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Abstract. We consider a random Schrodinger operator on L2(RV) of the form
Hω= — Δ -f Vω, Vω(x) = ΣχCι(x)qi(ω\ {Q} being a covering of [Rv with unit cubes
around the sites of Zv and {qt} i.i.d. random variables with values in [0, 1]. We
assume that the gf's are continuously distributed with bounded density f(q) and
that 0 < P(qQ < %•) = α < 1. Then we show that an ergodic mean of the quantity
(§dx x\2\(QXp(itHω)Φ)(x)\2yt~1 vanishes provided Φ = gE(Hω)Ψ, where ψ is
well-localized around the origin and gE is a positive C°° -function with support in
(0, E\ E ̂  £*(α, I/IJ. Our estimate of £*(α, |/|J is such that the set {xe (Rv| Vω(x)
^ £*(α, I /loo)} may contain with probability one an infinite cluster of cubes {CJ
which are nearest neighbours. The proof is based on the technique introduced by
Frohlich and Spencer for the analysis of the Anderson model.

Section 1 . Introduction

Let us consider a quantum mechanical particle moving in [Rv and interacting with
a random potential Vω given by

K»w= Σ fc .MflM (i.i)
'

Here Cί = {xetR v | — 1< xj rg \\j = 1,. .., v} + i and {^(ω)}ίeZυ are independent
identically distributed (i.i.d.) random variables with values in [0,1] such that

b

P(q0(ω)e\a,b \) = l d q f ( q ) , |/|m =esssup|/| < oo and 0 < P(q0 £ L

2) = α < 1. We

are interested in the spectral properties of the corresponding random Hamiltonian
Hω on L2(W)

Hω=~A + Vω, (1.2)
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and mainly in the asymptotic behaviour in t as t -+ oo of the quantity

rl(t) = ^dx\x\2\(^p(ίtHω)ΨE)(X)\2y9 (1.3)

where <. . . ) denotes the average over the random variables {^(ω)} and ΨE is a
function well localized in space belonging to the spectral subspace of Hω with
energy less than or equal to E,E> 0. This quantity measures the mean square
distance from the origin of the time-evolution of the particle whose wave-function
at time 0 is given by ΨE.

The asymptotic properties of r|(ί) for large t is a measure of the diffusion of
the particle. More precisely, when one has a finite diffusion one expects that r|(ί)
behaves as

rjfc)~D(E)t as ί-*oo,

where D(E] is the diffusion constant.
Here we prove that in our model a particle will not diffuse in the sense that

an ergodic mean of rE(t)2/t will vanish as t -» oo, provided it initially is well localized
in space and has sufficiently small energy.

Let now SE(ω) = {xeUv\Vω(x) ^ E} be the classically allowed region. Then
depending on the distribution / of the random variables {^(ω)}, SE(ω) will consist
with probability one of only lakes or of lakes and a sea (possibly more than one
sea) and it is expected that the behaviour in t of r\(t) will be different in the two
situations. It is not difficult to show (see Sect. 2) that the study of rE(t) as t -> oo
can be reduced to the analysis of ε2 Jdx|x[2<|G(ω, E + z'ε,0,x)|2> as ε->0, with E
in the spectrum σ(HJ of Hω and G(ω9E-\-iε,09x) = (Hω-E-iε)~ί(0,x). Using
the ergodic theorem and WeyΓs criterium it is easy to convince oneself that
σ(Hω) = [0, oo ) with probability one (see e.g. [8]). For such a quantity in the
Anderson model, i.e. in the discrete version of (1.2) where Uv is replaced by Zv and
— A is the finite difference analogue to the Laplacian, Frohlich and Spencer recently
developed [2, 3] a very powerful technique to prove that, for the energy in a
suitable range, <|G(E + /ε,0,x)|2>, ε^O, decays exponentially in \χ\ with mass
m = m(E) bounded away form zero uniformly in ε, with probability greater than
1 — const |x|~p. Here p can be made arbitrarily large by choosing E in a suitable
way. This in turn implies that if the initial state of the particle is well localized
near zero and has energy in a suitable range, then the corresponding r|(f) satisfies

.
T-oo T { t

Their method is based on perturbation theory about an infinite sequence of "block"
Hamiltonians. The "blocks" correspond to regions where the potential Vω is
singular in the sense that the eigenvalues of the corresponding "block" Hamiltonian
are close to the given energy E. Distinct singular regions are decoupled
by introducing Dirichlet boundary conditions at the respective boundaries.
As the size of the blocks increases the eigenvalues of the corresponding
Hamiltonian are permitted to get closer to JE; the corresponding divergent terms
in (#block — E — iε)"1 (small divisors problem) are killed by the exponential decay
of (#block — E — iε)~ 1 on scale of order of the size of the block. However in order
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to remove perturbatively the Dirichlet boundary conditions it is necessary to
control the tunneling between singular regions, and for this it is important that
the "blocks" are well separated from one another.

A natural candidate for the set of singular sites in our model (1.2) would be
the set SE(ω) = {jeZv\qj(ω) ^ 2E}. In fact if A n SE(ω) = 0, then Vω(x) > 2E for all
xeA so that dist(£,σ(HΛ(ω))>£. Here HΛ(ω) = - ΔD

Λ + Vω, - ΔD

Λ being the
Dirichlet Laplacian on L2(A\ and σ(HΛ(ω)) denotes its spectrum. Hence no
divergent terms arise in (Hω Λ — E — iε)~l as ε->0.

