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Abstract. To a gauge field on a principal G-bundle P->M is associated a
sequence of quantum mechanical Hamiltonians, as Planck's constant fe->0 and
a sequence of representations πn of G is taken. This paper studies the associated
quantum partition functions, trace exp(— tHn), and produces a complete
asymptotic expansion, as ft-»0, h=ί/n, of which the principal term, pro-
portional to the classical partition function, is the familiar classical limit.

1. Introduction

In this paper we study the limit as ft->0 of the (non-relativistic) quantum partition
function associated with the Hamiltonian for motion in a Yang-Mills field. More
specifically, let M be a compact Riemannian manifold, and let P ^ M be a
principal G-bundle, G a compact connected Lie group. We suppose a connection is
given on P; this determines a gauge field. We can regard the connection as a
g-valued one-form θ. We have an associated covariant derivative on any associat-
ed vector bundle E = Px πV, where π is a representation of G on a vector space V.
With respect to a local frame, this is given by

V$u=X u + π{ΘQί))u9 (1.1)

where X is a tangent vector to M, we C^iM, E). Here X u represents the action of
X componentwise on u, and Θ(X) is the element of g defined by the connection
1-form θ. In local coordinates, on a coordinate patch $CM, with X = d/dxj = 9.
and

θ = Σ^.(x)ΛcJ.; ^eC°°(0,8), (1.2)
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we can write (1.1) as

J j ( j ( ) ) (1.3)

The quantum mechanical Hamiltonian we consider is of the form

x))+ V(x). (1.4)

We use the summation convention. Here A0(x) is a smooth section of P x Adg and
V(x) is given as a smooth real valued function on M. gjk is the metric tensor and gjk

the associated metric on cotangent vectors.
There are two main contexts in which to study the behavior of a quantum

system and relate it to the behavior of a classical system, when ft, the Planck
constant, tends to zero. Historically, both were discussed already in early stages of
the development of (non-relativistic) quantum mechanics. The first compares
classical and quantum mechanical observables as they appear for example in the
description of a particle moving in a potential. Ehrenfest [4] was the first to relate
these two types of observables. It is remarkable that only fairly recently it was
realized by Hepp [8] that the Ehrenfest relations are compatible with the time
evolution of the classical and the quantum mechanical system (see also the
discussion in [26]). Recently, Hepp's treatment has been extended to cover the
case of a particle moving in an external (static) metric field [10] and in an external
Yang-Mills field [11]. In the first case the classical equations of motion are of
course the geodesic equations, whereas in the second case one obtains generalized
versions of the Lorentz equations for a classical particle described by a position, a
momentum, and a classical isospin [in the case G = SU(2)]. These equations are
sometimes called the Wong equations [30] see also [20] and [7].

The second main context in which one may discuss the ft—>0 limit and with
which we will be concerned here deals with the Gibbs canonical partition functions
as obtained from the Hamiltonians Hcl and Hqm which describe the (one-particle)
system. In the quantum mechanical case one looks at Zqm(β) = tracee~β H c ι m, with
β = (kT)~1, T= temperature, fc = Boltzmann constant, where Hqm contains ft, and
compares it with the classical expression Zcl(β) = \e~βHcldwo\, where integration is
over the classical phase space of the system.

Here we will obtain a complete asymptotic expansion as ft-^0 of the trace of
exp( — tHn π), with fixed t (t = β). For reasons that have been developed elsewhere
(see [11]) we must vary the representation π as ft->0. In fact, if we picture the
irreducible representations of G as indexed by a lattice in a Weyl chamber, we can
pick some point λγ in this lattice, corresponding to a representation πx of G, and
let πn be the representation of G corresponding to the point nλv We then look at
the sequence of Hamiltonians

#„ = #*,*„> h = l/n. (1.5)

The main result of this paper is the following, which extends previous results along
these lines.

