise coinciding. We will use the special name
of"preskeleton graphs" for them, and call the coinciding external points "splitting
points", for reasons to become clear later. A typical preskeleton graph is depicted
in Fig. 1.

Fig. 1. A "preskeleton graph"
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Fig. 2. Composition of two preskeleton graphs

The following lemma states an important property of preskeleton amplitudes.

Lemma 3.1. Let ̂ l5 ̂ 2 be preskeleton graphs. Then
r

ί Π d}v
a i=l

...,yf,yΊ,. .,y*) (3-2)
is a preskeleton graph.

Figure 2 depicts how & is obtained from ̂  and <^2. The only thing one has to
show to prove Lemma 3.1 is that & has no self-energy insertions. But this follows
since <^1 and ̂ 2

 are preskeleton graphs, and since it already needs two cuts to
remove, say, y^+1 from the external points of ̂ 15 and then it is still connected to
those of &2. D

Now we introduce a very convenient relation, denoted " ̂  ", between functions
and power series.

Definition 3.1. Let f ( λ ) be a function of λ, {fn(λ)}^=Q be the coefficients of a power
series in (— λ). We write

N

f(X)$Σ(-Wfn(X)> (3-3)
iff, for alU^O,

and
2k+1

n = Q

We write f(λ)$Σ(-Wfn(λ) if (3.3) holds for all N. The following two lemmas
state simple, but important properties of the relation ^.

Lemma 3.2. Let f(λ)£ Σ (- WfnW, 9(V $ Σ(-Wgn(λ\ and f(λ)^0, g(λ)^0.
N

Then f(λ)g(λ)^Σ(~λ)nhn(λ), where (hn(λ)} is the series obtained by formally

multiplying the two power series {/„(/!)} and (gn(λ)}.
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Lemma 3.3. Let f ( λ ) $ Σ ( - λ ) " f n ( λ ) , fn(λ)/Σ \-λ)mfnm(λ). Then f(λ)
N

^Σ ( — λ)nhn(λ), where {hn(λ)} is the series obtained by formally replacing the
coefficients {fn(λ)} by the power series {fnm(X)}.

The simple proofs of these lemmas are given in an appendix. We are now in the
position to state our main theorem.

Theorem 3.1. For one- and two-component — φ4 -theories the 2p-point Green's
functions satisfy:

^Σ(-λ)VΛ>(x1,...,x2 B l;x2 l I 1 + 1,...,x2 l I) (3.4)

with the coefficients s(λ\x1, ...x2p) given by full skeleton amplitudes.

Theorem 3.1 immediately implies a stronger statement about the coeffi-
cients s(λ\xί9 ...9x2p) We have the

Corollary 3.1. The series ^( — ̂ )ns(

n^(xly ...,x2n) °f Theorem 3.1 is obtained by
removing all but the bare skeleton amplitudes from the perturbation expansion of
(φl(xι). .φl(x2nι)ΦJ(x2nι + \) -ΦJ(x2n)y and replacing the bare propagators in the
latter by full propagators.

Proof of Corollary 3.1. Consider the theory on the lattice with finite spacing. Then,
perturbation theory yields asymptotic expansions, since all Feynman diagrams
converge (and the remainders of the partial series can be bounded by Feynman
diagrams). Inserting the perturbation expansion for the propagator into Eq. (3.4),
we get thus an asymptotic expansion for the rc-point function, which, by
uniqueness of asymptotic expansions, must coincide with the ordinary perturb-
ation theory expansion. In particular, it must contain the same skeleton graphs,
with the same coefficients. But each bare skeleton graph in the series produced
from (3.4) arises from just replacing the full propagator by the lowest term in the
expansion, the bare propagator. This proves the corollary. D

We now turn to the proof of Theorem 3.1. The following lemma provides the
basic identity we will need.