Actually using an argument due to Combes-Thomas it is possible to prove
that the integral kernel of (HΛ(ω) — E — is) ~ 1 decays exponentially with mass of
the order of E1/2. Thus with this choice of the set of singular sites one could apply
the Frόhlich-Spencer method for energy E so small that S (ω) has no infinite
cluster with probability one. Typically the energy threshold would be of the form
E ^c/l/loo witrl c < 1. We remark here that Frδhlich -Spencer technique does not
apply immediately to the continuum case; however at least for our special model
the extension can be made without too much trouble. In what follows we propose
another choice of the set of singular sites which shows that the above result holds
even if the set SE(ω) has an infinite cluster. More precisely we get an estimate on
the energy threshold of the form

Γ ( \ f \ \Ί- 2 / v )
0(a)A In N M I =£*(«, I/U (1.4)

where E0(α) and E^OL) are small constants depending only on α and not on l/l^.
It is clear from the logarithmic dependence of l/l^ in the expression (1.4) for £*
that if we keep α fixed and change the probability distribution / suitably, we can
still have P(g0 ^E*(α, !/!„)) = α, when we let \f\^ increase. (Let e.g. fa =
(α/α)χ[0,fl] + 2(l-α)χ[1/2jl]. By increasing l/ i^-α/α (when a<ΐ) we can have
P(qQ ^ £*) = oc.) Thus if α was chosen greater than the the percolation probability
for the site-percolation model in Zv (see e.g. [5]), then the set SE(ω) may contain
with probability one, an infinite cluster {CJ of cubes which are nearest neighbours.

The idea is the following:
Let C£(0) be a cube centered at x = 0 of size I+E) ~£Γ1/2 and let λ^H^^ω))

be the lowest eigenvalue of H(ω] on L2(C£(0)) with Neumann boundary conditions.
It was shown in [6] (see also Sect. 4) that:

PίλΛH^Cω)) g 2E) g exp( - cE~v/2) (1.5)

for some c> 0 and all E < £0(α), where £0(α) is independent of \ f \ 0 0 .
Let now Zv(£) = L(£)ZV, and let {CE(j)}je^V(E} be a covering of Uv of cubes with

size L(E) around the sites of ZV(E). The above estimate shows that although the
set SE(ω) may contain an infinite cluster {CJ, ί£Zv, of cubes which are nearest
neighbours, it does not contain an infinite cluster of cubes CE(j\jeZv(E\ where
the condition λl(H"(ώ))^2E is violated, provided the energy E is sufficiently
small but uniformly in l/ l^ . Furthermore using Neumann-Dirichlet bracketing
(see Sect. 3) it is easy to see that if A ^ Uv is such that λ^H^ω)) ^ 2E for all
7EZV(E) with CE(j)nΛ ± 0, then - ΔD

Λ + Vω ̂  2E so that (-ΔD

Λ+Vω-E- is)'1
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(x9y) decays exponentially in \χ - y\ with "mass" m(E) ^ E1/2 uniformly in ε. It is
then natural to define the set of singular sites on scale L(E) as

and to perform the Frόhlich- Spencer perturbation argument on clusters of cubes
of the form CE(j).

As in the papers by Frόhlich -Spencer [2, 3] our probabilistic estimates rely
on the following result valid for any A c Uv :

(ω), E)<k}^ k^ |Λ|3/2p(£ |/|J1/2, (1-6)

where p(E, \f\m) ~ \f\00N(E), if k ~ £, N(E) being the integrated density of states
of the system. Since N(E) has a singular behaviour near E = 0 of the form
N(E) ~ exp(— c2E~v/2) (see [6]) we see that in order to have p(E, l/l^) small, it is
enough to take E £Ξ £*(α, |/|J with E*(α, |/|J of the form (1.4).

We remark here that a sharp estimate of the left-hand side of (1.6) in the case
of discrete distributed (gt (ω)}, say P(qQ = 0) = p, P(qQ = 1) = 1 — p, is still missing
even in the discrete case, i.e. for the Anderson model.

Needless to say, all our proofs rely heavily on the Frδhlich -Spencer paper
and most of the time they are just the translation into our context of their proofs.
Therefore we do not give here all the details of the proofs, but we only discuss
the main steps where the differences between the two situations appear clearly.
For simplicity we also discuss only the case v = 3, but the only place in the proof
where the dimension enters crucially is in the exact localization rate of the initial
wave-function Ψ.

Notations. We fix here some notations which will be used in the rest of the paper.
For any measurable A c R v, let HΛ(ω)= - ΔD

Λ + Vω and HN

Λ(ω) = - ΔN

Λ + Vω

be operators on L2(/L), where — AD

A and — ΔN

Λ are the Laplacian with Dirichlet
and Neumann boundary conditions respectively. (For the precise definition of
these operators, see e.g. [9].) We also denote by σ(HΛ(ω)\ σ(H^(ω)) their spectra
and by NΛ(E, ω) = #{k\λk(HΛ(ω)) <£},£> 0, where λ^H^ω)) <; λ2(HΛ(ω)) g . . .
are the eigenvalues of H A(ω) in nondecreasing order. It follows from the ergodic
theorem (see e.g. [7]) that lim (l/\A\)NΛ(E,ω) = N(E) exists almost surely and is

A t 03U

independent of ω. Here \Λ \ denotes the Lebesgue measure of A. The quantity N(E) is
called the integrated density of states.

In order to describe precisely the degree of localization in space of the initial
state Ψ of the particle at time f = 0 (see (1.3)) we also need to introduce the weighted
Lp spaces (see [10]), Lf, defined as follows:

Throughout the estimates several constants independent of E, l/l^, ω will occur
and they will always be denoted by c, c1, c2, although their values may change
from estimate to estimate.

Greerfs Identities. Let A c R3 be given and let Al9 A2 be such that Aίr\A2 = 0
= A. Let also GΛ(ω, E + lε, x, y) be the Green's function of HΛ(ω) —
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E — iε, i.e.

