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Abstract. To a gauge field on a principal G-bundle P—M is associated a
sequence of quantum mechanical Hamiltonians, as Planck’s constant #—0 and
a sequence of representations 7, of G is taken. This paper studies the associated
quantum partition functions, trace exp(—tH,), and produces a complete
asymptotic expansion, as h—0, fi=1/n, of which the principal term, pro-
portional to the classical partition function, is the familiar classical limit.

1. Introduction

In this paper we study the limit as #—0 of the (non-relativistic) quantum partition
function associated with the Hamiltonian for motion in a Yang-Mills field. More
specifically, let M be a compact Riemannian manifold, and let P—»M be a
principal G-bundle, G a compact connected Lie group. We suppose a connection is
given on P; this determines a gauge field. We can regard the connection as a
g-valued one-form 0. We have an associated covariant derivative on any associat-
ed vector bundle E= P x .V, where n is a representation of G on a vector space V.
With respect to a local frame, this is given by

Viu=X -u+n0X))u, (1.1)

where X is a tangent vector to M, ue C*(M, E). Here X - u represents the action of
X componentwise on u, and 6(X) is the element of g defined by the connection
1-form 0. In local coordinates, on a coordinate patch O CM, with X =0/0x;=0;
and

6=> A(x)dx;; A;eC>(0,9), 1.2)
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we can write (1.1) as
Vr=0,+m(A,x). (1.3)
The quantum mechanical Hamiltonian we consider is of the form
H, .= —hq~ Vg g" V7 — ihm(A4,(x)) + V(x). (1.4)

We use the summation convention. Here A,(x) is a smooth section of P x ,,g and
V(x)is given as a smooth real valued function on M. g, is the metric tensor and g*
the associated metric on cotangent vectors.

There are two main contexts in which to study the behavior of a quantum
system and relate it to the behavior of a classical system, when #, the Planck
constant, tends to zero. Historically, both were discussed already in early stages of
the development of (non-relativistic) quantum mechanics. The first compares
classical and quantum mechanical observables as they appear for example in the
description of a particle moving in a potential. Ehrenfest [4] was the first to relate
these two types of observables. It is remarkable that only fairly recently it was
realized by Hepp [8] that the Ehrenfest relations are compatible with the time
evolution of the classical and the quantum mechanical system (see also the
discussion in [26]). Recently, Hepp’s treatment has been extended to cover the
case of a particle moving in an external (static) metric field [10] and in an external
Yang-Mills field [11]. In the first case the classical equations of motion are of
course the geodesic equations, whereas in the second case one obtains generalized
versions of the Lorentz equations for a classical particle described by a position, a
momentum, and a classical isospin [in the case G=SU(2)]. These equations are
sometimes called the Wong equations [30]; see also [20] and [7].

The second main context in which one may discuss the #—0 limit and with
which we will be concerned here deals with the Gibbs canonical partition functions
as obtained from the Hamiltonians H,, and H,, which describe the (one-particle)
system. In the quantum mechanical case one looks at qu(ﬁ)=tracee"3H°‘m, with
B=(kT)™!, T=temperature, k= Boltzmann constant, where H,, contains 4, and
compares it with the classical expression Z_,(f) = [ e ##<'d vol, where integration is
over the classical phase space of the system.

Here we will obtain a complete asymptotic expansion as h—0 of the trace of
exp(—tH, ), with fixed ¢ (t=p). For reasons that have been developed elsewhere
(see [11]) we must vary the representation 7 as A—0. In fact, if we picture the
irreducible representations of G as indexed by a lattice in a Weyl chamber, we can
pick some point A, in this lattice, corresponding to a representation 7, of G, and
let =, be the representation of G corresponding to the point nd,. We then look at
the sequence of Hamiltonians

H,=H h=1/n. (1.5)

%

The main result of this paper is the following, which extends previous results along
these lines.

Theorem A. Let d, be the dimension of the representation space of m,. Fix t>0. Then
there is a complete asymptotic expansion as h—0 (h=1/n) of the form

d; Mtracee” "~ h ™ (ag(t) + a (O + ay(h2 + ), (1.6)
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where
v=dimM . (1.7)

Here a,t) is given (up to a factor ||A,||*) by the integral formula (4.88), or equally, by
(5.90).

The fact that #*d; ! tracee” "~ tends in the limit to a,(t) has been proved before,
first in the case of Abelian gauge fields (G=S") in [2, 18, and 197, and recently, for
general gauge fields [in the case of a product bundle over M =R", and with
appropriate conditions on V(x) as |x|— oo in this non-compact situation] in [11].
Theorem A refines these results insofar as it produces a complete asymptotic
expansion.

In the Abelian case G=S", we have 7,(4 (x)) equal to nm,(4,(x)), so in this case
we can write H, as

H,= —g~ V2(hd, +id)g"g" *(hd, +id)+V (h=1/n) (1.8)

n

[replacing V(x)—im,(A4,(x)), which is real valued, by ¥, and denoting m,(4;) by
i4;]. In Sect. 2 we will analyze a class of singular perturbation problems. A special
case will include the qualitative analysis of e " in case (1.8). The singular
perturbation problems treated in Sect. 2 are not restricted to scalar problems.
These singular perturbation problems have some points in common with the work
on first order hyperbolic systems with a small viscosity term in [22], but the
analysis is very much simpler in the present case.

In the special case when the potentials 4; are absent from (1.8), Uhlenbeck and
Gropper [27] and Wigner [29] were the first to derive recursion relations for the
quantum partition function in terms of powers of % (see [13] for a lucid
discussion). Considerable effort has been put into trying to prove that their
expansions are asymptotic [3]; to our knowledge the proof we present seems to be
the first one, even in this case. We remark that three ingredients go into the proof
of the validity of the expansion produced in Sect. 2. There is a qualitative analysis
of the amplitudes obtained by solving certain transport equations (Lemma 2.1),
then an interpretation of this analysis in terms of symbol estimates (Lemma 2.2)
and use of the pseudodifferential operator calculus, and finally an appeal to certain
energy estimates (Lemma 2.3), which follow from Gaérding’s inequality.

It is a remarkable fact, first observed by Lieb [14] (see also [9]) that in some
situations it is possible to take the classical limit only for a subset of dynamical
variables, while retaining the quantum mechanical properties of the remaining
dynamical variables. The analysis in Sect. 2 in case 4, are general gauge potentials
(but one does not replace nz, by ,) provides another example of this phenomenon
by retaining the quantum mechanical property of the isospin and letting position
and momentum become classical observables (see the end of Sect. 2).

To treat the quantum partition function associated with (1.8), for general gauge
fields, we will use two approaches, both involving the study of harmonic analysis
on compact Lie groups. One approach involves the method of “coherent states”,
which has also been applied in the study of quantum partition functions in
[18, 11], following other applications given in [14, 5, 6, 12, 16]. In Sect. 5 we
amalgamate the singular perturbation analysis of Sect. 2 with the use of pro-
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jections onto coherent states to prove Theorem A. The other method we use
involves fitting all the representations of G (including the sequence =,) into the
regular representation. Proving Theorem A becomes a task in microlocal analysis
on P, which we tackle with pseudodifferential operators. We briefly describe some
aspects of representation theory and harmonic analysis on a compact Lie group in
Sect. 3, including some results on harmonic analysis using pseudodifferential
operators developed in Chap. XII, Sect. 6, of the book [21].

We use the following notational conventions for pseudodifferential operators.

We have
plx, Dyu= [ p(x, &)e™a(&)d¢, (1.9)
where #(¢) is the Fourier transform of u. We say
p(x,¢)esy s and p(x,D)eOPSy ;, (1.10)
provided
IDED3p(x, &) S C, g1 + (€[~ el o0, (1.11)

We will use partitions of unity and work on coordinate patches in M, in a standard
fashion. The symbol class S™CST , consists of functions with an asymptotic
expansion

p(x, &)~ ;0 pfx. ), (1.12)

where pj(x,¢) is homogeneous in ¢ of degree m—j, for || large.

2. Uniform Parametrix for a Singular Perturbation Problem

In this section we shall construct a uniform parametrix for solutions to initial
value problems

ou/fot=—Hu, u0)=f, (2.1)

with H, a family of second order differential operators on a compact Riemannian
manifold M of the form

—H,=e’L+eX+V,. (2.2)
We suppose
L is a negative definite strongly elliptic scalar second order
differential operator on M, (2.3)
X is a first order differential operator on M (scalar), 2.4)
and
V, is a smooth (scalar) function on M. (2.9)

A special case of this arose in Sect. 1, namely, in local coordinates, and with the
summation convention,

H,=—g 20, +iA)g"g" (0, +iAd,)+ V. (2.6)
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In this case we have
L=4, X=2idg"%0,+ig~"*(0,9"%¢"*4), V,=-V—g*4;4,. (27)
In the more general situation we take, in local coordinates,
L=g™x)0 0t b(x)o jtex), X= Bi(x)0 I (2.8)

We will use ¢ rather than # in this section as the small parameter to emphasize that
we are dealing with a more general class of singular perturbation problems than
arise from Sect. 1.