Theorem A. Let dn be the dimension of the representation space ofπn. Fix t>0. Then
there is a complete asymptotic expansion as ft—>0 (h = 1/n) of the form

( 0 ^ 2 + •••)> (1.6)
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where

v = dimM. (1.7)

Here ao(t) is given (up to a factor H^ \\v) by the integral formula (4.88), or equally, by

(5.90).

The fact that hvd~1 tracee~ tHn tends in the limit to ao(t) has been proved before,
first in the case of Abelian gauge fields (G = S1) in [2, 18, and 19], and recently, for
general gauge fields [in the case of a product bundle over M = RV, and with
appropriate conditions on V(x) as |x|->oo in this non-compact situation] in [11].
Theorem A refines these results insofar as it produces a complete asymptotic
expansion.

In the Abelian case G = S\ we have πn(Aj(x)) equal to nπ1(y4J.(x)), so in this case
we can write Hn as

H^-g-u^hd. + iAjyY^hdt + iAJ+V (h=l/n) (1.8)

[replacing V(x) — iπ1(A0(x)), which is real valued, by V, and denoting π^Aj) by
ίAj]. In Sect. 2 we will analyze a class of singular perturbation problems. A special
case will include the qualitative analysis of e~tHn in case (1.8). The singular
perturbation problems treated in Sect. 2 are not restricted to scalar problems.
These singular perturbation problems have some points in common with the work
on first order hyperbolic systems with a small viscosity term in [22], but the
analysis is very much simpler in the present case.

In the special case when the potentials A are absent from (1.8), Uhlenbeck and
Gropper [27] and Wigner [29] were the first to derive recursion relations for the
quantum partition function in terms of powers of h (see [13] for a lucid
discussion). Considerable effort has been put into trying to prove that their
expansions are asymptotic [3] to our knowledge the proof we present seems to be
the first one, even in this case. We remark that three ingredients go into the proof
of the validity of the expansion produced in Sect. 2. There is a qualitative analysis
of the amplitudes obtained by solving certain transport equations (Lemma 2.1),
then an interpretation of this analysis in terms of symbol estimates (Lemma 2.2)
and use of the pseudodifferential operator calculus, and finally an appeal to certain
energy estimates (Lemma 2.3), which follow from Garding's inequality.

It is a remarkable fact, first observed by Lieb [14] (see also [9]) that in some
situations it is possible to take the classical limit only for a subset of dynamical
variables, while retaining the quantum mechanical properties of the remaining
dynamical variables. The analysis in Sect. 2 in case A- are general gauge potentials
(but one does not replace nπι by πn) provides another example of this phenomenon
by retaining the quantum mechanical property of the isospin and letting position
and momentum become classical observables (see the end of Sect. 2).

To treat the quantum partition function associated with (1.8), for general gauge
fields, we will use two approaches, both involving the study of harmonic analysis
on compact Lie groups. One approach involves the method of "coherent states",
which has also been applied in the study of quantum partition functions in
[18, 11], following other applications given in [14, 5, 6, 12, 16]. In Sect. 5 we
amalgamate the singular perturbation analysis of Sect. 2 with the use of pro-



558 R. Schrader and M. E. Taylor

jections onto coherent states to prove Theorem A. The other method we use
involves fitting all the representations of G (including the sequence πn) into the
regular representation. Proving Theorem A becomes a task in microlocal analysis
on P, which we tackle with pseudodifferential operators. We briefly describe some
aspects of representation theory and harmonic analysis on a compact Lie group in
Sect. 3, including some results on harmonic analysis using pseudodifferential
operators developed in Chap. XII, Sect. 6, of the book [21].

We use the following notational conventions for pseudodifferential operators.
We have

$ ί ξ (1.9)

where ύ(ξ) is the Fourier transform of u. We say

p(x,ξ)eSlδ and p(x9D)e0PS»t69 (1.10)

provided

\Dβ

xD\p(x, ξ)\ £ Caβ(ί + \ξ\f-c\«\+δ\β\. (1.11)

We will use partitions of unity and work on coordinate patches in M, in a standard
fashion. The symbol class Sm C S™ 0 consists of functions with an asymptotic
expansion

P(x,ξ)-ΣPM>O, (1.12)

where Pj(x,ξ) is homogeneous in ξ of degree m—j, for \ξ\ large.