Lemma 3.4 [5]. For the N-component - |φ|4 theory, we have

0 a

Σ <Φ1(x)Φί(y) ,Φp(j)Φp(j)>} (3.5)

Proof. The lemma is proven by writing the identity

(3.6)
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The semicolon denotes truncation: <y4;£> = <AB> — (v4)<jB>. Using the defi-
nition of M4, we get (3.5). D

Now, from Eq. (3.6) and Griffith's second inequality [14], we get

λ
Lemma 3.5. For one- and two-component - φ4 theories,

<Φ\χ)Φι(y)y(t)^<Φ\χ)Φι(y)yφ') (3.7)
The restriction to one- and two-component models arises here since Griffith's
inequality is only known in these cases. // (3.7) holds for general JV-component
models, then all our results carry over for these cases. Unfortunately, we do not
know how to prove (3.7) without using Griffith's inequality.

For the rest of the proof we will, for notational convenience, consider the one-
component case. Then (3.5) reads

<Φ(χ)Φ(y»(f) = <Φ(χ)Φ(y)m -
0 a

(3.

From Eqs. (2.9) and (2.5) we obtain further

J*/>(xt, y, . . . xp, yp) = Σ ί "π dvωι(t')z (V *' ) <Φ(xP)Φ(yP)> (V A
(ol:xl->yl ί = l \ i = l / \ i = l /

ϊ = l , . . . , p - l

(3.9)

Equation (3.9) together with (3.8) provide a machinery that, with (3.7) as input,
allows us to produce the skeleton inequalities order by order. To start, one inserts
(3.7) into (3.9) with p = 2. Using the definition of u4 and Eq.(2.10) we get

tι4(*ι, ,*4)^0, (3.10)

which is the Lebowitz inequality [15]. Using this and again (3.7) in Eq. (3.8) gives
the improved bound

Inserting this in (3.9) and using the splitting Lemma 2.1 gives

(3.12)

This process could be continued ad infίnίtum. However, going to higher order in
λ would become extremely tedious and impracticable. To prove Theorem 3.1, we
can instead devise a rather simple inductive proof, and the actual bounds can then
easily be calculated from Corollary 3.1.
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We will prove inductively, for all N and p, the following set of relations:

? . . .,x 4), (3.13)

and

F$\Xl, 3Ί5 ... ;*p, yp)$ Σ(- W(xl5 yi;...;xp, yp), (3.15)

with

x1,...,x4), (3.16)

^!^!,...^,,^), (3.17)
^k

where the έfk are skeleton graphs with k inner vertices, and external points
x1? ...,x4 and x1? j;l5 ...,xp, }̂ , respectively. The c(^k) are constant coefficients
depending on ff^ but not on the external points. We will not keep track of
their values.

Furthermore

where in the terminology introduced above, ^h is a "pre-skeleton graph" with
splitting points x l 5 . . ., x^. (Note that for each splitting point there is a factor of tx.,
which will, by the splitting lemma, allow us to split the path ω at these points.) In
particular, g$\x, y)(t) = <φ(x)φ(y)XO).

To start our inductive proof, we need to verify (3.13) and (3.14) for N = 0, and
(3.15) for N = 0 and all p, and for p= 1 and all N. But for N = Q, (3.13) follows from
(3.10), and (3.14) from (3.7). Equation (3.7) and successive use of (3.9) yields, for all p,
the Gaussian inequality [16, 17]

F^Cx!,^;...;*,,?^ (3.19)

which gives (3.15) for JV = 0 and all p.
Finally, for p = 1 ,

F<A>(x, y) = <φ(x)φ(y)y £ Σ ( - W(x, y} , (3.20)

with S(

0

λ)(;x, y) = (φ(x)φ(y)y, S(

k

λ\x, y) = 0 for k > 0, establishes (3.15) for p - 1 and all
N.