GΛ(ω, E + iε, x, y) - (#>>) - E - is) ~ *(x, y)9

and let dn^GΛ(ω,E -f iε,x,z), xe/l, zeδΛ. denote the outward normal derivative at
z of Gyl(ω, E 4- iε, x, y). Then we have the following two identities which follow
immediately from Green's first and second formula:

GΛ(ω, E + ϊ'ε, x, y) = GΛί{Λ2(ω, E + iε, x, y)

+ J dz(dnzGΛί\Λ2(ω,E + iε,x9z))GΛ(ω9E + iε,z,y)9 (1.7)
5Λi

when xe/t l 5 x ̂  y, and

GΛ(ω, £ + iε, x, y) = Gylι |yl2(x, y) + f rfz GΛ(ω9 E + iε, x, z)(dnβΛίlΛ2(ω9 E + iε, z, j;)),
d*ι (1.8)

when X6yl l 5 x^y, where G^^^^ω, £ -f iε,z,y) is the Green's function for the
operator H(ω) = - A + 7(ω) on L2(Λ) ~ L2(/l t) φ L2(Λ 2) with Dirichlet boundary
conditions on dAudΛί. We note that for x,yeAί(Λ2)GΛ^Λ2(ωίE + iε,z,y)
coincides with G^ω, £ -f iε, z, ̂ (G^^ω, £ + iε, z, y)) and if

Section 2. The Main Result

In this section we state our main result and show how to derive it from an estimate
on the decay of the Green's function G(ω, E + iε, x, y) for E near the bottom of the
spectrum of Hω and as ε -> 0.

Theorem 2.1. Let #£eC^([R), gE ^ 0, and supp g E ^ (0, E\ and let for any
ΨeL2

2(U3), Φω = gE(HJΨ. Then the quantity

is well defined for any 0 ̂  t < oo, and there exist two constants £0(α), E±(a) depending
only on α and not on \f\M such that if

,£ι(α)
then

"2/3

Actually Theorem 2.1 follows from the next more general result which will be
proved in Sect. 3.

Theorem 2.2. Let E*(<x,,\f\ao) be as above. Then

ε->0

uniformly in E for E in a compact subset of (0, E*(α, l/l^))-
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Next we show how to derive Theorem 2.1 from Theorem 2.2. We fix
0 < E < E*(α, I/loo), and first prove that for any 0 < η < 1

T^oo T .

(2.1)

Set ε = l/T. Then we get:

(2.2)

where for the equality we have used a vector-valued version of the Plancherel
theorem (see [9], Lemma 1, p. 142). We divide the integration in (2.2) in three
parts :

-ε2 f d
Ί — CO

+ -ε2

n

n
(2.3)

where E > 0 is such that supp gE E (E, £).
We start by discussing the first and the last term of (2.3). Since G(ω, E' + is)Φω =

fe,E,(Hω)Ψ, where

and ε sufficiently small, we have

JdxM2 |G(ω, E' + iε)Φ J2 ̂  \\fEtE,(Hω) ||2, _ Ll \\ Ψ \\2

L>. (2.4)

To estimate \\fεtE (Hω) | | 2 2 _ > L 2 , we use a lemma whose proof is given in Appendix B.

Lemma 2.1. Let /eC^R). Then
f Λ4 ^4 1

w/ierβ h(x) = xf(x)
t dx4 dx4

and |supp/| is the Lebesgue measure of supp/.

Using the lemma we get that for ε sufficiently small || /ε>ί/(Hω) || fa _» L2 is bounded
uniformly in ω,ε,£', £ / G ( — oo,0)u[£*(α, l/ l^), oo), and that for large \E'\ it is
bounded by (c/\E'\2). Thus the first and the last integral in (2.3) are uniformly
bounded in ε for ε small enough and when multiplied by ε2 they vanish in the limit

We now discuss the second term in (2.3). It clearly suffices to show, uniformly
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in£'e[£,£*(α,|/|J],that

limε2f ίίx|x|2<(j^|G(ω,£' + ί ε;x)j;)||Φω(y)|)2>=0. (2.5)

By "expanding" the square and using the Holder inequality with respect to the
ω-integration <...>, we get that (2.5) is bounded by:

κiφωωι4»1/4)2.
We now observe that using the stationarity of Vω

Using |x| g |x — y\ + \y\ and Young's inequality, we bound (2.6) by:

ε->0

+ ($dxK(x))2μy((\yΦω(y)\*yy'2}. (2.7)

To estimate jdy«|yΦω(j;)|4»1/2 we need the following lemma which is proved in
Appendix B.

Lemma 2.2. Let fεC$(U). Then ||/(#J||L^L^ C.
From the lemma we get that |Φω(y)| ̂  ct(l + lyl 2)" 1 uniformly in ω and from

Lemma 2.1 that |j Φω\\L2 ̂  c2. Hence:

and analogously for J d y ( ( \ Φ ω ( y ) \ 4 y ) 1 / 2 . Thus, using now Theorem 2.2, the limit
as ε->0 in (2.7) vanishes uniformly in £'e[0,E*(α,l/l^)], and (2.7) is proved.

We now complete the proof of Theorem 2.1.
Γ i ' r2(s\ 1 τ

 r2fsy
Let Tw = sup< £e[l,w]-J ds-^ = sup — j ds —

Clearly Tn + 1^Tn. Suppose first that {Tn} is bounded. Then in this case

lim — f dt~^-^< oo, and
Γ-^oo 1 i ί

for all ηε(Q, 1), using (2.1). Since the quantity lim — J dt(r\(t)/f) by assumption is
7 ^oo 1 1

finite, (2.8) implies that it is actually zero. If Tn-> oo as n->• oo it follows from the
definition of Tn that

lim -J dtr-^~-= lim — J dsr-^-. (2.9)
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Now

2n 1 l AnnTn

i.e.

(no)

which again implies using (2.1) that

r-»oo

Section 3. Exponential Decay of the Green's Function

In this section we prove Theorem 2.2. As in Frδhlich-Spencer [2], see also [3],
it is sufficient to prove the following lower bound on the probability that the
Green's function G(ω, E + lε, x,y) decays exponentially for large distances |x — y \ :

Theorem 3.1. Given any p > 0, there exist two constants E0(α, p), E^α, p) independent

°f I/I oo sucn tnat tf
-2/3^

,P),

then

p(\G(ϋ),E + iε,0,x)\^maxίem(E)(NL(E)l-M\L j ε + O l ^ l - ^
\ ( \X\ } J

for any JVeZ, N > 0, and some constant Kp independent of E. Here the "mass" m(E]
satisfies m(E) ^ cEl 2 and L(E) — c(α)£" 1 / 2/or some constant c(oί) independent of E.