2. Uniform Parametrix for a Singular Perturbation Problem

In this section we shall construct a uniform parametrix for solutions to initial
value problems

du/dt=-Hεu, w(0)=/, (2.1)

with Hε a family of second order differential operators on a compact Riemannian
manifold M of the form

ί . (2.2)

We suppose

L is a negative definite strongly elliptic scalar second order
differential operator on M, (2.3)

X is a first order differential operator on M (scalar), (2.4)

and

V1 is a smooth (scalar) function on M. (2.5)

A special case of this arose in Sect. 1, namely, in local coordinates, and with the
summation convention,

Hε = - g- 1/2(sd. + iAj)g>kgll2{εdk + iAk) + V. (2.6)
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In this case we have

L = A9 X = 2iAjQ

j% + ίg~ 1/2(djg

1/2g^kAk), V, = - V- gjkAjAk. (2.7)

In the more general situation we take, in local coordinates,

L = gjk(x)djdk + bi(x)dj + c(x), X = Bs(x)dj. (2.8)

We will use ε rather than h in this section as the small parameter to emphasize that
we are dealing with a more general class of singular perturbation problems than
arise from Sect. 1.

In local coordinates on M, the uniform parametrix will be of the form

U(t9ε)f=$φ989x9ξ)M)eix'ξdξ9 (2.9)

where the amplitude a(t, ε, x, ξ) will be an asymptotic sum

α ( ί , β , x , £ ) ~ Σ * ; ( ^ * > £ ) > ( 2 1 0 )

the terms aft, ε, x, ξ) being determined by transport equations, which we proceed
to derive. This derivation will have some points in common with the work [22] on
hyperbolic systems with a small viscosity term, though it will be somewhat simpler.
The transport equations are determined by applying d/dt + Hε to (2.9). If we set
ψ(x, ξ) = x-ξ, a straightforward computation gives

(2.11)

Here we set

\\ξ\\2 = gJh(x)ξJξk9 <iξ,v> = g>k{x)ξjvk9 (2.12)

and

Bψ = bj(x)djψ. (2.13)

Similarly, we have

X(aeiψ)e~iψ = ί(X*ψ)a+Xa, X* =2iAjg

jkdk. (2.14)

Consequently, we require of the amplitude a = α(ί, ε, x, ξ) that, in an appropriate
sense,

(2.15)

It will be convenient to group terms together by weight, where weights are
assigned as follows:

-daj/dt-ε2\\ξ\\2aj + iε(X*ψ)aj+V1aj has weight - / , (2.16)

and

2ίε2(ξ, Vaj}+ε2Laj + iε2(Bψ)aj + εXaj has weight -j-1. (2.17)

Our iterative procedure will consist of requiring the sums of all terms of weight
0, — 1, — 2, etc., to vanish. Requiring the terms of weight 0 to sum to zero leads to
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the "first transport equation":

1)ao. (2.18)

Since [/(0, ε) is to be the identity operator, the appropriate initial condition is

ao = I as t = 0. (2.19)

More precisely, we should set a0 = φ^x) at t = 0, where φ. is an element of a
partition of unity, but we can safely ignore this point. We have

. (2.20)

Let us denote the exponent in (2.20) by — tΓ:

Γ(ε,x,ξ) = s2\\ξ\\2-iε(X#ψ)-V1=f(x,εξ). (2.21)

In other words, we have

ao = e-ttix εξ>. (2.22)

For j ^ l , the transport equation for a- becomes

daj/dt=-Γaj + Ωj, (2.23)

where

Ωj(t,ε,x, ξ) = 2iε2(ξ, Va-_,> -hε2La._ γ + iε\Bxp)aj_ x + εXa _ γ. (2.24)

In this case, the appropriate initial condition is

α (0,ε,x,£) = 0, j ^ l , (2.23)

so the solution to (2.23) is

t

a. = j e~
 {t's)rQj(s, ε, x, ξ)ds. (2.26)

o

The following gives important qualitative information on the amplitudes α7 .