In local coordinates on M, the uniform parametrix will be of the form

Ute)f=[alt,e, x, &) f(E)e™*d¢, (2.9)
where the amplitude a(t, ¢, x, £) will be an asymptotic sum
a(t, e, x,&)~ ). ajt, e x,8), (2.10)
jzo

the terms a(t, ¢, x, {) being determined by transport equations, which we proceed
to derive. This derivation will have some points in common with the work [22] on
hyperbolic systems with a small viscosity term, though it will be somewhat simpler.
The transport equations are determined by applying 0/0t+ H, to (2.9). If we set
w(x, &)=x-¢, a straightforward computation gives

L(ae™)e™ " = — | | 2a+2i¢, Va) +i(By)a+ La. (2.11)
Here we set
€17 =g™(x)¢ &, <&y =g™x)¢m,, (212)
and
By="b(x)0p. (2.13)

Similarly, we have
X(aev)e " =iX*p)a+Xa, X*=2id,4’0,. (2.14)
Consequently, we require of the amplitude a=a(t, ¢, x, £) that, in an appropriate

sense,

—0a/ot—e*| &\ Pa+ 2ie* (&, Vay + ie*(By)a+e*La+ieX *y)a+eXa+ V,a~0.
2.15)

It will be convenient to group terms together by weight, where weights are
assigned as follows:

—0a;/0t—&*|€]|*a; +ie(X *p)a,+ V,a; has weight —j, (2.16)
and
2ie*(&,Vay +*La;+ ie*(By)a; +eXa; has weight —j—1. (2.17)

Our iterative procedure will consist of requiring the sums of all terms of weight
0, —1, =2, etc., to vanish. Requiring the terms of weight 0 to sum to zero leads to
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the “first transport equation”:
0ay/0t=(—e*||&]1* +ie(X *p)+ V))a, - (2.18)
Since U(0,¢) is to be the identity operator, the appropriate initial condition is
ap=1 as t=0. (2.19)

More precisely, we should set a,=¢,(x) at t=0, where ¢, is an element of a
partition of unity, but we can safely ignore this point. We have

ag(t, &, x, &)= N4V (2220)
Let us denote the exponent in (2.20) by —I':
I(e,x, &)= —ie(X ")~ V; =T'(x. ). (221)

In other words, we have
ag=e D, (2.22)
For jz1, the transport equation for a; becomes
da;/ot=—Ta;+Q,, (2.23)
where
Qt,e,x,8)=2ie*(¢,Va;,_»+e’La;_ | +ie*(Bp)a;_  +eXa;_ . (2.24)
In this case, the appropriate initial condition is
a(0,e,x,§)=0, j=1, (2.23)
so the solution to (2.23) is

t

i=1e7 Qs 6, x, E)ds (2.26)

0

The following gives important qualitative information on the amplitudes a;.

Lemma 2.1. For each j, there is a smooth function at,é, x, (), such that

aft,e,x,&)=tlelat,e,x,e)e T (2.27)
More precisely,
ajtex,el)=af(t,e x,{, 0, 0), (2.28)
with
(=ef, w=t"%¢, o=t (2.29)

where a;’c is smooth in all its arguments, and a polynomial in e, w, {, and 0. It contains
only even powers of w. Its order in { is not greater than j.

Proof. Write
th(x,e8)=T*(x,,0)=|o|>—V, +iX *p,, v, =x0.
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We use induction on j. For j=0, the result follows from (2.22). Suppose (2.27) and
(2.28) hold. We will verify the analogous formulas for a;,. First of all, by (2.24)
with j replaced by j+ 1, we see that

. "
Q=1 Qf (t,6,x,{,w,0)e” T,

where Qf is a polynomial in ¢, {, w, o, even in w, whose order in { can exceed that

of a}* by at most 1. Now (2.26), with j replaced by j+1, gives
t
;. (tex,&)=0" 1! (t”j* LfQF (s.e,x, (5", sC)sjds) e oo
0

so the degree of af ((t,&,x,{,®,0) in { exceeds that of af by at most 1. This
completes the proof.
Recall from (2.21) that

L= 1P =iX v, =V, (9, =x0) (230)
is a second order polynomial in {, with real part satisfying
Rel(x,0)zCl{12-C'.

This enables us to prove a result on uniform boundedness of the amplitudes a; in
appropriate symbol classes. Recall that a smooth function p(x, £) is said to be in the
symbol class ST , provided

IDED%p(x, &) = C,p(1+1Ey" ™, (2.31)
In that case we say p(x, D) belongs to OPSY , where

px, D)f = [ p(x, &) f(€)e™4dE . (2.32)

A bounded subset of ST , is a set of functions satisfying the estimates (2.31) with
uniform bounds C,;, and they give rise to a bounded family of operators in
OPST .

Lemma 2.2, Fix positive T and E. For 0=St=T, 0=¢<E, we have
aft,e, ) bounded on Sy %, (2.33)
and, for 0=/ <j,
e ‘ajt,e,-,-) bounded in Y7, (2.34)

J
Proof. Since tj/zlélje"'f/“:tj/zsj]élje_‘f/“ng, we deduce from (2.27)-(2.28) that

la,| S C;tlel| e T2 < Clp2eie ™ T4 < CY(1+¢]) .

Derivatives of a; have similar estimates, so (2.33) and (2.34) follow. Note that
taking k e-derivatives raises the order by 2k, as does taking k t-derivatives.
Let us now consider a partial sum of the expansion (2.10):

3

Afte,x, &)=} aftexE). (2.35)

j=0
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Form

W) f(x)=[ A[t, &, x, &) f(E)e™dE . (2.36)

More precisely, using a partition of unity subordinate to a coordinate chart, paste
together operators of the form (2.36) to form W,(t). We have

w0)=1, (2.31)
and
(@/0t + H)W,(0) f(x)=[ B,(t, &, x, E)e™ f()dE , (2.38)

where B, is an expression of the form (2.17) with j=/, ie., B,=,. We conclude
from Lemma 2.2 that

IDEDIB,(t, &, x, ) S C oyt e (1 +1E]) ™ M™%
SC(LH[E DTl if 2, (2.39)

In order to compare W,(t) and e "¢

, we need the following energy estimate:
Lemma 2.3. Let v(t, ¢, x) satisfy
(0/0t+H o=g(t,&,x), v(0,¢ x)=h(e x). (2.40)
Then, for 0St<T, 0<e<E, we have
sup v(t, &, M gsary = C1 [1h(e, )l s + C, sup lg(t, e, )igs» (2.41)
where C, and C, are independent of t€[0,T] and e€[0,E]. One has similar

estimates on

sup D¥Dv(t, ¢, *) (2.42)
t

Hs—2(;4+v)

Proof. Let (,), denote a Hilbert space inner product on the Sobolev space H(M). If
we apply Garding’s inequality to (— Lu, u),, we get the estimate

Re(H,u, u),=¢* Re(— Lu, u), +& Re(—Xu, u), +(— V,u, u),
ZCoe?llull?y | — Kellully, o lully—C flull?
2 Coe?llullZy = [3CoE lulldy  +2K>Cq Hlul 21— C, llull?
23Coe lul2, —(Cy +2K>Cq M) ull?
= —Cllul?. (2.43)

Here, C,, C,, K, and C are all positive and independent of e€ [0, E]. It follows that
e~ e HS(M)— H(M) (2.44)
with operator norm

lle™ ™|l g ggs) < Cls)e™ (2.45)
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bounded independently of e€[0, E]. Now Duhamel’s principle gives for the
solution to (2.40):

t
vt e, x)=e"Meh+ [ e " Heg(r e, x)dr, (2.46)
0

from which (2.41) follows. Differentiating (2.40) with respect to ¢ gives for
v, =0v/0¢,

(0/0t+H,)v, =0g/0e+ (2eLv+ Xv), v,|,—,=0h/0¢. (2.47)
The analysis just given yields bounds on v;, and inductively, one analyses
v,=0'v/0¢’; t derivatives are bounded similarly, and the proof of Lemma 2.3 is

complete.
Now we can asymptotically sum:

Ult,e)~ ). Ufte), (2.48)
jzo
where
U (te)f(x) ={ aftex, E)e*dé (2.49)
and conclude that, for any fe 2'(M),
e Hef— Ut e)f =h(e, 1, x) (2.50)

is a smooth function of (e, t, x)e [0, E] x [0, T] x M, which is rapidly decreasing as
¢—0. In particular, for any ¢ >0,

tracee” "= —trace U(t, &) (2.51)

is rapidly decreasing as e—0. We proceed to produce an asymptotic expansion for
trace U(t, &) as ¢—0, with ¢ >0 fixed. We analyze trace U (t, ¢), where U (t, ¢) is given
by (2.49). If we write, in local coordinates,

Ut e)f(x)=] W{t,e,x, y) f(y)dy, (252)
we have
Wt,e,x, )= ajt e x, e, (2.53)
In particular
Wit e, x,x)={aft e x,&d¢, (2.54)

and hence,

trace U(t, &)= | W(t,&,x, x)d vol(x) = [{ a,(t,¢,x, £)déd vol(x). (2.55)
M

Now formula (2.27) gives
trace U (t,8) = e’ [ a(t, ¢, x,e€)e” T gedvol(x). (2.56)
A change of variable gives

[at e x,e8e  T@HDdE = 4 (t,e,x) (v=dimM), (2.57)
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and hence,
traceU(t,e)=¢ """/ | B/(t,&,x)d vol(x), (2.58)
M
where B (t, ¢, x) = t'A (t,,x) is smooth on (0, c0) x [0, E] x M. In light of the rapid
decrease of (2.51), we deduce the following.

Proposition 2.4. With v=dim M, t>0 fixed, we have an asymptotic expansion as
e—0:

tracee ™ e~ g7V (By(t) +€B,(t) +&*B,(t) + ...). (2.59)
The leading coefficient is
By(t)=[[e T*9d¢d vol(x). (2.60)
In case H, is given by (2.6), we have
By(t)=J exp[ — (&, — A(x))g™(&, — A, (x))— tV]dEd vol(x), (2.61)
and we can change variables to get
Bo(t)=[{exp[ —tl|&||* —tV]déd vol(x). (2.62)

This special case of Proposition 2.4 implies Theorem A in the scalar case.