Let now xeR 3 be fixed and let A be a large cube around 0 containing x.
Applying the first Green's identity (1.7) to G(ω, E + /ε,0, x) and
(j ^ \d) E ~\~ IP 0 x) we 2et

G(ω, E + i'ε, 0, x) = GΛm3 ^ (ω, E + zε, 0, x)

a/i
(3.1)

Using the Combes-Thomas argument (see e.g. Simon [9]), one shows that
both G(ω, E + iε, x, y) and G/1|B?3^/1(ω,£ + iε,x,y) decay exponentially in |x — y\
as long as ε ̂  0. To control the normal derivative of G/1|K3^/1(ω, £ -f z'ε, x, y) at the
boundary dA we use the following lemma which will be proven in Appendix A.
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Lemma 3.1. Assume yedA is not one of the corners. Then

\d GΛ(ω, E + ιε, x,y)\^c sup \GΛ(ω, E + iε, x, /) |
\y'-y\^ι

for some c> 0 and any x with \x — y\ > 1.
From the lemma it follows that the second term in the right-hand side of (3.1)

is bounded by cexp( — m(E) dist(x, <M)). Hence GΛ]^^Λ(ω,E + iε,0,x) converges
to G(ω,E -f iε, 0, x) as A] [R3 uniformly on compact sets and it is really enough to
prove the statement of Theorem 3.1 for GΛ(ω9 E + ΐε,0,x) provided the constants
£*(α, I/ loo ' P\ Kp> m(E} are independent of A for large A.

The Singular Sets. We specify here our choice of the set of singular sites which
allows us to perform the Frohlich-Spencer induction argument also in the case
when the set SE(ω) = {xeU*\Vω(x)^ E} contains an infinite cluster of cubes {CJ
which are nearest neighbours. First we fix the energy E > 0 and define our basic
length scale L(E) = π((\ + α)/(l - α))~1/2£"1/2. Let now Z\E) = L(E)Z\ and let
CE(j) = C£(0) +./JeZ3(E), with Cfi(0) = (xeP 3 1 - L(E)/2 ^ x, < L(E)/2; i = 1, 2, 3}.
On Z3(£) we will consider the norm

i = l , 2 , 3

Definition. A site 7*6 Z3(E) is said to be singular iff

We will then denote by S0 the set of all singular sites. We are now in a position
to given an inductive definition of the singular sets Sf of strength i. Assume that
S0 ^ S^ 3 . . . 3 Si9 Sk c Z3(£) for all k with O^k^i have been defined. Then we set

S^ΞSf-Sf, (3.2)

where Sf = u^Cf is the maximal union of components Cf such that

Condition A(ί).

a) Cf <Ξ St for all ft (3.3)
b) diam£Cf^4 (3.4)
c) dist£(Cf,S f-Cf)^2d ί + 1, (3.5)

d) d i s t σ # — E^^p(-dll\ (3.6)

where d0 = d0(E) = [L(£)] ([ ] denotes integer part), di = d(

0

5/4)l and

Cf = {7'eZ3(£)|dist£(/; Cf) ̂  4dJ, (3.7)

and for any set D a Z3(£), DQ = [J CE(j). Here diam£ and dist£ are measured
7'e«

using the norm | |£. Recall that HΛ has Dirichlet boundary condition on dA for
any set A (see Sect. 1).

Definition. A set A c Z3(£) is ^-admissible iff δXnCf =0, ϊ = 0,l,...,/:. 4 is
admissible iff it is /c-admissible for all k.
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Following Frohlich-Spencer we will prove in the next paragraph the following
exponential decay estimate on the Green's function by using iteratively the Green's
identities (1.7) and (1.8).

Theorem 3.4. There exists a constant £1(α) > 0 such that if E ̂  ̂ (α) and A is a
k-admissible subset of Z3(E) with Ar\SK+1 = 0, then for arbitrary real 8

|GAθ(ω, E + iε,x,y)\ ^ exp[- m(E)\x - j;|],

provided \x - y\^±L(E)dk + 1. The "mass" m(E) satisfies: m(E)^c1£
1/2 with

cί=cί(a) independent of A and k.
We postpone the proof of Theorem 3.4 till the end of this section.
Our next step is to estimate the probability that a given site ieZ3(E) belongs

to Sβj. In the next section we will prove the following:

Theorem 3.5. For any p > 0 there exist two constants E2(u,p\ E3(α,p) independent
of I/U such that ifE< min{E2(α,p), [m(|/| JE3(α,p))Γ 2/3}, then for all ieZ3(E)

The proof of Theorem 3.5 is deferred to Sect. 4. Combining now Theorem 3.4
and Theorem 3.5 (see Frohlich-Spencer [2], Sect. 6 for details) we get the basic
probabilistic estimate

Theorem 3.6. Given any p > 0, there exist two constants £0(α, p), E^μ, p) independent

of \f\m such that ifE^mm{E0(a,p), [\n(\f\JE1(Λ,p))Γ213} = £*(«,I/UP)> then
the following event holds with probability at least 1 — l~p :

Fl = {ω|3^d f(E),Q<EA,A admissible,

2 bεdA bedA

and

for \x-y\^L(E}l314}.
The "mass" m(E) is as in Theorem 3.4 and I ^ L(E).

We now turn to the proof of Theorem 3.3 but with G(ω,£ + iε,0,x) replaced
by GΛ(ω,E + iε,0,;c), A being a cube of size L L(E) centered at the origin, L > 1.
As we already pointed out this is enough to obtain the result for GΛ(ω, E -f iε, 0, x).