Lemma 2.1. For each j , there is a smooth function cίj(t,ε,x,ζ), such that

α/ί, ε, x, ξ) = tjεjάj(t, ε, x, εξ)e~tt(x>εξ). (2.27)

More precisely,

2/ί, ε, x, ε£) = α*(ί, ε, x, C, ω, σ), (2.28)

C = εξ, ω = tll2εξ, σ = tεξ, (2.29)

where a* is smooth in all its arguments, and a polynomial in ε, ω, ζ, and σ. It contains
only even powers of ω. Its order in ζ is not greater than j .

Proof Write
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We use induction on j . For j = 0, the result follows from (2.22). Suppose (2.27) and
(2.28) hold. We will verify the analogous formulas for aj+v First of all, by (2.24)
with; replaced by + 1, we see that

Ωj+1= ί V +1 Ωf (t, ε, x, ζ9 ω, σ)e " Γ # ( x ' ω ' σ ) ,

where Ωf is a polynomial in ε, ζ, ω, σ, even in ω, whose order in ζ can exceed that
of af by at most 1. Now (2.26), with; replaced by j+ 1, gives

aj+ ,(t,ε,x,ξ) = tj+ V + 1 \ t ' ^ J jΩ*+ ,(s,ε,x,ζ,s1/2C, -Γ#(x,ω,σ)

so the degree of af+1{t,ε9x,ζ,ω,σ) in ζ exceeds that of af by at most 1. This
completes the proof.

Recall from (2.21) that

Γ(x,Q=\\ζ\\2-iX*ψ2-V1 (ψ2 = x ζ) (2.30)

is a second order polynomial in ζ, with real part satisfying

This enables us to prove a result on uniform boundedness of the amplitudes a- in
appropriate symbol classes. Recall that a smooth function p(x, ξ) is said to be in the
symbol class S"1

 0 provided

l β \ + \ξ\)m-^. (2.31)

In that case we say p(x, D) belongs to OPS™ 0, where

p(x, D)f= j p(x, ξ)f(ξ)eiχ ξdξ. (2.32)

A bounded subset of S™ 0 is a set of functions satisfying the estimates (2.31) with
uniform bounds Caβ, and they give rise to a bounded family of operators in

Lemma 2.2. Fix positive Tand E. For OSt^T, 0 ^ ε ^ £ , we have

aft, e, *, ) bounded on S~j

0, (2.33)

ε~€aft, ε, , •) bounded in S'^^. (2.34)

Proof. Since ί /72|C| / e~ ί f / 4 = ί j / V|^" ί j r / 4 gX > / J we deduce from (2.27)-(2.28) that

Derivatives of a- have similar estimates, so (2.33) and (2.34) follow. Note that
taking k ε-derivatives raises the order by 2/c, as does taking k ί-derivatives.

Let us now consider a partial sum of the expansion (2.10):

AJt9ε9x,ξ)= Σ*ft>ε9x9ξ). (2.35)
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Form

W,(t)f(x) = J Λ,(f, ε, x, ί ) / ( ί ) ^ ' ^ ί . (2.36)

More precisely, using a partition of unity subordinate to a coordinate chart, paste
together operators of the form (2.36) to form Wit). We have

I, (2.31)

and

(β/dt + Hε) W^t) f(x) = j Blu ε, x, ξ y ^ / φ d ί , (2.38)

where i?^ is an expression of the form (2.17) with j = £, i.e., B£ — Qe. We conclude
from Lemma 2.2 that

\Bfr s, x, ξ)\ £ CeJtl'hY~ 2

^ C ^ ί l + lίl)-*'"2'"181 if ί^2. (2.39)

In order to compare W/t) and e~ί/ίe, we need the following energy estimate:

Lemma 2.3. Let v(t, ε, x) satisfy

(d/dt + Hε)v = g(t,ε,x), v{0,ε,x) = h(ε,x). (2.40)