We now turn to the modification of the analysis above that is required if one is
to generalize (2.2), allowing X and ¥V, to be K x K matrices, rather than merely
scalars. In fact, we will stick to the construction of the amplitude, via (2.22)—(2.26).
In this more general situation, each a; is a K x K matrix valued function. Now
behind the proof of Lemma 2.1 is the identity

(@fox)e T = —(@r*jox e, (2.63)

valid when I'* is scalar, but not valid for general matrix valued I'*. To treat the
more general case, we need a replacement for (2.63). To phrase more precisely what
we want, note that

I =t =t)e|* - 24,(x)g™(x)o, — tV,(x),
SO
e =l exp [24,(x)g"c, +V,]. (2.64)

The first factor on the right side of (2.64) is scalar, so we need to understand how to
differentiate the last factor. Let us set

L(Ay, ... A, V;5x,0,0)=24,g"(x)0, + 1V, (2.65)
SO
e T=expL(A,, ... A, V,;x,0,t)e” 1417, (2.66)

Now we want to understand derivatives with respect to x of expL(x) for a
general smooth K x K matrix function L(x); we will adopt the hypothesis that Z(x)
is self-adjoint for each x, so we assume

A,,...,A, and V, are self-adjoint. (2.67)
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More generally, we have a formula for (0/0x;) f(L(x)), where L(x) is self-adjoint and
fis a smooth function on R, so f(L(x)) is defined by the spectral theorem, given as
follows:

(0/0x ;) f(L(x))=g(0L/0x}, L), (2.68)
where g is a smooth function on R? defined by
gls, ) =5f"(7). (2.69)

The right side of (2.68), a function of two (generally noncommuting) self adjoint
matrices, is defined by the Weyl calculus. More generally, if (T}, ..., T;) is a k-tuple
of bounded self-adjoint operators on some Hilbert space, and fe%(R¥), one
defines the Weyl calculus by

f(T)=Q2n)~k> jf(«f)exp[ié1 T, + ... +i§,T,]d¢. (2.70)

It is easy to verify, using the Paley-Wiener theorem, that for a given (T}, ..., T),
with ) | T;|> < M?, f(T) depends only on the restriction of f to the closed ball B,
of radius M, and the norm of (2.70) satisfies an estimate:

Z“TJ”zéMz:“f(T)”éck,M“f”Ck(BM) (2.71)

See [25]. Then we have a natural extension of f(T) from fe #(R¥) to fe C*(IR¥),
and if, for example, f(t,,..., 1) =027, + ... +%7,), ¢;€R, then f(T) defined by
such a Weyl calculus is equal to ¢@(x, T, + ... +o,T;), defined by the spectral
theorem. The identity (2.68) and (2.69) is proved in [25], and is a simple
consequence of the elementary identities

(0/0x ;) L(x)* =(0L/ox LX) ... L(x)+ L(x) (OL/0x ) L(x) ... L(x) + ...
+L(x) ... L(x)(0L/0x,), (2.72)

where each term on the right in (2.72) contains k— 1 factors of L(x), and there are k
terms. More generally, we have

k
(0/0x ) f(Ly(x), ..., L(x)) = Y g/ 0L,/0x pLy(X), o LX), (2.73)
=1
with

g8, T .., 1) =50f/01,,

where both sides of (2.73) are evaluated via the Weyl calculus.
We will use these results on the Weyl calculus to prove the following analogue
of Lemma 2.1.

Lemma 2.5. Under the hypothesis (2.67), we have

aft,e, x,&)=e'tb (t,¢,x,e&)e” Il (2.75)
with a polynomial representation
bt e x,e8)= HZ E (16, x, 0, (2.76)
al = j

|B|even
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where
(=6, w=t"%¢&, (2.77)
and, for some B=B,, <o, the K x K matrix function E,,, satisfies
IDIDZE,, 5(t, €, X, £8)| < C 1, ,(€1) 1™ (2.78)

Proof. The proof will proceed by induction on j. For j=0 we have
bo(t, &, x,e&)=exp L(A,(x), ..., A,(x), V,(x); x,0,0)=b{ (¢, X, 6), (2.79)

where L is given by (2.65), o =te&, and the right side of (2.79) can be taken to be
defined by the Weyl calculus, as mentioned in the discussion above. We have
Eo(t,&,x,0)=by(t, &, x,{), and we want to establish (2.78). Note that the absolute
value on the left side of (2.78) refers to the operator norm on CX, since E,,; is a
K x K matrix. Now we have

0by/0x;=F,(0L/0x, L), (2.80)
where
F,(s,7)=se", (2.81)
and
0bo/0&;=teF J(OL/0o;, L). (2.82)

Using the estimate (2.71), we see that (2.78) holds for E,, if |y| +|o| = 1. The required
estimates on D]DZE, for general y and o follow similarly, and the result is
established for j=0. Now we want to show that, if (2.75)~2.78) hold for a;, the
analogous results hold for a;, ,. Recall that

a;,,(tex, f)=ie_(’_s)f9j+1(s,8,x, &)ds, (2.83)
where Q,, , is given by (2.24), ie,,
Qi (t,e,x,8)=2ied(,V,a;) +&°La; + (x,)a; +eX a;, (2.84)
where f(x, () is linear in {. It follows that, if (2.25)~(2.78) hold for a;, then
Qi ((te,x,()=¢"1¢ y FZ“ 1 F 1,5t 6, %, ool e~ el (2.85)
|BTeven

where F,,, satisfies the estimates (2.78). Consequently, a;., is of the form
(2.75)-(2.76), with

t
Ej+ l,aﬁ(t? &, X, C) = t_(j+ L+ 318D g b:(t_ S, X, (t— S)C)Fjaﬂ(sy &, X, C)S‘H—%[ﬂlds . (286)

Since (2.78) holds for b and for F

jup> SUCh an estimate also holds for E;_, 5. The
proof of Lemma 2.5 is complete.
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From Lemma 2.5 one concludes that

4| S Cety<w) (TP e 1 (=)
S (Y 2eye kI

SCL+IEN, (2.87)

with similar estimates on the derivatives, so Lemma 2.2 continues to hold.
Lemma 2.3 also holds, with no change, and hence (2.51) is still rapidly decreasing
as ¢—0, so for any >0, as ¢—0,

tracee” e~ ) trace U1, ¢). (2.88)
jzo
In this case, replacing (2.56)2.58), we have
trace U (t, &) = t'e [[ trb (1, €, x, e&)e ™ 1<I°déd vol (x)
=t [[trb(t, e, x, e M dld vol (x). (2.89)

Above, we take the trace of the K x K matrix valued integrand. Thus
Proposition 2.4 continues to hold in this more general case, with the formula for
the leading term modified to

By(t)=[[ tre”T™94dd vol(x). (2.90)

In particular, if H, is given by (2.6), with 4,(x) [and possibly V(x)] self-adjoint
matrix valued, we have

Bo(t)=[J trexp[ — &;— A,(x))g"(x) (&, — A(x)) — tV]dEd vol(x).  (2.91)

As opposed to the scalar case (2.61)+(2.62), (2.91) need not be independent of the
matrix terms 4 (x).

As a final comment in this section, we note that even the self-adjointness
hypothesis (2.67) could be dropped. We would need to exploit the complex
analyticity of the functions being applied to matrices above, and replace (2.70) by
the Dunford calculus. The identity (2.68)—~(2.69) is also well-known in this context.
In fact, we could use the following more elementary derivation of (9/0x)e"™. If we
let w(t)=e"Vf, then v=0du/dx; solves

dv/0t=L(x)v+(0L/0xu, v(0)=0,

t
so Duhamel’s principle gives v=(§)e"_s)L(")(6L/6x Ju(s)ds, so

(0/0x ;)¢ = i ! TIDGL/0x )e P ds,
and setting t=1 gives

(0/0x ;)™ = i L TIDOLJox )M ds . (2.92)
This provides a perfectly adequate replacement for (2.80) and (2.81) in the proof of
Lemma 2.5.
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3. Harmonic Analysis on a Compact Lie Group

The purpose of this section is to bring together facts about harmonic analysis on a
compact Lie group G which will be needed in Sects. 4 and 5. First, we recall some
basic facts about the representation theory of G; our references for this material
are the books of Wallach [28] and Zelobenko [31].

The irreducible unitary representations 7, of G are naturally indexed by
e #NC, where C is a convex cone in IR called a Weyl chamber. Here k is the
dimension of a maximal torus T* of G, and R* is identified with T}T* & is a
lattice in IR¥. The entries 7%/(x) of the matrix =, are functions on G. The Peter-Weyl
theorem implies

{]/an{': le#NC, 1<4,j<d,} is an orthonormal basis of L*G). (3.1)

Here d, is the dimension of the representation space of «,. It is given by Weyl’s
formula

d, =[] <A+36,0>/<b,a). (3.2)
aeP
Here 6eR* is half the sum of the positive roots, P is the set of positive roots, and
the inner product is induced by the Killing form.

If P is any bi-invariant differential operator on G, then {7} belong to an
eigenspace of P, for any fixed 4. An example of this is P =4, the Laplacian on G,
endowed with a bi-invariant Riemannian metric (which induces a metric on
R*~ T*T*). In this case we have

—An=(|A+6)*—[16]*)ny. (3.3)

As before, §€R” is half the sum of the positive roots. This result has the following
important generalization, proved in Zelobenko [31, p. 369]:

Theorem 3.1. Let g, (1) be any homogeneous polynomial on R, of degree m, which is
invariant under the Weyl group. There exists a bi-invariant differential operator Q, of
order m, such that

onf=q,(A+0)r]. (3.4)

Conversely, if Q is a bi-invariant differential operator of order m, then (3.4) holds, for
some ¢, (A), polynomial of order m, invariant under the Weyl group (perhaps not
homogeneous).

The Weyl group is the group of linear transformations on R*= T*T* induced
by inner automorphisms of G which leave T* invariant. It is a finite group,
generated by reflections across the walls of the Weyl chamber. For more details,
see [28], or [31].

It follows from the proof of Theorem 3.1 that the relation between g,(4) and
q,.(e, &), the principal symbol of Q, is the following. We think of Ae T*T* included
in T*(G), and then q,,()=g,,(e, 2). Since g,,(e, &) is invariant under the coadjoint
action of G on T}*G, this uniquely specifies g,,(e,£). We note the assertion that
restriction to R¥, giving g,,(e, £)—q,,(4), is an isomorphism from the space of
polynomials (homogeneous of degree m) on T;*G invariant under the coadjoint
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action of G onto the space of polynomials (homogeneous of degree m) on R*
invariant under the Weyl group, a theorem of Chevalley.

In view of Chevalley’s theorem, results of Schwartz [17] or Mather [15] imply
the following. The restriction map gives an isomorphism from the space of
functions in C*(T;*G\0), homogeneous of degree m, invariant under the coadjoint
group, onto the space of functions in C*®(IR¥\0), homogeneous of degree m,
invariant under the Weyl group. One then obtains the following pseudodifferential
operator analogue of Theorem 3.1; for a proof, see Chap. XII, Sect. 6, of [21].

Theorem 3.2. Let g(A)e S™(R¥) be invariant under the Weyl group. Then there exists
Qe OPS™G), bi-invariant, such that

On/ = q(A+ o) . (3.5)

Conversely, for any bi-invariant Q€ OPS™(G), there is a q(1)€ S™(R¥), invariant under
the Weyl group, such that (3.5) holds. The principal symbol q,(x,) of Q and the
principal term q,(A) in the expansion of q are related by the identity

q.(e,A)=q,(4), AeR‘CT*G, (3.6)
which uniquely determines the correspondence between q,(x, &) and g, (4).