We now assume that (3.13)-(3.15) hold for all p and N = M—l. We will show
that then (3.13)-(3.15) hold for N = M. To do this, consider Eq. (3.8). Our aim is to
replace the terms on the right-hand side by the series (3.13)-(3.15) and to show that
the series we obtain satisfies (3.14) for N = M. We have to deal with the two terms
(Φ(x)Φ(J)X<*iKΦ(j)φ(y)Xai) and «4(x, y,j.j)(ut) separately. First we get

O^ (3.21)
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with

= Σ
f t"

itj Π dx'i'tx>ιf Π di
a i' = ι i" = l

^Vv 7 Y 7 γr

fc / V ^? j ' ^lί ^l? •? -

α ί=l

^y,ΛΛxι ,Xι , . . . ,XΛ^) (3-22)

In the last equality we made use of Lemma 3.1. The ̂  are preskeletons obtained
by composing 5 '̂, and 5 '̂,,. We see from (3.22) that the gk(x, y)(t) have the same
form as demanded for the gk(x,y)(f) in Eq. (3.18).

Next, consider the w4(x, y,j, j)(αί) We can use the expression (3.13) to write

M-l

. (3.23)
^k

Here yl(^k)(x, 37,7,7) (αί)1 stands for the amplitude with propagators
(Φ(xι)φ(x2)y (αO corresponding to the lines of ^k. Thus, the coefficients of the
series (3.23) are products of ί-dependent propagators. To bring them in the desired
form, we have to again replace them by the series for (φ(x)φ(y)y(i). Lemmas 3.2
and 3.3 guarantee that doing this, we will produce a series of alternating bounds to
order M— 1. Furthermore, by replacing the lines in the preskeletons ^k by
preskeletons with two external points we produce only preskeletons. Thus we get

M-l t

I djtjU4(x, y,j,j)(xt) $ Σ (-W Σ c(ίfky\ djtj Π dxitχt

(3.24)

with gk(x,y)(t) again having the form demanded for gk(x,y)(t). Plugging these
results into Eq. (3.8), we obtain

λ Σ ( - λ)k j dα[&(χ, y) (0 + gk(χ, y)(t)l , (3.25)

1 Since the tx may be considered as a space dependent mass, it is trivial that (3.13) generalizes to
M4(xi, ...,x4)(ί) in the manner exploited here
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and thus

M

(Φ(χ)Φ(y)y(f)^ Σί—^y^fcίXyXOϊ (3.26)

with

go(χ9y)(f) = (φ(χ)φ(y)y(0), (3.27)

and

i

0

Note that the α-integration can be trivially performed, contributing to the
coefficients c(^k] only.

By construction, gk(x,y)(t) is of the form (3.18). This proves (3.14) for N = M.
The next step is to prove (3.15) for JV = M, all p, by induction on p. Assume

(3.15) holds for p^q— 1. Then we write (3.9) for p = q, and use (3.14) for N = M.
This gives

M fl-l

(3-29)
i=l / \ i = l

Now the term with k = 0 in this sum is simply given by

(3-30)

By hypothesis, the skeleton expansion for F(xl, . . .,y£ J_ 1) produces bounds up to
order M which can be inserted into the k = 0 term (3.30). The coefficients for fe>0
are of the form

Σ Σ ίΠ
^k ωl:xl-> yl i=l

ί = 1 , . . . , q - 1

(3.31)
a j = 1 \ i = 1

. .
We now carry out the product Π ( Σ ^ ) = Σ Π fy* where the Σ is over all

7=1 \ ί = l / {ij} 7=1 J (ij)

the /-tuples {ίj} with 1 ̂  ij ̂  <2 - 1 . We will take the Σ out of the sum over walks
dj}

and consider a typical term. Using the splitting Lemma 2.1, we can write it as

j Π dzjc(^F(u^u2ι...;um_^um)A(^k)(xq,yq,z^z1,...,z^z,). (3.32)
j = ι

Here (w l 5 M2 5 . . . , w m _ l 5 wm)? m = 2(q—l+£), stands for some permutation of
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We can now use the series (3.15) for N = M — fc, p = q— \+£ to get

M-k

(3.23)5 Σ (-W Σ cG^k)cG9V)
€ ^k/

M-k

= Σ (-Λ)*' Σ c^+^μί^^O^i^i,...,^^). (3-33)

By Lemma 3.1, &k + k' is a skeleton graph. By Lemma 3.3, adding all the terms (3.33)
up and inserting them into (3.29) yields

M

with the sk(xι,..., yq) having the form (3.17). This proves (3.15) for N = M and p = q.
By induction it thus holds for all p.