Fix N ̂  10, N integer, and assume first |x| ^ L(E)(N/2). Let lj = [2\x\4j/L(E)ί,
j = 0,l, ____ ([ ] here denotes integer part), and let Ftj be the event in the
probability space described in Theorem 3.6 with I = lj. Using Theorem 3.6 we have

1- (3 8)

Let now ^ycZv(£), y = 0,1,2,..., be a sequence of sets associated to the
events F,. Let γ. = d(A®}. We set G(λ, y) = GΛ(ω, E + iε, x, 3;) and G/x, y) Ξj j j yι j
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GAθ(ω,E + iε,x,y). Using the Green's identity (1.7) we have

G(0,x) - G0(0,x) + J dz(dnG0(09z))G1(z9x)
yo

+ ί dz J dZ'(dnβ0(0,z))(dnt,Gl(z,z'))G2(z',x) + ... . (3.9)
yo yi

Using the definition of the sets Ap A° we see that in the above expansion both
dnzGj and G^ are evaluated at sites with distance at least

Hence from Theorem 3.6 and Lemma 3.1 they are estimated from above by
cexp[-m(£)(^|x|4J'-2L(£))], where c is independent of E, N, ω, and
m(E) ^ c^E112. Inserting this estimate in (3.9) we get that

(3.10)

For all ωe^]Flj9 i.e. with probability greater than l-K(p)/Np provided

E£E*(*9\f\^p).
Suppose now |x| g L(E)(N /2). Let I = N4j+lJ = 0, 1,.. .and let F =

» E) ̂  exp(- m(E)(N/4)L2(E))}.

To estimate P(F) we use the following result due essentially to Wegner [10] (see
also Frδhlich-Spencer [2,3] which will be proven in Appendix C.

Lemma 3.2. Let A c U3 be a bounded measurable set. Then

P(dist(σ(HΛ(ω\E)^k)^ c,\Ά\*l2kll2N(E + k)1/2\f\^2,

where N(E) is the integrated density of states for Hω at the point E and A^Λ is
the smallest cube containing A.

Thus using the above lemma we get

P(F\ > t __ ( A M f f i n \ 9 / 2 -m(E)(JV/8)L2(£)ι f \ 1/2 Λ T V p , -m(E)(JV/4)L2(£U /α 1 ι \
\ * / :— -*- v \ / / I J I oo V ~* )' \ /

Now we observe that from Theorem 4 in [6] N(E) ^ exp( - CE~3/2) for £ ̂  £0(oc, 1).
Hence, using the estimates L(£) ̂ c2£"1/2, m(E)^clE

1/2 we get that for
£ ^ £*(α, I/I^5 p) the right-hand side of (3.11) is greater than

for some constant K'(p) > 0.
We now estimate the terms in the expansion (3.9) for ωeFn Q F (where

j>ι
Fj = Fl.). Terms involving Gj or δM2GJ wheny > 0 can be estimated as in the previous
case, |x| ^ L(E)(N/2), since they are evaluated at sites with distance greater than or
equal to N4JL(E). The zeroth order term G0(0, x) is estimated by the next lemma (see
Appendix A for a proof).
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Lemma 3.3. Let A c (R3 be a bounded, measurable set. Then

__c 1
Λ + l£'X'y}l-^~y\dist(σ(HΛ(ω)lEY

Furthermore from Lemma 3.1 and Lemma 3.3 we get

c 1
ldnzGo(Q*Z^-\z\disi(σ(HΛ(ω)lE)'

Hence for ωeFn Π FJ9 the expansion (3.8) is bounded from above by

(3.13)
N \

(£)— L\E) j ̂  |x

for £ ^ £*(α, I/loo, P). Combining now Theorem 3.6 and (3.12), we get

;>ι

for some constant K"(p).
Proof of Theorem 3.4. We give here the proof of Theorem 3.4. Since however the
argument is the same as the one given by Frohlich and Spencer [2,3] we limit
ourselves to prove the result for special sets A <Ξ Z3(£). The extension to general
A c Z3(£) can be done as in [2,3]. The proof is based on an induction argument. Let
θk denote the following statement

I G A O ( ω , E + iε,x,y)\^ exp{ - mk(E)\x - y\},

if |χ - y\ ;> ^dkL(E\ assuming A is (k - Inadmissible and AnSk= 0 Here

/ k \
mk(E] = w0(£) 1 - 90 £ dr 1 / 4 , m0(£) - E1/2. We observe that since dQ - E~1/2,

V i = 0 /

if E is sufficiently small, mk(E) ^ cE1/2 uniformly in k.

Proof of Θ0. Let Ac Z3(£) be such that AnS0 = 0. Then, using Neumann-
Dirichlet bracketing (see [9]) we have

-Δ^+V^-Δ^+V^®^- Δ»M + Vω) ϊ2E, (3.15)

since A is non-singular. Hence dist(σ(HAo(ω)),E) ^ £, and using the Combes-
Thomas argument we infer that

\GAθ(ω9E + iε9x9y)\£exp(-Ell2\x-y\) (3.16)

for all |x — y\ ̂  j d0.
Thus we have proved that Θ0 holds. Next we assume θk to be true and prove

θk+1 for special A c: Z3(£).
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Lemma 3.4. Let R% a Z3(E) be a k-admissible region containing a component Cβ

k

of S9

k and such that
(i) ±dk+1^dizmER^jdk+ίί

(ii) dist£(3JR£, C{ ) > 0, C{ as in (3.7).
Then there exists a constant E(oc) such that if E g

|G(Λβ0(ω,E + iε,x, j;)| g exp[- (mk(E) - μk(E))\x - y|].

Remark. It is worthwhile to observe that, using condition A(k\ i.e. Eqs. (3.3)-(3.6),
one has distE(Cβ

k,Sk~ Cβ

k)^2dk+1 so that Rβ

kr\(Sk~ Cf) - 0. In particular

Proo/ o/ ίfte temmα. Let RΞΞ^, C ΞΞ Cf, C = Cf, and let £c:/3(£) be a
(fc — Inadmissible set such that R~ B is (k — Inadmissible and

C =) B ̂  C,

dk, (3.17)

where j(x)EU3(E) is such that xeC£(y'(x)). From the definition of the cubes CE(j)
we see that j(x) is uniquely defined.