As an application of Theorem 3.2, we will analyze the behavior as n— oo of the
quantities

d!tracee™ ™" Xeg. (3.7

Here m, is the irreducible representation of G corresponding to the point ni, in
ZNC, where 1,€ ZNC corresponds to an irreducible representation 7, of G;
d,=d, isthe dimension of the representation space of =, given by (3.2). The limit
of (3.7) was obtained in [18] and was used in [11] as a preliminary step toward
analyzing the limiting behavior of quantum partition functions. The result we
obtain here is more precise since it is a complete asymptotic expansion.

It is convenient to alter the exponent in (3.7) slightly, replacing 1/n by
1/lln, + 4|, so we will study the limiting behavior of

e(n)=d; ! tracee™™®/lint+all - xeq. (3.8)
Now, consider the pseudodifferential operator
A=(—A4+|68|*Y*e0PS*. (3.9
It follows from (3.3) that
Anii =1+ 5|7, (3.10)
o)
e XlInas+oll — 471X (3.11)

on the linear span of {n¥, : 1<i,j<d,}, which is a direct sum of d, copies of =,
Note that 471X eOPS°, and hence, ¢* '*e OPSY(G).

Now one way to describe the quantity ¢(n) in (3.8) is as follows. Conjugate
e Xin2:+3ll by the action of 7,(g), and average over ge G. The resulting operator is
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a scalar, namely ¢(n)l. Note that, with R, denoting the right regular
representation,

g R, 'e* *Rydg=TeOPS(G) (3.12)
is a bi-invariant operator. By Theorem 3.2 we have
Tny =1(A+6)nf (3.13)
for some 1€ SO(R¥), i.e.,
A ~toD)+7,(AD)+ ..., (3.14)
with 7(4) homogeneous of degree —j in 4. Note, however, that
o) =1t(ni, +9). (3.15)

We have the following result.

Proposition 3.3. For any given X€g, as n— oo, there is an asymptotic expansion
d; tracee™™Ini ol L g (n) +8)+ 1 (nA, +0)+1,(nA, +0)+ ..., (3.16)

with T (1) homogeneous of degree —j in A. In particular, the leading term is

To(A) = [ i<AdeX. DAl gg (3.17)
G

Here we regard AcR*Cg*.

Note that (3.17) arises from (3.12), in view of the formula for the principal
symbol of a pseudodifferential operator conjugated by the action of a diffeomor-
phism. We can rewrite the inner product in the exponent of (3.17) as <X, Ad*gAi).
As g ranges over G, Ad* g/ ranges over a coadjoint orbit I; of G in g*. I is a dilate
of a coadjoint orbit I, ,, =I;*, and we see that (3.17) is equivalent to

A= [ €5 Pdu, (), (3.18)
rf

where dpu,(/) is the natural homogeneous probability measure on the orbit I,*.
This is the form in which the limit was written in [18, 11]. In the latter paper it was
shown that ¢(n)—1,(nl, +6) is bounded by a constant times n~ */?; the arguments
of [11] can be improved to obtain the sharp bound implied by (3.16), namely a
constant times n~ !,

It is clear that we could replace the vector field X by any left invariant
pseudodifferential operator X =x(x, D)e OPS!(G), and then the leading term in
(3.16) is

()= | €du (). (3.19)

We will now re-derive the complete asymptotic expansion for d; ! tracee™ X",

equivalent to (3.16), using the study of maximal weight vectors. This tool figures
into the method of coherent projections, which we will use in Sect. S.

If a choice is made of the set of positive roots 4" of g, as those which are
positive on the Weyl chamber C, then the irreducible representation «,, A £NC,
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has 4 as its highest weight, with respect to the induced ordering on .#, and there is
a unique A-weight vector p, up to a complex scalar. Choose y, of norm 1; it is
called the highest weight vector. It is annihilated by all “raising operators”, i.e., by
all root vectors in g, for ue 4™, The following “generating function” plays an
important role in the representation theory of G, including the Borel-Weil theorem
(see [28, 31]):

Vi) ={m@p,v,», LeZNC, geG. (3.20)

Note that, although v, is defined only up to a phase ¢”, ¥,(g) is independent of
this phase factor. Now given A, ue ¥nC, A+u is the highest weight for the
representation 7, ®=,, and the unique highest weight vector is y, @, ; this vector
is hence contained in a copy of «,, ,. From this one has the following simple but
remarkable identity:

Y. ¥.9=Y,..9), AueZnC. (3.21)

This identity was proved by Zelobenko (see [31], Sect. 109). It was re-discovered
and applied to the study of quantum partition functions by Gilmore [6], and also
discussed by Simon [18]. It can be rephrased as follows. Let e,,...,e, be the
fundamental weights in N C, so any 1€ £ C can be written uniquely in the form

A=) le;, ¢;20, integer. (3.22)
i=1
Then
k
¥,09)= 1 ¥19)". (3.23)
j=1
where
Y{g)="Y.9). (3.24)

This reduces the problem of determining ¥,(g) for all weights A to the finite
problem of determining the cases (3.24).

The relevance of ¥,(g) to the study of tracee™®/"

is provided by the identity

tracee™ ") =trace | emaAdaY 4o
G
=d, [ <Ay, >dg, (3.25)
G

which follows from the fact that the first integral is scalar, by Schur’s lemma. Now
pick 4, € NC and set A,=nl, d,=d, , n,=n,, p,=p, . It follows from (3.21)
that

d, ' tracee™®n= [(rAdeding 4 Sndg. (3.26)
G

This sort of identity was also exploited in [18] and [11]. Here we show how it
yields a complete asymptotic expansion as n— oo. For the moment, set

B=mn,(AdgX). (3.27)



572 R.Schrader and M. E. Taylor

We are looking at

1, (B) =<y, p, )"
=[14+n"Y(B+n"'B*21+n B33!+ ..y, ,p 1"

=expnlog(l+n~1K(1/n)), (3.28)
where
K(e)={(B+eB?2! +e*B*/31+ ...)p,, v, >. (3.29)
It is convenient to write
K(e)=b, +eL(e), (3.30)
with
by =<{By,,y,), (3.31)
and
L(e)=<{(B?/2! +eB3/3! +&*B*/4! + .Yy, w,>. (3.32)
Thus,
7(B)=exp[(b, +eL(e))(1 —eK(e)/2 + ezK(sj2/3 + ..., (3.33)
with
e=1/n. (3.34)
in view of the expansion
log(1+x)=x(1—x/2+x*/3—...). (3.35)

It is clear that the right side of (3.33) is analytic in ¢ near ¢=0; it is routine to
rearrange (3.33) in powers of . We work out the following couple of terms
explicitly, as follows:

t(B)=exp[b, +e(L(e)—b,K(e)/2)+ ...]
=e" exp[n~ Y(L(0)— b, K(0)/2)]+0(n"?)
=e"[1+2n) (B>, p,) —<{By,,p,»2) +0(n" 2], (3.36)

since K(0)=b, =<{By,,y,» and L(0)=3{B*yp,p ).
Information on b, =<{n,(Y)y, v,>, Y=AdgX, is provided by the identity

(Vv w,p=iKY, Ay, Yeg, ieZLnC. (3.37)

In fact, m,(Y)y,=i{Y,ADyp, for Ye T,T*, since v, is a weight vector. Since it is the
highest weight vector, m,(Z)y,=0 when ZeCg is a root vector in g,, for any
positive root u. By duality, if Z is a root vector for a negative root, n,(Z)y, is
orthogonal to y,. This proves (3.37). Thus, the principal term in (3.36) agrees with
the principal term in (3.16):

lim 7, (B)=e" =expi{AdgX,1,),
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SO

lim d, ! tracee™ ™= [ ¢ Ad9% 4044,
G

n— oo

In fact, (3.36) gives

-1 Tn(X)/n
d, " tracee

= [ ATV 4 ((my (AdgX )y, > +<AdgX, 1, ))/2n+0(n™?)]dg.
¢ (3.38)
We are motivated to generalize (3.37) to the study of

(my(Phwy v,  Pedig), (3.39)

where 9i(g) denotes the universal enveloping algebra of g. In fact, if we identify P
with a left-invariant differential operator on G, we have

(P, w0 =P¥(g)l,-. (3.40)
In light of (3.23), we see that (3.40) is a polynomial in (7, ...,£,) of order degP; in
other words, (3.40) is a polynomial in A. In the special case arising in (3.38), we
have, for Yeg, 4 of the form (3.22),

g=e

(Y, w0 = YY< U glj(g)[j>

=YL~ DYE P+ Y LYYV () + Y4,V ().
J ¥k J

(3.41)
Note the;t YV (e)=i(Y,e;», in view of (3.37), so the principal part of (3.41) is
— (Y, 0%

One advantage of the latter analysis of d, ' tracee is that it is more
straightforward’to be explicit about further terms in the asymptotic expansion,
compared with (3.16), since it is not so easy to work with an explicit complete
symbol calculus for pseudodifferential operators on G. An advantage of the first
method is the uniformity of the expansion one obtains as A—oo in a Weyl
chamber, not merely along a ray.

In fact, the two methods are not totally unrelated. In particular, the fact that,
for any bi-invariant differential operator Q one has (3.4) with a polynomial g,,(4)
follows from (3.40) and the subsequent observation, since in the bi-invariant case
we have

Tn(X)/n

4, (A+8)=0QY,(e). (3.42)

One can obtain the leading term in ¢,(4) by an argument parallel to the
examination of (3.41), using (3.37). An additional argument would be required to
check the Weyl group invariance of ¢,,(4).