As a trivial corollary, it follows now that (3.13) also holds for N = M, and the
inductive step in N is completed. Thus (3.15) holds for all N and all p which, by
(2.10) proves the theorem. D

A few remarks are in order:
(1) The above proof mimics the actual constructive process one could go

through to derive explicitly the skeleton inequalities. Of course, in order to derive
the bounds for finite p and to some finite order N, the process is finite, since there is
no need to complete the induction over p each time we proceed to higher order in
N. In fact, to construct the bounds for, say, u4 up to order N, we need the bounds
for the 2g-point functions only up to order N — q + 2.

(2) In this proof, we show explicitly that all the bounds are in terms of skeleton
amplitudes. In principle, this can also be shown by an abstract argument similar to
the one used to prove Corollary 3.1.

(3) In [11] we have also proven the skeleton inequalities for the zero-
component model (Edwards model). In that case the proof is simpler, since no
induction over N was necessary. The reason is that we have the relations

and

which replaces (3.13).

IV. Asymptotic of Perturbation Theory

We will now use the skeleton inequalities of the preceding section to give a new,
simpler proof of asymptoticity of the Feynman perturbation expansion of the
Euclidean Green's functions to all orders, for the weakly coupled λφ4 model in two
and three dimensions.
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As in [6] an essential role will be played by the Schwinger-Dyson equation,

. (4.1)

Before we state our results, let us first recall some facts about renormalized
perturbation theory. One is interested in constructing the continuum limit α->0 of
the lattice Green's functions <^(x1)...^(x2p)> To do so one has to let diverge the
mass counterterm δm2(λ, α), with

δm\λ, a) = - 3ΛG(0)(0, 0) , for d = 2 ,

δm2(λ, α) = - 3/lG(0)(0, 0) + 6λ2 f dx[G(0)(0, x)]3 , for d = 3 .
a

Existence of the continuum limit for small λ and m0 > 0 (and a suitable sequence of
lattice spacings α) can be proven by using the skeleton inequalities to lowest order
(see [6]). We will see that the mass insertions (4.2) produce in perturbation theory
Feynman diagrams that cancel the ultraviolet divergences of the self-energies:

- and dH> . (4.3)

(We use the graphical notation of [6], i.e. x*ww^%y = Gw(x,y), x y

In fact we will see that in the formal perturbation expansion of the Green's
functions ^

<φ(xl)...φ(x2p)y = Σ λnfn(xl9...9x2p)9 (4.4)
n = Q

the coefficients /„ can be written as a linear combination of Feynman diagrams

with all divergencies removed by counterterms, i.e. with no loops ( j present
V^χ

and with subdiagrams ^̂  ^fr coming only in the combination

(4.5)

which is ultraviolet finite. We call these diagrams "properly renormalized". For
example, the lowest order terms in the expansion of the propagator can be
expressed as

= x - y + 6λ2x

(4.6)

Power counting shows that amplitudes of properly renormalized diagrams
converge to well-defined distributions in the continuum limit. This shows that the
coefficients of the perturbation expansion are finite.

2 We adopt the convention of integration over unlabeled points
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Asymptoticity up to order 2 for the propagator was proven in [6]:

Theorem 4.1 (Brydges, Frδhlich, Sokal). Let Gμ)(x, y) be the lattice two-point
function. Then

|| G(Λ)(0, -) - G(0)(0, •) II i + || G(λ)(0, •) - G(0)(0, •) || „ ̂  cλ2 , (4.7)

where c is a constant, independent of the lattice spacing a.