The existence of the sets R and B has been shown in [2], Appendix D.
We also set Q = R~B, γ = d(B°), y = δ(C°), and assume for simplicity that

jc,};eβ0. The cases xeβ0, yeB° or vice versa can be treated analogously (see [2]
for details).

Using the Green's identities (1.7) and (1.8), we write

Gβo(ω, E + iε, x, y) = G^0(x, y) = GQO|jBo(x, y)

z, y)

= GQO(x, y) + $ dz(dnzGQO(x, z))
y

• {GQo|Bo(z, y) + j dz' GRO(z, z')(dnz,GQO}BO(z', y))}

•$dz'GRO(z,z')(dni.GQO(z',y)). (3.18)
y

Since QnSk= 0 and Q is (k — Inadmissible, we can apply θk to GQO to get

y|). (3.19)

Furthermore since infdist(z, { x , y } ) > jdkL(E) for E sufficiently small, the

exponential decay of GQO(x,y) for |χ - y\ ̂  jdkL(E) and Lemma 3.1 imply that

zey implies that \dnzGQO(x9y)\ ^ce~mk\y~zl.

z'ey implies that \dnz,GQO(z',y)\ g ce~m k l^~z ' ', (3.20)

To estimate GΛO(z,z') when z,z rey, we use the following result.
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Lemma 3.5. Letu,weB°. Then

\GRO(ω, E -h iε, w, w)| ̂  c *—.
|w-w|

Proof. From the Green's identities we obtain the following two expressions for
GRQ(ω, E + ι'ε, w, w) = GRQ(u, w):

RO(u, w) + J dz'(5Λz. GBolRO(u, z'))GRO(z', w),
v

GKO(W, w) = GCO|Λo(w, w) + J dz'(dΠz, GCO,K 0(w, z'))GRO(z', w).
7

Alternating the above expression we get an expansion for GRO(u, w).

GΛo(w, w) = GCo(u, w) + J dz(3ΛzGCo,Ko(M, z))GB^RO(z, w)

(3.21)

+ ί dz(dnGCQ(u, z)) J dz'(dnzGBO[Ro(z, z/))GCo(z/, w) + . . . .
y

In (3.21) terms like G^oίw'^7) are estimated using Lemma 3.3 and condition
A(k) by

(3.22)

Terms dMzGco(z',z) always appear with |z — z'| ^^L(E)dk. Hence using Lemma 3.1
and (3.22) they are bounded by c1Qxp(dk

/2). Terms like GBO\RO, or dnGB^RQ,zey,
always coincide with GQO and dΛχGQθ9zeγ9 and they are evaluated at sites z,z'
where z'ey and zey such that |z — z'\ ^L(E)dk^^dkL(E). Thus we can use θk to
estimate GQO and Lemma 3.1 to estimate dnGQO, and to obtain for both of them
a bound of the form c2exp(— mk(E)\z — z'|). As a result the right-hand side of (3.21)
can be bounded by:

cexp(dί/2) °°
FV fc / y pc exp(— m (£)<i L(£) + d ! )\y\\y\Ύ9 (3.23)

l w ~ w l

where | y | ( | y j ) is the surface measure of γ(γ). Such factors arise when we estimate in

(3.21) integrals of the form Jdz'(l/|z' - z|), zey.

Using now the estimates mk(E)^c2E
1/2, L(E)~E~1/2 and d0(E)~E~1/2, we

easily obtain that for E sufficiently small (3.23) is bounded by cQxp(dk

/2)/
\u — w|, which proves Lemma 3.5.

We now return to the proof of Lemma 3.4. Inserting the estimate on GRO(w, w)
given by Lemma 3.5 in (3.18), and using (3.19) and (3.20) we obtain

(3.24)
z - z
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Hence

\GRO(x,y)\ ^ exp(-mk(E)\x - y|)[l + φ|2exp(^/2 4- mk(ΊdkL(E) +

^exp(-(mk(E)-μk(E))\x-y\),

with μk(E) = 45E1/2dl/2, provided that E is so small that

1 + φ|2 exp(dfc + mk(ldkL(E)

Let now the set A c Z3(E) appearing in Theorem 3.4 be such that diam^.4 ̂
f dfc + 1. If AnSg = 0, then θk+ ί follows immediately from θk. lϊ Ar\S9

k^ 0, then
we can take the set R of Lemma 3.4 to be equal to A, and ΘΛ + 1 follows from
Lemma 3.4. If now diam£,4 >fd f c + 1 , we can repeat in our context the proof by
Frόhlich-Spencer of Lemma 3.3 in [2] without any problem and get θk + 1 for
general A.

Section 4. Probabilistic Estimates

We prove here the basic probabilistic estimate given in Theorem 3.5. Define for
a fixed site ieZ3(£), p. = P(ieSJ). Then clearly

PJ ^ £ P(D is a component of SJ).
Z)cZ3(£)

ieD

Let now Z3(£,π) ΞΞ 2"Z3(£), n^O. With each site xeZ3(£,n-l) we associate a
cube cn(x) centered at x with sides of length (measured with | |£) 2" parallel to the
lattice axes. Then cn(x) will be called an rc-cube. For n = 0 we set Z3(E, — 1) = Z3(£)
and cn(x) — x. Given D c Z3(£), let Cn(D) be the minimal family of ?ι-cubes which

no(D)

cover D, let \Cn(D)\ be its cardinality and let V(D)= £ \Cn(D)\9 where n0(D)
n = 0

is the smallest integer such that 2W O Φ )^2 diam£D. Let also C'n(D) = {cneCn(D)\
no(D)

dist£(C,,,<)^2.25"'3 for all c'neCn(D\ c'n^cn}, and let V'(D)= Σ IW)I In

n = l

order to prove Theorem 3.5 it is sufficient to prove, following Frόhlich-Spencer
([2], Sect. 6), the following two estimates:

(a) Let Dj - {ieZ3(£)|dist£(ί,D) g 4d ̂  J. Then P(άist(σ(H(Dj)o(ω)\E) ^ e~dΆ)
^φ(E,\f\J(d^l)

92e-(d^i\ with Q<φ(E,\f\m)^η for an arbitrary η>0 pro-
vided E^ [ln(|/|ro/E(?7,α))]~2/3 for some constant E(η,a) independent of \ f φ \ .