We end this section with a parenthetical remark that one can also use the
generating functions ¥,(g) to produce formulas for the character y,(g) of an
irreducible representation 7,, and the dimension d, of its representation space. In
fact, averaging conjugates of ¥ ,(g) clearly produces a scalar multiple of y,(g); since
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¥.(e)=1, we have
1(x)=d, f ¥,(9” 'xg)dg
G

=d, [P, (9 'xg)" ... P,(9” *xg)*dyg (3.43)
G

for x, ge G. Furthermore, since y,(g) has L? norm 1 on G, we have

d;?=| ‘j Y9 'xg)dg|* dx. (3.44)
cle

4. Asymptotics for Quantum Partition Functions via Microlocal Analysis

In this section only, we assume for simplicity that P—M is a product bundle. We
aim to study
lim #°d; ! tracee "= lim #'d 'Z (1), 4.1)

n—o

where H, is given by (1.4)—(1.5), i.e.,
H,=—h?g™ 12(0;+n,(4,(x)))g"g" (0 + m,(A4,(x)) — ihm,(Ao(x)) + V(x). (4.2)

Note that e~ operates on functions and distributions on M with values in the
d,-dimensional representation space of «,. In the introduction we took » and % to
be related by

h=1/n. (4.3)

As is Sect. 3, we will find it convenient to modify this slightly, setting instead
h=|ni, +6| *. 4.4)

Consider the following operator on distributions and functions on G x M:
Q=—A"2g7 V0, + A(x))g"g" (0, + Ax) —iA" T A(x)+ V(x).  (4.5)

Here A=(—4,+6]*)"? is as in (3.9), an operator on 2'(G), and, for 0<j<v, the
functions A(x) on M with values in g, are considered as vector fields on G; thus,
0;+ A(x) is the horizontal lift, to a vector field on G x M, of the vector field J; on
M, determined by the connection at hand. Thus, in (4.5), A~ 2 is composed with a
second order differential operator and A~! is composed with a first order
differential operator. However, Q is not a pseudodifferential operator on G x M, as
its symbol is singular at points in the cotangent bundle annihilating vectors
tangent to the fibers of G x M — M. Nevertheless, we will be able to analyze e *? as
a pseudodifferential operator on G x M, for any ¢>0. Before we get into this, let us
relate #'d, ' Z (t) to e "2

The operator e~ *? commutes with the left action of G on C®(G x M). If R,
denotes the right action, set

E()= R, 'e" R dyg, (4.6)
G

so E(t) is an operator on C®(G x M) commuting with the left and the right actions
of G. Now let (¢)=trace, Z(t) denote the trace relative to M of Z(t); if the
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Schwartz kernel function of Z(t) is E(t; x, g, X', ¢'), then, provided this relative trace
exists (and we will see that it does in our case), the Schwartz kernel function of &(z)
is

;9.9 = Afl E(t; x, 9, x,9)dvol(x). (4.7)

Then &(t) is a bi-invariant operator on C*(G), so there are uniquely specified
scalars w,(4) such that, for Ae £nC,

Enli =w,(A+o)my. (4.8)
Now it is clear that
d7*Z (D=w nA, +9). 4.9)

Consequently, the asymptotic analysis of (4.1) will follow from the asymptotic
analysis of w,(4) in (4.8), which in turn will follow from the analysis of e™*? as a
pseudodifferential operator on G x M. We turn to this analysis.

The operator we want to exponentiate is

Q=A"2Ly+id "Ay+V=A"2L+id " A,+V,, (4.10)

where L=L,—4,+ | 8] is an elliptic second order differential operator on G x M
and V; =V —1. Note that A=(— 4+ []*)"? commutes with L and also with the
first order differential operator A,. If local product coordinates are chosen on
G x M, we get coordinates on T*(G x M):

(x,x",¢,&, x'eG, x"eM, eTiG, "eTHEM. (4.11)
The symbol of A”?L=LA"? has the form
Opa-2x, &)= Z/j(x, OBx, <) (4.12)
J

with 7 (x,&)eS*(M x G), B(x',&)eS™*(G). Outside any conic neighborhood of
{& =0} it belongs to S°%G x M). {¢'=0} describes the normal bundle to the fibers
of Gx M— M ; we denote it by 9. The fact that Q has a singular symbol at It will
complicate our symbolic construction of e~ *?. Before we get into this, we will begin
with some more basic information on the nature of the operators e~ "2

If we let E, be the linear span of n¥, for 1 <i,j<d,, then

LG x M)= @ E, QLY M), (4.13)

with each summand invariant under e °L, ¢ =0, and hence,
e =L on E,QL*(M), e=[A+d|"L. (4.14)

Note that 0<e <[] 7!, so as long as 0 <t < T, the right side of (4.14) is uniformly
bounded. Thus, e™*"*L is bounded on L%(G x M). More generally,

“(I_AM—-AG)ke—IEZL(I—AM—AG)—k” g([})éck

for 0St<T,, so e " L is bounded on the Sobolev space H*(G x M) for each k,
and hence, on each Sobolev space H(G x M), s=0. It is easy to see that the
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perturbations iA~ "4, and V, are bounded on each H¥G x M), so, for t =0,
e~ "2 is bounded on each Sobolev space HY(G x M), (4.15)
for s=0. By duality we get this result also for s <0. Note that
e =g AT on B, QLAM), e=|A+5] 1. (4.16)

Now we can obtain the following regularity theorem, which eventually will justify
some formal symbolic constructions.

Lemma 4.1. Suppose we have
(0/0t+ Qu=he C*([0, TL]xGXx M), ul,_q=feC®(GxM).
Then ue C*([0, T,] x G x M).

Proof. In light of (4.15), this is an immediate consequence of Duhamel’s principle,
which gives

t
u(t)=e""f + [ e~ T9%n(s)ds.
(0]

Next we look at the action of e near the singular set £'=0. This is easier to
understand for e”*®, where Q;=A"2L, so we first examine this. Note that
e " =¢""L on E,®L*(M). But clearly,

14% e ™A% ol gy S Crolte?) ™ 77 (4.17)
Hence,
146G« ppe™ A « a2 S Cipgt ™A ull - (4.18)
We claim you get the same sort of estimate for e "?:
14G « e ™ P AG « pttll 2 S Copt ™ * N AG ull 2 (4.19)

This would follow from the estimate
“AéxMe_mzL_mAO_tV‘A’éxM||$(L2)§Ckft_k_fﬁvzk_za (4.20)

for 0<t= T, 0<e<E,. Now (4.20) is not an immediate consequence of (4.17), but
the singular perturbation analysis of Sect. 2 enables us to prove (4.20). Recall the
parametrix for U(t,e)=e L1401,

Ut,e)f ~ Y [tlelaft,x,e8)e T f(E)e™ 4dE (4.21)

jz0

Now applying the left side of (4.20) effectively throws in a factor of |&[*** 2/

into (4.21), together with some lower order effects. Since |&***?/
=k H | PRt 20—k lgm2k= 20 the estimate (4.20) is an easy consequence of
the analysis of (4.21) given in Lemmas 2.1 and 2.2. Thus, we have the estimate

(4.19). From (4.19) we can also deduce the estimate

4% e ull 2 S Copt ) A AZE ull 12 (4.22)
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From here we can deduce smoothness of e~ *?u whenever u has “wave front set”

in a “subconic” neighborhood of {&' =0} =N, the bundle of normals to the fibers of
G x M—M. Pick ae(0,3), small, pick o€ CP(R*) (u=dimG), ¢=1 in a neigh-
borhood of the origin, and set

w(&) =&~ "9)es]_, o (4.23)

Then v is the symbol of a pseudodifferential operator Y€ OPSY _, . If there exists
ae(0,1) such that

Yu=umodC®(G X M), (4.24)

we say u has wave front set in a subconic neighborhood of 9. This notion depends
only on N, not on the choice of coordinate system. This is a special case of results
in Appendix B of [24], on a refined wave front set WF. A general ue 2'(G x M) can
be decomposed as u=(I—¥)u+¥Yu=u, +u,, where u, has wave front set in a
subconic neighborhood of ¢, and, in an analogous sense, the wave front set of u,
misses a subconic neighborhood of .

Lemma 4.2. Suppose ue 2'(G x M) has wave front set in a subconic neighborhood of
N. Then, for any t>0, e~ “?ue C*(G x M).

Proof. Let k— oo and £ =[ak], where ae(0, 1) is fixed, sufficiently small, compared
with some given a€(0,3). Then, with ¥ defined by (4.23), we have

G, =A Ak, P (4.25)

a sequence of pseudodifferential operators of type (1 —a, a), with orders going to
— o0 as k—oo0. Hence, if Yu=umod C*, (4.22) gives estimates of [ 4%, e "“ul ;>
for arbitrarily large /. This proves the lemma.

This lemma is equivalent to

e Y 9(Gx M)~ C*(G x M) (4.26)
for any t>0. By duality, one deduces
Ye ' 9'(Gx M)~ C*(Gx M) (4.27)

for any t>0. Thus, for any ¢ >0, any ue 2'(G x M), e **u has wave front set which
misses a subconic neighborhood of N, in the sense indicated above.

Our strategy for analyzing e~ '? is the following. Outside some subconic
neighborhood of 9N, 2 agrees with the action of a pseudodifferential operator B in
OPS{_, ., where a>0 can be taken arbitrarily small. We expect pseudodifferential
operator techniques to analyze e~ %, and then we hope that Lemma 4.2 will lead to
e ?—e""BeQPS™ >, for any t>0.

We next turn to the question of constructing u such that

wO0)=f, du/dt=—Bumod C*([0, T,) x X), (4.28)

where X =G x M and B is a pseudodifferential operator on X with a non-classical
symbol. Whether such u agrees mod C® with the exact solution to du/0t= — Buis a
separate issue, which in our case of interest will be taken care of by Lemma 4.1. We
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attempt to construct u in the form
u={alt, x, e ¢f(&)de, (4.29)

in a local coordinate system. We will attempt to construct a(t,x,&) as an
asymptotic sum

at,x,&)~ Y ajt,x,), (4.30)

jzo

where, hopefully, a; are (non-classical) symbols with orders tending to — oo as

j—oo. If u is given by (4.29), then

Bu=[k(t,x, )e™ ¢f(&)dé , (4.31)
where

k(t,x,&)=e " *"*B(ae™?%). 4.32)

If B(x,&) and a(t, x, &) satisfy appropriate symbol estimates, one can write the
asymptotic expansion

k(t,x, &)~ Y, (1/a)B(x, Sag,(t, x, &), (4.33)

az0

where B® = DB, a,, = D’a. Since we want 0a/0t+k~0, or

da/0t + B(x, &)a(t, x, &)+ Y, (1/a)BP(x, )a,(t, x, &) ~0, (4.34)

az1

it is natural to specify the terms g; in the expansion (4.30) by

0ay/0t= — B(x, {)a,, (4.35)
and, for j=1,
da,;/0t+ B(x, {)a; = R(t, x, ¢), (4.36)
where
Ri(t,x, &)~ — agl (1/a)B(x, &)Dia;_ (. x,§). (4.37)
We have initial conditions
ay(0,x,8)=1, af0,x,8)=0 for j=1, (4.38)
SO
at,x, &) =e B=9 (4.39)
and, for j=1,
ajt,x, &)= ie‘“'””‘x’ 9R (s, x, &)ds. (4.40)

Suppose now that, for some a€[0,3), we have

B(x, £)e 8¢

1—a,a*



Small # Asymptotics 579

We will assume B(x, £) is bounded below, Re B(x, £) = — C. In fact, suppose

e Px9e8? ., bounded, for 0=t=Tj.
0
l1-aa

Then we clearly have a(t, x,¢)eS
recursion (4.37)—(4.38) gives

B(x, &)D%a(1, x, E)e S 2l e,

a,a

More generally, if a,(t, x, {)e S}/ the

1-aa@

and hence,
;= (1—3a)
RieSy_ .77,

Thus, (4.30) is asymptotic, provided a <1/3. We have proved the following.