This theorem can be proven using the skeleton inequalities to lowest order
together with the Schwinger-Dyson equation (4.1).

Theorem 4.2. Let(φ(x1)...φ(x2p)y be the lattice 2p-point function, and let

00

be its formal Feynman perturbation expansion. Then for any test function ί

n ~Ί 2p

/>— y^ 2^f],(xι ... Xo ) ΓT L(x, }d
k = 0 J i = 1

where cn(ζ) is independent of a.

(4.9)

Note that independency of a implies that the bounds (4.7), (4.9) carry over to
the continuum limit.

Proof of Theorem 4.2. First we prove the theorem for the propagator. To do this
we insert the skeleton inequalities for the four-point function into the Schwinger-
Dyson equation, producing this way Feynman diagrams which contain free as well
as full (interacting) propagators. Let us thus extend the definition of a properly
renormalized diagram to this case: We say that a diagram is properly renormalized,
if all divergent subdiagrams come together with the corresponding counterterms,
i.e. the insertions f \

l

v / and x^-ΓΓ^j; (4.10)
*- *
x

(x y denotes either x y or x^Γ^^^^^^y} come only in the
combination

and

In order to prove the theorem, we will prove inductively bounds of the form

m m + 3

,y)^ Σ λkfk(x,y)+ Σ λkfk

+(x,y), (4.12)
fc^O k=m+ί

m m+ 3

Σ λ k f k ~ ( κ , y ) , (4.13)
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w = 0,1,..., where the fk(x,y) are given in terms of properly renormalized
Feynman diagrams with free propagators (we will see later that they are really the
coefficients of formal perturbation theory), and the f^fay) are also given by
properly renormalized diagrams, but may contain full propagators as well.

To prove (4.12), (4.13) we replace the four-point function in the Schwinger-
Dyson equation (4.1) by the skeleton inequalities of order m and m+ 1:

X •o'X/xyx^n V ^ X

(4.14)

(4.15)

(We assumed m to be odd. If m is even the inequalities are reversed.)
The skeletons do not contain any self-energy insertions. However, identifying

three arguments of the sfe's produces in (4.14,15) two divergent diagrams, namely

-3λx y and 6λ2x*

but for these diagrams we have the counterterm δm2x +s^u^j*y [see (4.2)]
and (4.14,15) are bounds in terms of properly renormalized diagrams. To lowest
order (4.14,15) become

(4.16)

which proves (4.12, 13) for m = 0.
Now assume that (4.12, 13) hold for m = 0, 1, ...9n— 1. We want to use these

bounds to eliminate successively the full propagators up to order n in (4.14, 15)
with m = n. This will give (4.12,13) for m = n, thus proving the induction step.
Consider a full propagator which appears in a diagram of order fc, 1 ̂  k :g n, with £
full propagators, on the right-hand side of (4.14) and (4.15). Replace this
propagator by the bounds (4.12, 13) with m = n — k. Expressions (4.14, 15) become

"Σ λkfk

+(x9y)9

"i; Σλkfk(x,y)+ Σ λkfk-(x,y}.

(4.18)

(4.19)
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All fk, fj^ are given in terms of properly renormalized diagrams, by induction
hypothesis, and the new diagrams we produced are either of order k > n, and are
thus included in f^ or of order k^n and have / — I full propagators. Then we
repeat this procedure for all full propagators which are still present in the J^'s,
l^k^n, until we are left with bare propagators only, up to order n. Thus the proof
of (4.12) and (4.13) is complete.