(b) PD = <χD> = P (3i such that D is a component of Sf) ̂  exp[ - K0(
£)IDI ~

Kf(E)Vf(D)']9 where K0(£) and K'(E) are both independent of \f\^ and arbitrary
large for E sufficiently small.

Estimate (a) can be settled using Lemma 3.2 with k — e~ j~1. One finds
φ(E, \f\J = C\f\^2N(2E)ί/2. We have here used the fact that for E small enough
exp(-J)(2

1)^£. Using now the bound N(E) ^exp(-c£~3/2) for E small we
see that (a) is satisfied. To estimate PD we make use of the following result, the
proof of which is just a copy of the proof of Lemma 5.2 in [2] and is therefore
omitted:
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Lemma 4.1. Let I = {0} u {rceZ|n ^ In(ίί0(£))/ln(2)}, and let for any nεl,n> 0, j(n)
be the smallest integer such that dj(n} ^ 2n. Let furthermore for any ceCn(D),n> 0,

where Cn£> = {ίeZ3(£) |distE(/, C n D) g 4 }̂. For n = 0 define χ0<c = χ {ω|reSo}.

Π X-
f ceCήΦ)

ne/

It is easy to see that if c l 5 c2 belong to C'n(D\ then if dQ(E) is sufficiently large,

i.e. E is sufficiently small, then c1 nD nc2 nD = 0. This implies the independence
of χn c, when ceC^ and nel. Thus, from the lemma and the Holder inequality we
infer

pD^ΐl Π <X»,c> r n ( 1"Γ ), 0 < r < l . (4.1)
ΠE/ CeC"(D)

For n > 0 we can estimate < χfl c > using Lemma 3.2 with & = exp( — 2M/2), and obtain

<Xn.c>'n ^ Llfl^^dj^E)9'2 exp( - ^2)N(E + e -^γiγ. (4.2)

Since n ̂  Ind0(£)/ln2, we can take E so small that exp( - 2n / 2) g £. Using again the
bound N(£) ̂  ̂ C£"3/2, the right-hand side of (4.2) is bounded by

i2"/2)K, (4.3)

provided Erg [Ind/l^/E^α))]"273 for some constant E^α).
Next, using dj(n} ^ 2"5/4, we see that (4.3) is bounded by a decreasing function of n

if e.g. r = 0.8. In conclusion if £ ^ [Ind/l^/E^α))] ~ 2 / 3 for some constant JB^α), the
left-hand side of (4.2) is bounded by:

(4.4)

with r - 0.8, and K'(E) -> + oo if £ -> 0.
To estimate <(χ0 c> we first observe that using translation in variance it is enough

to estimate the probability that the origin of Z3(£) belongs to 50. To do this let
us define new random variables ξj(ω) as follows

1/2 ifqί(ω)>ΐ/2.

Using our assumption on the distribution of the q('s, we get that P(ξi = 0) = α.
Furthermore since ξ;(ω) ̂  ̂ /ω) for all ί'eZ3, we have

P(θ6S0) = Pd^H^^/ω)) 5Ξ 2JB) ̂  ̂ ι( ~ ̂ CE(O, + Σ ̂ Mfc,) ^ 2£^. (4.5)

This last probability has been estimated in [6] and it is bounded by:

exp(-c£~3/2), c>0 (4.6)

for all E<E(oc). Combining now (4.6) and (4.4) we see that if £^min{E(α),
[ln(|/ oo/E^α))] ~ 2 / 3}, where E(OL) and E{(oί) are two positive constants independent
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of I/I G 0 , then

PD ^ exp( - K0(E)\D\ - K'(E}V\D}\ (4.7)

with KQ(E) = C(2E)~3/2 and K'(E)^> + oo as £->0. We emphasize here that in the
definition of K'(E) (see (4.4)) \f\^ does not appear. This proves (b).

Appendix A. Some Estimates on GΛ(ω, E+iε^x^y)

We prove her Lemma 3.1 and 3.2.

Proof of Lemma 3.1. Let A be one of the corners nearest to y and assume first
dist (A, y)^ 1/2^/3. Let A0^A be a cube of size 1/^/3 such that
yed/l0 and dist (y, £) ̂  dist (y, A), where β is any corner of A0. Clearly such a cube
always exists and dΛQπdΛ=/= 0. Let us fix xeA, with |x — y| ̂  1, and let 0(z)
= (j^ίω, E + iε, x, z) when zeA0. Since x^Λ0, the continuous function g is the weak
solution of the Dirichlet problem

Δυ=(Vψ-E-iε)g in Λ°9

v=g on dA0 ~ δΛ,

i; = 0 on dA0 n d/l,

where for any set A ^ U\ A° denotes the interior of A. We write g = w + M,
where w and w are the unique weak solutions of the problems

Aw = (Vω-E-ίε)g in Λg,

w = 0 on cM0,
and

z l w = 0 in /Ig,

w = ^ in dA0~dA,

u=Q ondA0ndA.