Proposition 4.3. Suppose we have

B(x, €S ... (4.41)
and
e P*9e8Y ., bounded, for 0=<t<T,. (4.42)
Then (4.29)(4.40) give a construction of u satisfying (4.28), provided
0=<a<1/3. (4.43)

The hypothesis (4.42) can be replaced by something more explicit, in light of
the following.

Proposition 4.4. Suppose B(x,{)eST_, ,
with a=2au.

Proof. We have D.e” "= —1(D B)e™*®, with ¢”""*9 bounded and D,BeS}* , .
The rest of the estimates follow similarly.

and ReB(x,&)= — C. Then (4.42) holds,

Corollary 4.5. Suppose we have

B(x,$)eS{ .. (4.44)
and
ReB(x,£)= —C. (4.45)
Then (4.29)-(4.40) give a construction of u satisfying (4.28), provided
0=a<1/6. (4.46)

These propositions are not directly applicable to e~ *?, since the operator Q is

too singular. Nevertheless, the basic construction (4.29)—(4.40) can still be made to
work, with some modifications. It is more convenient to take a method which
works in the classical case B(x, &)e S, ie.,

B(x, &) ~By(x, &)+ B (x, )+ ..., (4.47)

where each B (x, £)is C® on £+0 and homogeneous of degree —j in &. Of course,
the construction (4.29)-(4.40) works in this case, but we will modify it slightly, so
each ajt, x, ¢) will actually be homogeneous, rather than in the symbol class § -,
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To do this, replace (4.32)—(4.33) by

k(t, x, &)=e " *"*B(ae™), (4.48)
with
k(t, x, &)~ Z Z (1/o !)B;a)(x, f)a(a)(t, x,&). (4.49)
20420

Thus, our transport equations become

0a,/0t= — By(x, E)ay, , (4.50)
and, for j=1,
0a;/0t+ By(x, &)a; =R} (t,x,¢), (4.51)
where
Ritx,8)=— )  (1/a)BP(x,ED%alt, x, &). (4.52)
C+k+|al=j
0</<j—1
With the initial condition (4.38), we have
ag(t, x,&)=e"Po*9, (4.53)
and, for j=1,
t
aft,x,&)=| e UTIPIRE(s, x, E)ds. (4.54)
0

[t is easy to see that a; is homogeneous of degree —j in ¢. Inductively, one sees that
aft,x, &) =at,x,Ee” P9, (4.55)

where a(t, x, §) is obtained from B,(x,{), 0=/ =, through the process of taking x
and ¢ derivatives, and forming sums and products, and at, x, ¢) is homogeneous
in £ of degree —j.

What happens if we apply the construction (4.52)~4.55) with B replaced by £,
given by (4.5)? We can write the “symbol” of Q as a formal sum

Qx, )~ Qo(x, &) +2,(x, &) + ... (4.56)

of the following nature. Each Q(x,&) is C* in x and ¢ except at {'=0, and
homogeneous of degree —;in £. Near ¢'=0, Q(x,&) has an algebralcally bounded
singularity, i.e., for any given j and k, if |o] is taken suff1c1ently large, (¢')* Q (x, &) is
smooth of class C* near &=0. Let us denote by &/ the set of such func‘uons
From (4.55) we have
a(t, x, &) =1, x, E)e ™', (4.57)
with
aft,x,&es . (4.58)

Now Q(x, ¢) tends to + oo at the singular set & =0, and it is clear that e~ %9
=a,(t, x, ) is C* and vanishes to infinite order at &' =0, for any ¢>0. This infinite
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order vanishing cancels out the algebraically bounded singularity in &, and we
deduce that the construction (4.52)~(4.55) applied to Q in place of B yields

aj(t,x,£)e S™7, vanishing to infinite order at &' =0, for any t>0.  (4.60)

It is not convenient to demonstrate the validity of the resulting approximating
operator for e~ ? directly from the construction (4.48)—(4.55), as the product nature
of Q makes it hard to obtain (4.49), and the smoothness of (4.57) does not hold
uniformly as t—0. Therefore, what it is convenient to do is apply a cut-off I — ¥ to
the initial data, where ¥ is as in (4.23)-(4.24). Pick a<1/6, sufficiently small.
The formal construction (4.48)~(4.55), modified so ay(0,x,&)=1—p(£), gives
(4.57)~(4.59), with a(t, x, ¢) multiplied by 1—y(&). If we replace Q by B=Q(I - ¥)),
where ¥, is similarly defined, with a enlarged slightly, we see that u is constructed
so that

(0/ot+BueC®, ul,_o=I—Y¥)fmodC”. (4.61)

On the other hand, since (1 —y(¢)) is a factor in each term in the parametrix for
e~ we see that

Qu—BueC”, (4.62)
o)

(0/0t+QueC®, ul,_,={I—¥)f,modC*. (4.63)
Consequently, we see that, modC*,
eI — ) f=[ (1 —w(E)alt, x, &)™ *f (£)de, (4.64)

where a(t,x,£)eS° vanishes to infinite order at ¢ =0, for r>0. Note that
w(&)alt, x, &) has order — oo under such circumstances, so, for any fixed ¢ =0,

e I—P)f =] alt, x, e (£)dE mod C*, (4.65)

with a(t, x, &) as above. On the other hand, for any ¢>0 fixed, Lemma 4.2 implies
¢ ¥ is a smoothing operator. This proves the following main result of this
section.

Theorem 4.6. For any fixed t>0, we have the classical pseudodifferential operator
e e OPS°(Gx M). (4.66)

Its complete symbol, in a product coordinate system, is given by the same rule as for
e "B with classical Be OPS®. Furthermore, its complete symbol vanishes to infinite
order on the bundle It of cotangent vectors normal to the fibers in G x M— M.

t.

Recall we are interested in the relative trace of e~ '?, as an operator on 2'(G).

We have the following general result.
Proposition 4.7. Suppose P is a classical pseudodifferential operator
PeOPS™(G x M) (4.67)

whose complete symbol vanishes to infinite order on M. Then the trace of P relative
to M is well defined as a pseudodifferential operator on G:

trace,, P=QeOPS"™(G), v=dimM. (4.68)
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Proof. Since a smoothing operator on 2'(G x M) clearly has relative trace which is
a smoothing operator on Z'(G), we can suppose the Schwartz kernel function of P
is supported near the diagonal and work in local coordinates. Say

Pu={p(x',x", &, & i&)e™dE. (4.69)

Then
0f ()= [ q(x', &) f(&e™"¢ de, 4.70)

where
q(x, &)= TI* {w p(x',x", &, &"dx"dE" . @.71)

If p(x',x",&,¢&") is homogeneous of degree m—j in &=(&,&") and vanishes to
infinite order at &' =0, it is easy to see that

q,x', &) ={[ px', x", &, £")dx"d¢" (4.72)

is smooth and homogeneous of degree m—j+v in &' This establishes (4.68).

In the case P=¢~'? with t>0, we have
trace, e~ *®=Q(t)e OPS'(G), (4.73)
with symbol
q(t,x, &) ~qo+q,+ ..., (4.74)
and
Golt, X', &)= e " dx"de" . (4.75)
Thus, with
(%, &)= (&} + 0 (x, NG (x") (& + ,(x,£)) (4.76)

where 0 (x, ') is the symbol of 4 {x)/i, real valued and linear in &', we have
Golt, X, &)= [ e M2 oot eVl gy g (4.77)
T*M
If we make a change of variable, we can replace #(x, £) by
1E"112 =&7g™M(x")E s (4.78)
and write

ot x, &)= [ e U241 toatx, &)+ VOl gy g
T*M

=&)Y j e-t[Hé”llz+cro(x,~§’/l|§’||)+V(x”)]dx"dé//’ (4.79)
T*M

which gives

qo(t, X', &)= 1€ | (/1) | e~ Mool SNV g vol (x7). (4.80)
M
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Since g, is the symbol of the operator A,(x"), we can write
olt, X', &) =(m/ty"[[E|]* | e AL MW +VEINgyol (7). (4.81)
M
If we average over G with respect to the action R, as in (4.6), we get for the
operator &(t) of (4.7)-(4.9) that
E(t)eOPS'(G) for t>0, (4.82)

and its principal symbol is

Eolt, X, &)= (mft) (| & | | eI Aol ACT =V ol (x)dg . (4.83)

GM

In light of (4.8)~(4.9), we can read off the asymptotic behavior of the quantum
partition function Z,(t)=d,»,(ni,; +96). In fact,

wA)=Et e A)~E(t e, )+ (e, M)+ ..., (4.84)
where
Eolt,e, /1)=(n/t)%“i|/l||v(§}gle"’“*“_'<A°("")’Ad*“>"‘V‘x"’dvol(x”)dg, (4.85)
and, generally, ¢(t, e, 4) is smooth and homogeneous of degree v—j in 4. We thus
have Theorem A in this context. Let us formally state the result.
Theorem 4.8. Let Z (t) be the quantum partition function, given by (4.1), (4.2), with
h=(nl +d| . (4.86)
Fix t>0. Then, as h—0, there is an asymptotic expansion
d 1 Z (O~h""Lay(0) +a,(Oh+a,(Oh* +...], (4.87)
where v=dim M. The coefficient a,(t) is given by the integral formula

(1) =(m/t)F* | [ eIl <AoG"). Adt i =V ) g o] (") dg
GM

=(f)* [ [ TN AL OV yol (Y (£),  (4.88)

oM

where I'; is the coadjoint orbit in §* containing A,€8* and dur, is the natural
homogeneous probability measure on this orbit.