The generalization of (4.12, 13) to higher 2p-point functions

m ra + 3

<<Kxl)...φ(x2p)>^Σ^fk(x1, ,X2p) + Σ λ"fk

+(Xl,...,x2p), (4.20)

m m+ 3

(ψ(x1)...ψ(X2p)y^Σλkfk(Xι, ,x2p)+ Σ λkfk-(Xl,...,x2p), (4.21)
/c = 0 k = m+l

is easily proven by replacing the full propagators of the skeleton inequalities for 2p-
point functions (3.4) by the bounds (4.12,13). To conclude the proof of the theorem
we have to estimate the remainders /^(xi, ...,x2p) which, as we have seen, are
linear combinations of amplitudes of properly renormalized diagrams with bare as
well as full propagators. Writing for these full propagators G(λ)(x, y) = G(0)(x, y)
+ £(x, y), with £(x, )el} nL°° with norm bounded uniformly in α, by Theorem 4.1,
we see that /^(xi,..., x2p) can be expressed as a sum over amplitudes of properly
renormalized diagrams with, as propagators G(0)(x, y) and E(x, y). We know from
power counting that properly renormalized diagrams with G(0) propagators
converge (when smeared out with test functions of 5 )̂ in the continuum limit, and
so do a fortiori diagrams with E propagators, which have no small-distance
singularities.

Thus one has the bound

fk

±(xl,...,X2p)ζ(x1)...ζ(χ2p)dx1...dx2f

with ck(ζ) independent of α. As in Corollary 3.1, it follows from the uniqueness of
the asymptotic expansions on the lattice that the coefficients fk are really the ones
given by perturbation theory, and the proof is complete. D

V. Conclusions

In this paper we have pushed the new "random walk"-approach to the
construction of superrenormalizable <^4-models of [6] a little further, showing that
the asymptoticity of perturbation theory can be obtained easily in this context
from correlation inequalities that follow from the random walk expansion.

Still, however, the results of this new, simple approach do not match the ones
previously obtained. Probably the most embarassing shortcoming of this method
is its restriction to one- and two-component ^4-models, and its failure to allow for
a proof of Euclidean invariance in the continuum limit.

Both these shortcomings are consequences of the dependence of this method
on the Griffith's inequalities as the basic input in the proof of the skeleton
inequalities. This restricts us to one- and two-component ^-models, and forces us
to use the non-rotational invariant lattice cut-off.
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As an exception, the zero-component model (Edwards model) is also tractable,
without having to use any a priori inequalities. There, the weights on the local
times z(ί) are known explicitly, not only as ratios of partion functions. In [11], all
results of [6] and of this paper were derived for the Edwards model. Furthermore,
in this model it is possible to prove also Euclidean in variance of the limiting theory.
To do this, one defines the model directly in the continuum, as a measure on the
space of paths

λ]]dtdsδε(xt(ω)-xs(ω))-m2T \
o o J

where dWx>y^ τ(ω) is the conditional Wiener measure on paths which reach y from x
in time T, and xt(ω) is the position of the path ω at time t.O^t^T. Here δε is a
rotational invariant, non-negative regularization of the δ function, e.g.

One can again prove a Schwinger-Dyson equation and the skeleton inequalities,
and hence, by the same methods used in [5] and here, show the existence of the
ε-»0 limit, which will be manifestly Euclidean invariant.

A similar procedure could be adopted in the field theory case only if Griffith's
inequalities were known for a rotationally invariant cut-off, which is not the case.

Appendix

In this appendix we give the proofs of Lemmas 3.2 and 3.3.

Proof of Lemma 3.2. By hypothesis we have

Now since fn(λ) is non-negative by assumption,

2/c 2k-n 2k

n-0 ϊi' = 0 n = 0 k',k"

and similarly

2k +1

^ Σ (-W Σ
n = 0 k',k":k' +

for 2/c, 2/c+ 1 rgJV, which proves Lemma 3.2. D

Proof of Lemma 3.3. We have by hypothesis

2/c 2/c 2k -n

Σ (-XTfnW^ Σ (-W Σ (-
M = 0 n = 0 w ' = 0

2/c

^ Σ (-A)" Σ Λ-rW,
w = 0 k',k"
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and similarly
2k+1

f(λ)> Σ (-λ)" Σ Λ *«W, for 2k,2k + l^N.
n = 0 k',k"

k' + k"=n

This proves Lemma 3.3. D
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