Using the method of strong barrier functions (see Courant-Hilbert, Vol. II [1],
p. 343), we get that

\dnW\^Cl\Vω-E-i^\g\^ (A.4)

To estimate \dn u\ we use the Schwartz reflection principle (see [4], p. 28). For
simplicity we assume that A0 has three faces F19 F2, F3 on dΛ\ the case when the
faces on dΛ are only two can be discussed along the same lines. We then construct
a new cube Ά0 and a new harmonic function ύ from AQ and u as follows. We
reflect Λ0 with respect to the hyperplane through F1 to get a new set A1 then we
reflect /t0u Al with respect to F2 to get a set A2 and finally we reflect A0uA1uA2

with respect to F3 to get A3 and define Ά0 = A0 u A1 u Λ2 u Λ3. Clearly yeΛ0 and
dist (y, dΆQ) ^ 1/2 ̂ /3. Let now u^x) = u(x\ if xe/l0, and M^X) = — M(X*),
if XG/I I ? where x* is the reflection of x with respect to F1 u2(x) and ύ(x) are defined
on A0 u /L! u /12 and on ΆQ in the same way, but with u(x) replaced by M^X) and u2(x)
respectively. Since u = 0 on FίuF2uF3, according to the Schwartz reflection
principle, ύ is again harmonic and IM^ = | M^ by construction. Since y has positive
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distance from the boundary of Ά0 we can now use interior gradient estimates for
harmonic functions ([4], Th. 2.10) to get

\dnu\ = \daa\ ^7—
3

τ-Mcβ. (1.5)
1

Va;
Thus we have proved:

Since it is easy to see that [w^ ^ c?\g\^ we get:

\Sna\ ^ c4\g\^ g c5 exp(- m\x - y\). (A.I)

In the case dist (y, A) > 1/2 ̂ /3 we can use a similar argument if we construct the
cube A0 in such a way that yedA0 and y is the middle point of the face of A0 which
contains it.

Proof of Lemma 3.3. Following Simon ([10], p. 479) we write, using the resolvent
identity

(HA(ώ) -E-iεΓ1^ (HA(ω) + 1)~1 + (1 + E + iε)(HA(ω) + l)'2

+ (1 + E + is)2(HΛ(ω) + lΓ2(HA(ω) -E- iεΓ1. (A.8)

Using now a result of Simon ([10], Th. B.7.2), the first term in (A.8) has kernel
bounded by cj\x — y\, while the second one has bounded kernel. To estimate the
third term we use the following inequality valid for any ιf/,φeL1(A)

\<ψ,(HA(ω) + ίΓ2(HA(ω) - E - iεΓl(HA(ω) + 1)- 10>| (A.9)

where \\-\\ p>q denotes the operator norm from Lp to Lq. Again using the results of

[10], IKHJM + IΓ1!!^ and ]\(HA(ω) + lΓl\\ι,2

 are bounded uniformly in ω.
Hence the left-hand side of (A.9) is bounded by

Taking now φ and ι̂  to be smooth approximations of Dirac's delta-function at
the points x and y respectively, we get from (A. 10) and from the continuity of the
kernel of (HA(ω) + \)~2(HΛ(ω) -E-is)'1 (see [10]):

\{(HΛ(ω) 4- lΓ2(HΛ(ω) -E- iε)"1} (x, y) \ g c2(dist(E9σ(HA(ω))Γ1' (A. 11)

Appendix B. Proof of Lemma 2.1 and 2.2

We prove here Lemma 2.1 and 2.2. It is clearly enough to show that

or

satisfy the stated bound.
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Following Simon [10] we write /(HJ - (l/2π) j dλf(λ)elλH™. Hence we have to
compute [^λ//ω,x2] =(6>

ίλH-χ2β-α//ω _ χ2yλ//ω Now

= x2 - 2ίλ -

From (B.3) we see that

from which it follows:

\\(i + \x\2rlu(Hj,χ2^(Hω + ιr'112,2^^ ^\n^m + w2

To prove the result for (1 + \x\2)~l[.f(Hω\x2], we write it as:

-\x\2Γlf(Hω)Hωx2(Hω + ίΓl

I)

(B.3)

(B.4)

(B.5)

(B.6)

The first term is obviously bounded while the second and third term are bounded
using (B.4) for the functions f(χ\ h(x) = f(x)xeC£(K). The last term is equal
to (l + |x|2)~1/(HJ(2/-4x p)(Hω + l)-1. Since p(Hω + iyί is bounded, it is
sufficient to show that (1 + \x\2)~if(Hω)x is bounded and for this it suffices to
repeat the steps (B.3) to (B.6) with x2 replaced by x. Collecting all the estimates
together we finally get:

2ι2

dx :/ dx4 (B.7)

where |supp /| denotes the Lebesgue measure of supp /.

Proof of Lemma 22. Write f(Hω) = (Hω + \)~lg(Hω\ where g(χ) = (x + l)/(x)e
C^([R). Using Lemma 2.1, \\g(H^\\^^ is bounded uniformly in ω. Since, using
a result of Simon [10], \\Hω + 11| ̂ ^ is bounded uniformly in ω, we get the result.

Appendix C. Proof of Lemma 3.2

We prove here Lemma 3.2. Following Wegner [11] and Frδhlich-Spencer [2] we
write:

P(dist(σ(HΛ(ω)\ E)<k} = P(N(E + fc, HΛ(ω)) - N(E - k9 HΛ(ω)) ^ 1)

I dE'~~N(E',HΛ(ω)}
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E + k

= - Σ ί dE' j Π My/to;))
i^ E~k ,

ctnΛ^0 j f ϊ , C j n / 1 ^ 0

ϊdqtf(qJdtN(0,HA(ω)-E') (C.I)

^1/1=0 Σ ί Π (dijf(qj))
j

where

c, n Λ f= 0

lN(E,HA(ω))\qι=0-N(E,HA(ω))\qι= + 1],

Since N(E,#>u))|ij=:0 ^N(E, - ΔD

Λ) ^ const \Λ\, the right-hand side of (C.I) is
bounded by

(C.2)

On the other hand:

P(dist(σ(HΛ(ω)), E)^k)^( N(E + k, HΛ(ω)} y^(N(E + k, HA(ω)) >

^ \Λ\ sup — < N(E + k, HΛ(ω))>, (C.3)

/Icube

where A^Ais the smallest cube containing A. Here we have used the monotonicity
of the eigenvalues λk(HΛ(ω)) with respect to A (see [7]). Observing that from the
results of [7] we have that

sup -ί- < N(E 4- k, HΛ(ω)) > = N(E + k\ (C.4)

/Icube

where ΛΓ(£) is the integrated density of states of the system, we conclude the proof
by taking the geometric mean of the two estimates.
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