5. Coherent States and Uniform Parametrices
In this section we will give another derivation of the asymptotic expansion of
nd, *tracee”Hi=h"d, ' Z (t). (5.1

This treatment will be based on a modification of the singular perturbation
method of Sect. 2, and will incorporate the method of coherent projections. Here,
H, is given as in (1.4) and (1.5), by

H,= — 1?9~ Y20, +1,(4,)g"g" (@, +m,(4) — ihm,(Ao) + V. (5.2)
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As in the introduction, # and n are related by
h=1/n. (5.3)

We choose 4, € ZNC, and set 4, =nl,, with associated representation n, =7, , on
a space b, of dimension d,=d, .

We introduce the notion of coherent projections here; for more details see
[18,11]. Let I';, denote the co-adjoint orbit in g’ containing A,. If A=Ad*g4,,
then the orthogonal projection onto the linear span of

T(9) Wus, > (5.4)

a one dimensional subspace of by, is a projection which depends only on 4, and n;
denote it P,(4). Also if du, is the unique homogeneous measure on I', , of total
mass 1, then, as proved in [18], as an easy consequence of Schur’s lemma,

d, | PDdpu(3)=1, . (5.5)

I,

If f'is a function of xe R” with values in b, let

fEN=02m) " [P f(x)e” > 4dE

=P,D](©). (5.6)
We will construct a uniform parametrix for the initial value problem
ou,/ot=—-H,U,, U[l_o=1I,, (5.7

such that, in local coordinates,

U(0f(x)=d, [{ a(t, h, x,&, D)™ (&, Adp 2)dE . (5.8)

Expression in local coordinates will be patched together via a partition of unity, as
in Sect. 2; we will not dwell further on this in this section. We will specify the
amplitude a(t, h, x, &, 4) through a series of transport equations.
In parallel with (2.2), we can write
—H,=h"L+hX, +V,, (5.9)
where
L=4, X,=2n(A,/ng"*0,+g "*0,9"g"n,(4,/n), (5.10)
V,=—V+in,(Ao/n)+g"n,(4,/n)m,(A/n). '

We may as well consider a slightly more general situation, where, in local
coordinates,

L=g"(x)0,0, +b(x)0;+ c(x) (5.11)
has scalar coefficients (g, still denoting the metric tensor),
X, =n,(B(x)/n)0;+in,(B°(x)/n) =X} +in,(B°(x)/n), (5.12)

and

V== VHin,(Ay(x)/n)+ g™ (), (4,(x)/mm,(A(x)/n). (5.13)
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Here B/(x) and 4 {(x) are given C” functions of x with values in g.
We introduce the following quantities that will play a role in deriving the
transport equations. Let

X =i{B(x), Ayd;—(B%x),A) =X*—(B%x),\), (5.14)
Wy == Ag(x). 4, (5.15)
Wy = = g(x) {A,(x), 2> A (), 4 (5.16)
so X =X (x, 4), etc. Following [11] we introduce the quantities
®, (A)=—n"*(in,(4/n)+<A4,4)), Aeg. (5.17)

In [11] these functions were shown to describe the quantum fluctuations of (for
example) the isospin in the SU(2) case around its classical limit. We will also need
the following quantities:

Y=i®, (B/(x))d;~®, ,(B°(x))=Y" -9, ,(B°x)), (5.18)
Z,=—=9, ,(4,(x)), (5.19)
Z,=—g"Mx)®, (A,(x)P, ,(4,(x)), (5.20)
Zy==2g"(x)®, (A[x){A(x), 2, (5.21)

so Y=Y(x, 1), etc. Then, for each 1el’, , we have the identity
—H,=h?L+hX +n2Y)~V+ W, +h'2Z + W, +hZ,+h'?Z,, (5.22)

as long as (5.3) holds.
To derive the transport equations, we apply /0t + H,, to ae'’, where p=x-¢, as
in Sect. 2. We use the fact that

L(ae')e™ " = — || &||2a+2i{ &, Vay +i(My)a+ La, (5.23)
where
€12 =g x)¢ &, <&vd=g™x)Em,, (5.24)
and
My =b/(x)0p=b(x);. (5.25)

Similarly we have
X(ae)e ¥ =iX *p)a+Xa,

. ) 5.26
Y(ae)e " =i(Y*p)a+ Ya. (5.26)

Consequently, we require of the amplitude a=a(t, , x, £, A) that, in an appropriate
sense,

— dafot—h?|| | 2a+ 2ih* €, Va)y + ih*(My)a+ h*La
+ i Y *p)a+h 2 Ya+ k(X *yp)a+hXa+hZ,a
+H2Z a+ 02 Za— Va+ W,a+ Wya~0. (5.27)
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For awhile, we shall proceed from (5.27) treating # and n as independent variables.
We will resume the identification (5.3) later.
We will produce the amplitude a"(¢, 4, x, £, A) in the form

a't,h,x, &)~ Y, dilt,hx, &4, (5.28)

jz0

where each 4] is defined by an inductive process. As in Sect. 2, we want to assign
weights to the terms in the associated formal expansion of (5.27). We assign
weights as follows:

—da;/0t—h*| | 2a;,+ih(X *p)a,+ (W, + W, — V)a, has weight —j, (5.29)
and
2ih*(&, Vayy + 1 La;+ ih*(My)a;— il® (Y *yp)a;— h*'* Ya;
—hXa;—hZ,a;,—h'*Z a;,—h"*Za; has weight —j—1. (5.30)

Our iterative procedure will consist of requiring the sums of all terms of weight
0, — 1, — 2, etc., to vanish. Requiring the terms of weight 0 to sum to zero leads to
the “first transport equation”

day/0t=(—h2||E||2 +ih(X *p)+ W, + W, — V)a,; (5.31)
in light of (5.5) it is desirable to take the initial condition
doli=o=P,4). (5.32)
Thus
ai(t,hyx, &, )= T&REDP (7)) (5.33)
where
T, LA)= 00— iX * )~ W, =W, +V,  p,=x{. (5.34)

Note that this exponent is scalar, and independent of n. Part of the reason for
introducing (5.14)-(5.17) was to arrange this. Note that, in case H, has the form
(5.2), we have

TG LA)= 1+ CA A2+ Ag, A+ V, (5.35)
where
ALY =(CA A, . (AL AY). (5.36)

This is the classical Hamiltonian with the momentum ¢ and classical isospin 4 in
the SU(2) case; see e.g., [11]. For j=1, the transport equation becomes

da/ot=—Ta;+Q;, (5.37)
where now
Q;=2i*&¢,Va;_ )+ W La;_ | +il*(My)a;_, +ih>*(Y*p)a;_, +1**Ya;_,
+hXa,_ ,+hZ,a; \+h"?Za; +h"?Zsa; . (5.38)
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Again, the amplitude aj is obtained as
t -
ai(t,h, x, ¢, i)zje*(’“s)er(s)ds. (5.39)
0

We have the following analysis of the amplitude o}, parallel to but necessarily
more complicated than that of Lemma 2.1.
Lemma 5.1. We can write
At hyx, & A)=bt, h,x, he, e TEIEDP, (), (5.40)
and
bt b, x, hE, 2) = bt h,x, 0,0, 7), (5.41)
where I;;‘ is smooth in x, A and a polynomial in w,o, and the following arguments :
ht,ha, k"o ®, (B, (x).h'*t®, (B, (x)),11®, (B, (x)D, ,(B},(x), (5.42)

Jjnv
for some smooth B, (x), B, ,(x) with values in g. Every monomial in b} contains at

least j factors of the form (5.42). Here,
w=t1?hé,  o=thé, (5.43)

Jjnv

and only even powers of @ appear.

Proof. As in Lemma 2.1, the proof proceeds by induction on j, the case j=0
following from (5.33). In view of (5.34), we can write

th(x, hé, ) =|lo|? = iX i) — (W, + W, — V) (p,=x"0)
=||l|* +x(x, 0,4 1)
=TI'*t,x,w,0,7). (5.44)

Now, assume (5.40)~(5.42) true for @j. The transformation from aj to aj,, is

determined by (5.38) and (5.39). Note that
t

by (t,h,x, he, A) = f Q (s, h,x,h¢, A)ds,
0

where szfzje_‘f . Thus, this transformation can be analyzed as a sum of nine
contributions, from (5.38). It is routine to verify that, if b} has the form (5.41) and
(5.42), then each of these nine contributions respects this form, and throws in an
extra factor from among the five types listed in (5.42). This proves the lemma. Note
in particular that the dependence on n comes entirely from the factors listed in
(5.42).

In order to analyze the trace of (5.8) we will need to understand tr B, P (1) when
B,eEndl, is a product of terms listed in (5.42). Also, in order to get good symbol
estimates, we will want to estimate ||B,P,(4)|ls =tr(P,(4)B¥B,P (A1) =tr(C, P (1)),

where C, = BB, is also a product of terms listed in (5.42). We will use the notation

KB, »,, ,=tracey (B,P(2)). (5.45)
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The following lemma will provide the needed information. This lemma has som
points in common with lemmas from Sect. 4 of [11], particularly Lemma 4.7 ¢

[11].
Lemma 5.2. For any B, ...,B.€g,
K, ,(By) - @y i(BIDn, (5.4¢

is zero for k=1 and a polynomial of degree <k—2 in n~'? for k=2, whos
coefficients depend smoothly on A. Furthermore, if k is even (respectively, odd) the:
only even (respectively, odd) powers of n~*'* appear.