Then, for O^t^T, O^ε^E, we have

, )llfl., (2.41)

where Cί and C2 are independent of ίe[0, T] and εe[0, £ ] . One has similar
estimates on

sup D>Dχt,e, ) (2.42)
fls-2(μ +

Proof. Let (, )s denote a Hubert space inner product on the Sobolev space HS(M). If
we apply Garding's inequality to (— Lu, u)s, we get the estimate

u, u)s = ε2 R e ( - Lu, u)s + ε Re(-Xu, u)s + ( - V1 u, u)s

(2.43)

Here, Co, Cv K, and C are all positive and independent of εe [0, £ ] . It follows that

e-tHε. Hs(M)^Hs(M) (2.44)

with operator norm

(2.45)
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bounded independently of εe[0,£]. Now DuhameΓs principle gives for the
solution to (2.40):

v(t, ε, x) = e~tH°h + J e"{t~ τ)H°g(τ, ε, x)dτ, (2.46)
o

from which (2.41) follows. Differentiating (2.40) with respect to ε gives for

vt =dv/dε,

(d/dt + Hε)v1 = dg/dε + (2εLv + Xυ), υ1 \t = 0 = dh/dε. (2.47)

The analysis just given yields bounds on vv and inductively, one analyses
Vj = dJv/dεj; t derivatives are bounded similarly, and the proof of Lemma 2.3 is
complete.

Now we can asymptotically sum:

U(t9ε)~ Σ Uβ9ε), (2.48)

where

Uβ, ε)f(x) = J aβ, ε, x, ξ)eixM, (2.49)

and conclude that, for any fe 2\M\

e~tHεf- U{t, ε)/= h(ε, ί, x) (2.50)

is a smooth function of (ε, ί, x)e [0, £ ] x [0, T] x M, which is rapidly decreasing as
ε->0. In particular, for any £>0,

tracee~ tHε - trace U(t, ε) (2.51)

is rapidly decreasing as ε->0. We proceed to produce an asymptotic expansion for
trace U(t, ε) as ε—>0, with t > 0 fixed. We analyze trace U-(t, ε), where Uβ, ε) is given
by (2.49). If we write, in local coordinates,

(7/ί, ε)f(x) = J Wj(t, ε, χ9 y)f{y)dy, (2.52)

we have

Wβ, ε, x, y) = j α .(ί, ε, x, £ y ( * - y K ^ . (2.53)

In particular

Wj(t,ε,x,x) = $aj(t,ε,x,ξ)dξ, (2.54)

and hence,

trace Uβ,ε)= j P^(ί,ε,x,x)Jvol(x) = jjα/ί,ε,x,ξ)^vol(x). (2.55)
M

Now formula (2.27) gives

trace Uβ, ε) = tjεj tf aβ, ε, x, εξ)e"tt{x' εξ)dξd vol(x). (2.56)

A change of variable gives

j aβ, ε, x, εξ)e-tt{x>εξ)dξ = ε~vAβ, ε, x) (v = dimM), (2.57)
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and hence,

traceUj(t,ε) = ε~v + j j Bj(t9ε9x)dvol(x)9 (2.58)
M

where Bft, ε, x) = tjΛj(U ε> x) is smooth on (0, oo) x [0, E] x M. In light of the rapid
decrease of (2.51), we deduce the following.

Proposition 2.4. With v = dimM, ί > 0 fixed, we have an asymptotic expansion as
ε->0:

trace e" ί H β ~ ε-v{B0(t) + εB1(t) + ε2B2(t)+ . . .) . (2.59)

The leading coefficient is

B0(ή = JJ e~tr ix> °dζd vol (x). (2.60)

In case Hε is given by (2.6), we have

B0(t) = N exp[ - t(ξj- Λj(x))gjk(ξk - Ak{x))- tVΛάξd vol(x), (2.61)

and we can change variables to get

2 (2.62)