Proof. The case k=1 is equivalent to (3.37). The case k=2 will exploit the identit,
(3.21) for the generating function

¥,3.9)= (1,3, (9)Wns,» Waa) = trace(m,(9) P (4,)), (5.41
namely that ¥,, (9)=¥, (9)". Note that, if we set, for Ael},, A=Ad*g4,,
¥,.(g,) =trace(m, (g )P, (1) = K7, (g )Py, 15 (5.4¢
since P,(1)=m,(g)” ' P,(4,)7,(9), we have
¥,.9)="Y,:,(99:9""), (5.4

and hence, for any A€} , geG,

V,(9)=",9)". (5.5¢
We now set things up to apply (5.50). We have (5.46) equal to

i~40/0z,) ... (0/0z,) Kexp(i®,, ,(z;B,)) ... exp(i®, ,(ZBN) Py b= . =z = 0(.
5.51

Now the quantity being differentiated in (5.51) is equal to
exp(—in'?(z;B, + ... +z,B,, A)) Kexpm,(n~ 2z B,)...expm,(n” "z, B)Y, ;.
(5.5%
It follows from the Campbell-Hausdorff formula that there is a function 7

analytic in a neighborhood of the origin in g* taking values in g, such that, fc
Xegq, X/l <0, exp (X4, ....X,)=(expX,) ... (expX,). Then (5.52) is equal to

A (z)=exp(—in*'*(z,B, + ... +z,B,, 2>) Kexpn(T,(n~ V*z,B,,....,n 2z, B)»,
=[exp(—i(n~V*(z,B, + ... +z,B,), 1))

Kexpry(T(n~ "2z, By,....,n" "?z,B))Y, ;1" (5.5
by virtue of (5.50). In order to compute (5.46), in light of (5.51) we want to pull th
coefficient of z,, ..., z, out of (5.53). Expansion of the right side of (5.53) gives

A (2)=(1+B(n" 2z))" [B(0)=0]
=exp(nlog(1+B(n~ %z))
=exp(n[B(n~12z)—1iB(n~ V22 +B(n~ %2)*/3 - ...]). (5.54
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Note that
1+B(z)=exp(—i{z; B, + ... 2B, A)) Kexpn(T(z, B, + ... 2 B)) D ;-

Since T,(X,,...X)=X,+ ... +X,+0Q |IX,[|?), we have, with z-B=z B,
+ ... +z,B,,
1+B(z) =exp(—i{z" B, 4)) expm,(z- B)», ; +0(zI?)
=1-iz*B, Ay +{mn,(z-B)), , +0(z)
=1+0(z%
in light of (3.37). In other words, B(z)=0(|z|?). Say
B(z)=z,z,E”(z) (summation convention),
with E¥(z) analytic for z near 0 in €* Then (5.54) becomes
U, (2)=exp(z;z,E(n” )+ ..)=1+ ) K, (5.55)
el =2
where x,(n) is a polynomial in n™'* of degree =<|a|—2, with only even (re-
spectively, odd) powers appearing when || is even (respectively, odd). Examining
the coefficient of z, ... z, proves the lemma.
Our first application of Lemma 5.2 will be to get symbol estimates for the

amplitudes a} which were given a qualitative analysis in Lemma 5.1. On the space
End},, the Hilbert-Schmidt (HS) norm is defined by || T'|| ;s =trace(T*T).

Lemma 5.3. Fix positive T and E. Then, for 0St<T and 0Sh<E we have
IDEDA(t, h, X, &, Al gs S Cp(ht)2(1 4 E]) e~ IeN/2 (5.56)
and
| DEDZa(t, By X, &, ) gs < Clg(1 4+ 1) 72714 (5.57)
with C,,; and C',; independent of . and of n.

Proof. From Lemma 52 we conclude that all terms of the form
@, (B,)...®, ,(B,P,(g) have uniformly bounded Hilbert-Schmidt norms as n— oo.
Thus the estimate (5.56) follows from (5.40)—(5.42), together with the formula (5.34)
for the exponent I'. The estimate (5.57) follows from (5.56). Note that applying
D!D; to DD%d’ increases the order in & by at most 2(;t+ v) units.

Since we want to compute traces, we will also need to estimate the trace norms
of various symbols. Sufficiently good estimates for our purposes will follow from
the simple observation that

TeEndb, = [ T],=d,?|IT|ys, (5.58)

where d, =dim},. Here the trace norm is defined by || T||,, =trace(T*T)"%. Recall
that Weyl’s formula for d, is given by (3.2). We deduce that

d,<Cn*, (5.59)
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where k is the dimension of the maximal torus in G. Thus, if (5.3) is satisfied, we
have

|ID£Dga;l(t, h, X, é, j«)”tr é Cjaﬁ(ht)jlz —k(l + |é’)_ |41|e_t”7!§“2/2
SO+ j22k (5.60)

Let us consider a partial sum of the expansion (5.28):
2

At hx, &)=Y dit,h,x, & 2). (5.61)
j=0
Form
WO f(x)=d, [| At, b, x, & D™ *f(€, Ddpr(A)dé (5.62)
We see that
W0)=1, (5.63)

by virtue of (5.5), and, with i=1/n,
(0/0t— Hy)W,(0f(x)=d, [] BUt, h,x,&, ))e™ P (D) f(E)dur(Dde,  (5.64)

where B, is a sum of 0aj/0t and expressions of the form (5.39) with a;_, replaced by
ay_, and a;. We see from Lemma 5.3 that

IDEDB(t, b, x, &, A)lls S Cplht)? ~ 1 (14 [E]) ™ 1Kl 1IN
SC L +1E) 7 b /22, (5.65)

We next need a replacement for Lemma 2.3. For an element ue C*(M,},), let
A*=(1—A)?, a scalar elliptic operator of order s, and define

[ullf={ | A%l dx, (5.66)
i
and
(u, )= | (Au, A%) dx, (5.67)
M

where || ||, and (,); denote the norm and inner product on b,. Similarly, if
Ve C*(M,End),), let

vig= Afl 1AV lisdx - (5.68)

For starters, we want to estimate the operator norm of
e "HnHY(M,Y,) > H*(M,b,), h=1/n, (5.69)
obtaining an estimate independent of n. We will prove the following.
Lemma 5.4. With h=1/n, we have the operator norm estimate on (5.69):
lle ™ sy < A™, (5.70)

with A and B independent of n (perhaps depending on s).
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Proof. Recall H, is given by
—H,=h*L+hX, +V,. (5.71)
Since L is scalar, we can apply Gérding’s inequality to get
Re(—Lu,u);z Collulf, , — Cyllull?, (5.72)

with C, and C,| independent of n. In order to extend the reasoning used to derive
(2.37), let us note that

Xeg = |n,X/m)| £CIX|, independent of n. (5.73)

This follows from the fact that X(— 4,)~'/?€ OPS°(G), if we fit all 7, inside the
regular representation of G and use (3.3). Another proof of (5.73) is given in [11].
Using this and the form (5.12) and (5.13) of X, and V, in (5.71), it is elementary to
derive, at least for s an even integer, that

Re(H,u, u),=h* Re(— Lu, u),+h Re(—X u, u), +(— V,u, u),

2 Coh?|ull 2oy — Khllull gy ull,— Cyllulf

2 Co?|ul2y ;= [3Coh* ullZ, , +2K2Co Hul 31— Collul?
3C*ullZy = (C,+2K>Cq M) llull?

2
> — Cllul?. (5.74)
Here C,, C,, K, and C are all positive and independent of n (hence of #). From this,
(5.70) is an immediate consequence, at least if s is an even positive integer. The
result follows for all positive real s, by interpolation, and then for all real s, by
duality.

We now can obtain our energy estimates.

Lemma 5.5. Let v,(t, x) take values in b, and satisfy (with h=1/n)

(0/ot+ Hpv,=g,(t,x),  v,(0,x)=/(x). (5.75)
Then, for 0=t=<T, we have
sup .8 M gs = Cyll fill s+ C, sup g8 as » (5.76)

where the H® norm is defined by (5.66), and C, and C, are independent of n. One has
similar estimates on

sup | Dyv,(t, Mlgs- - (5.77)
Proof. In view of Duhamel’s principle,
v,=e "Bf + i e~y (1, x)d,
the estimate (5.76) follows directly from Lemma 5.4. Analogous estimates for (5.77)

follow easily. Let us remark we also have the same sort of estimates when g,, f,.
and v, take values in Endb, given the Hilbert-Schmidt norm.
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We apply this to U,(t)— W/(t). We have

U,(0)— W/(0)=0, (5.78)
and
(6/0t+ H,) (U,(6)— WE(H) = B, (5.79)
defined by the right side of (5.64). Using (5.68), we see that, for
u,€ H*0 (M, D), (5.80)

“Bi(t)un“m(w n= C[(m)—;‘f— v ZHUHHH—%(H y, for £>2v+4, (5-81)

with a similar estimate for ue H™ *** (M, End},); C, is independent of n. Recall
v=dimM. If we take un=5y®lbn, we have

Hu,,HH—%(WU§Cd,f/Z, (5.82)

B, ()0, [l gicv ) <CdYA(heY 2,
and hence, by Lemma 5.5,
(U0 = W), gz vS Crddy (e~ 2. (5.83)
By the Sobolev imbedding theorem, we have, for £ >2v+4,
Sup (U, 0)= W(0)3,(9)us = Cod} ()"~

In light of (5.58) and (5.59), this gives, for 0< 1< T, Ai=1/n
yS)\;LII)u II( Un(t) — I/an(t))ay(x) ”tr < C(d,,(ht)%f_ =12

SCRP TR, (5.84)
which in turn yields the important estimate
|trace(U,(t)— W, ()| S C,n~ G~ =270, (5.85)
Things wind down fairly quickly from here. We have only to analyze the traces of
the terms V}(r) in Wi(t)=V3(0)+ ... + V;(1):
VIS ()= d, J§ aje, b, x, & e P (A J(dur(2)de
=d, [{ (e, h,x, hg, Ae™ T Vet EP () f(E)dpr(2)dE . (5.86)

In analogy with (2.47), we have
trace V(1) =d, {[ trb™(t, h, x, hé, e~ TMAP (D)du (A)dé dx
=d,h ([ tebit hx, e TEEDP (Ddup(dldx.  (5.87)

Now, by (5.41)-(5.42), we see that b(t,h,x,{,2) is a polynomial in h'/?=pn~"/?
containing at least #7? in each term, and there are an odd number of factors
?, (B;,,(x)) in a term if and only if the exponent of 7 is not an integer. In light of
Lemma 5.2, any such term in bt h, x, {,2) contributes to (5.87) a multiple of
(d,h~")h, where J 2j/2 is an integer. In other words,
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trace V7(¢) ~ d ™00 (ORPV T D oy (VT4 ), (5.88)
which, combined with (5.85), proves our main result:
Theorem 5.6. If H, is given by (5.9), with h=1/n, we have, as n— oo,
nd; *tracee” "~ a()+a, (Oh+a,Oh* + ..., (5.89)
and ay(t) is given by
ag(t)=d; ttrace V(1) =[] e~ T®5 Pl duy(2)d vol(x). (5.90)

Of course, this result coincides with Theorem 4.8. Note that, after the fact, we
can sharpen up (5.85), replacing n~3¢7¥7270 py p~FI- L
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