This special case of Proposition 2.4 implies Theorem A in the scalar case.
We now turn to the modification of the analysis above that is required if one is

to generalize (2.2), allowing X and Vί to be K x K matrices, rather than merely
scalars. In fact, we will stick to the construction of the amplitude, via (2.22)-(2.26).
In this more general situation, each a- is a K x K matrix valued function. Now
behind the proof of Lemma 2.1 is the identity

{d/δxj}e~Γ#ix'ω'σ)= -{dr*/dxj)e-r*, (2.63)

valid when Γ # is scalar, but not valid for general matrix valued Γ*. To treat the
more general case, we need a replacement for (2.63). To phrase more precisely what
we want, note that

Γ*=tΓ = t\\εξ\\2-2A£x)g*(x)σk-tV1(x)9

so

Γ * ^ ^ 2 j k . (2.64)

The first factor on the right side of (2.64) is scalar, so we need to understand how to
differentiate the last factor. Let us set

UAί9...9 Av9 V, x, σ, t) = 2Ajg

jk(x)σk + tVx, (2.65)

so

* . . . , X v , 7 1 ; x , σ , ί ) e " ί M 2 . (2.66)

Now we want to understand derivatives with respect to x of expL(x) for a
general smooth Kx K matrix function L(x) we will adopt the hypothesis that L(x)
is self-adjoint for each x, so we assume

Av ...,AV and Vγ are self-adjoint. (2.67)
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More generally, we have a formula for (d/dxj)f(L(x))9 where L(x) is self-adjoint and
/is a smooth function on R, so f(L(x)) is defined by the spectral theorem, given as
follows:

(d/dXj)f(L(x)) = g(dL/dxj9 L), (2.68)

where g is a smooth function on R2 defined by

g{s9τ) = sf'(τ). (2.69)

The right side of (2.68), a function of two (generally noncommuting) self adjoint
matrices, is defined by the Weyl calculus. More generally, if (Tv ..., Tk) is a fc-tuple
of bounded self-adjoint operators on some Hubert space, and fe^(Rk), one
defines the Weyl calculus by

/(T) = (2π)- f e / 2 j / (ξ)expK 1 T 1 + ... + iξkTk]dξ. (2.70)

It is easy to verify, using the Paley-Wiener theorem, that for a given (Tv ..., Tk\
with Σ || Tj\\2 ^ M 2, /(T) depends only on the restriction of/ to the closed ball BM

of radius M, and the norm of (2.70) satisfies an estimate:

Σll^ll 2 ^M 2 ^ιι/(τ) | ι^c k 5 M ι ι/n c , ( β M ) . (2.71)

See [25]. Then we have a natural extension of f(T) from /e^(IR*) to /eC°°(IR*),
and if, for example, f(τv ...,τk) = φ(α 1τ 1 + ... +αfcτfc), α êJR, then /(T) defined by
such a Weyl calculus is equal to φ(ocιT1+...+0LkTk), defined by the spectral
theorem. The identity (2.68) and (2.69) is proved in [25], and is a simple
consequence of the elementary identities

(d/dXj)L(x)k = (dL/dχ.)L(x)... L(x) + L(x) (dL/dXj)L(x)... L(x) + ...

+ L(x)...L(x)(dL/dxj)n (2.72)

where each term on the right in (2.72) contains fc— 1 factors of L(x), and there are k
terms. More generally, we have

(d/dxjjfiL.ix),...,Lk{x)) = Σ QtfLβxpLM • • ,^W). (2-73)

with

where both sides of (2.73) are evaluated via the Weyl calculus.
We will use these results on the Weyl calculus to prove the following analogue

of Lemma 2.1.

Lemma 2.5. Under the hypothesis (2.67), we have

α/ί, ε, x, ξ) = εhjb .(ί, ε, x, ε φ Γ ί | 1 ^ " 2 (2.75)

vWί/z α polynomial representation

bjit,ε,x,εξ)= Σ EJJt,B,x,Qal'ζ', (2.76)

|/?| even
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where

ζ = εξ, ω = tll2εξ, (2.77)

and, for some B = BJσγ<co, the Kx K matrix function Ejocβ satisfies

\DlD°EJaβ(t, ε, x, εξ)\ S C^Jεtpe*®. (2.78)

Proof. The proof will proceed by induction on j . For j — 0 we have

bo(t, ε, x, εξ) = QxpLiA^x),..., Av{x\ V^x) x, σ, t) = b*(ί, x, σ), (2.79)

where L is given by (2.65), σ = tεξ, and the right side of (2.79) can be taken to be
defined by the Weyl calculus, as mentioned in the discussion above. We have
JE0(ί, ε, x, ζ) = bo(t, ε, x, ζ\ and we want to establish (2.78). Note that the absolute
value on the left side of (2.78) refers to the operator norm on C x , since Ejaβ is a
Kx K matrix. Now we have

dbo/dXj = F2(dL/dxj9L)9 (2.80)

where

F2(s9τ) = se\ (2.81)

and

,L). (2.82)

Using the estimate (2.71), we see that (2.78) holds for Eo if |y| + |σ| = 1. The required
estimates on Dγ

xD
σ

ξE0 for general γ and σ follow similarly, and the result is
established for j = 0. Now we want to show that, if (2.75)-(2.78) hold for ap the
analogous results hold for aj+ί. Recall that

aj+ x(t, ε, x,ξ) = \ e-{t~s)ΓΩj+ ^ ε, χ9 ξ)ds, (2.83)
o

where Ωj+ί is given by (2.24), i.e.,

ΩJ+ x(t9 ε,x, ξ) = 2fe<£ Vxaj} + ε2Laj + β(x9 Qaj + εXa., (2.84)

where β(χ9 ζ) is linear in ζ. It follows that, if (2.25)-(2.78) hold for aj9 then

ΩJ.+ 1(ί,ε,x,0 = ̂ + V Σ F , α / , ( ί , ε , x , O ω ^ - « 1 1 2 , (2.85)

where Fjaβ satisfies the estimates (2.78). Consequently, aj+1 is of the form
(2.75)-(2.76), with

EJ+ltaP(t9ε9x9O = r u + 1 + ^]b*(t-s9x9{t^
o

Since (2.78) holds for b$ and for Fjφ such an estimate also holds for Ej+1 aβ. The
proof of Lemma 2.5 is complete.
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From Lemma 2.5 one concludes that

(2.87)

with similar estimates on the derivatives, so Lemma 2.2 continues to hold.
Lemma 2.3 also holds, with no change, and hence (2.51) is still rapidly decreasing
as ε-»0, so for any £>0, as ε->0,

trace<Γ ί H ε~ £ traceUp,ε). (2.88)

In this case, replacing (2.56)-(2.58), we have

trace Up, ε) = ίV \$ tτbp, ε, x, εξ)e~tllεξl{2dξd vol(x)

J | | ζ | | 2 l ( x ) . (2.89)

Above, we take the trace of the Kx K matrix valued integrand. Thus
Proposition 2.4 continues to hold in this more general case, with the formula for
the leading term modified to

BQ(t) = if tr e~tf {x> ζ)dζd vol(x). (2.90)

In particular, if Hε is given by (2.6), with Apt) [and possibly V(x)~] self-adjoint
matrix valued, we have

B0(t) = JJ tr exp [ - t(ξ j - A{x))<?\x) (ξk - Ak(x)) - tV]dξd vol(x). (2.91)

As opposed to the scalar case (2.61)-(2.62), (2.91) need not be independent of the
matrix terms Ape).

As a final comment in this section, we note that even the self-adjointness
hypothesis (2.67) could be dropped. We would need to exploit the complex
analyticity of the functions being applied to matrices above, and replace (2.70) by
the Dunford calculus. The identity (2.68)-(2.69) is also well-known in this context.
In fact, we could use the following more elementary derivation of (d/dXj)eL{x\ If we
let u(t) = etL{x)f, then v = du/dxj solves

dv/dt = L(x)v + (dL/dxj)u, v(0) = 0,

t

so DuhamePs principle gives v = J e(t ~ s)L{x)(dL/dxj)u{s)ds, so
o

(d/dxj)etL(x) = \e{t- s)L{x\dL/dx)esL{x)ds,
o

and setting t = 1 gives

1

(d/dx j)eL{x) = $e{1~ s)L{x\dLldx)esL{x)ds. (2.92)
o

This provides a perfectly adequate replacement for (2.80) and (2.81) in the proof of
Lemma 2.5.
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3. Harmonic Analysis on a Compact Lie Group

The purpose of this section is to bring together facts about harmonic analysis on a
compact Lie group G which will be needed in Sects. 4 and 5. First, we recall some
basic facts about the representation theory of G our references for this material
are the books of Wallach [28] and Zelobenko [31].

The irreducible unitary representations πλ of G are naturally indexed by
λe^nC, where C is a convex cone in IR* called a Weyl chamber. Here k is the
dimension of a maximal torus Έk of G, and Rfe is identified with T*Έk. 5£ is a
lattice in Rfe. The entries π^(x) of the matrix πλ are functions on G. The Peter-Weyl
theorem implies

{]/a\πγ: λe^nC, l^ij^dj is an orthonormal basis of L2(G). (3.1)

Here dλ is the dimension of the representation space of πλ. It is given by WeyFs
formula

dλ=Y[(λ + δ,a>Kδ,a>. (3.2)
aeP

Here <5eIRk is half the sum of the positive roots, P is the set of positive roots, and
the inner product is induced by the Killing form.

If P is any bi-invariant differential operator on G, then {πι[} belong to an
eigenspace of P, for any fixed λ. An example of this is P = Δ, the Laplacian on G,
endowed with a bi-invariant Riemannian metric (which induces a metric on
R k « 7fT*). In this case we have

-Aτi*i = (\\λ + δ\\2-\\δ\\2)7ΐl. (3.3)

As before, (5elRk is half the sum of the positive roots. This result has the following
important generalization, proved in Zelobenko [31, p. 369]:

Theorem 3.1. Let qm(λ) be any homogeneous polynomial on lRfc, of degree m, which is
invariant under the Weyl group. There exists a bi-invariant differential operator Q, of
order m, such that

Qπ^qJλ + δWl. (3.4)

Conversely, if Q is a bi-invariant differential operator of order m, then (3.4) holds, for
some qm(λ\ polynomial of order m, invariant under the Weyl group (perhaps not
homogeneous).

The Weyl group is the group of linear transformations on Rfe = T*Έk induced
by inner automorphisms of G which leave TΓfe invariant. It is a finite group,
generated by reflections across the walls of the Weyl chamber. For more details,
see [28], or [31].

It follows from the proof of Theorem 3.1 that the relation between qm(λ) and
qm(e, ξ), the principal symbol of Q, is the following. We think of λe T*Tk included
in T*(G), and then qm(λ) = qm(e,λ). Since qm(e,ξ) is invariant under the coadjoint
action of G on T*G, this uniquely specifies qm(e,ξ). We note the assertion that
restriction to Rfc, giving qm(e,ξ)\->qm(λ\ is an isomorphism from the space of
polynomials (homogeneous of degree m) on T*G invariant under the coadjoint
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action of G onto the space of polynomials (homogeneous of degree m) on Rfc

invariant under the Weyl group, a theorem of Chevalley.
In view of Chevalley's theorem, results of Schwartz [17] or Mather [15] imply

the following. The restriction map gives an isomorphism from the space of
functions in C°°(Te*G\0), homogeneous of degree m, invariant under the coadjoint
group, onto the space of functions in C°°(IRk\0), homogeneous of degree m,
invariant under the Weyl group. One then obtains the following pseudodifferential
operator analogue of Theorem 3.1 for a proof, see Chap. XII, Sect. 6, of [21].

Theorem 3.2. Let q(λ)eSm(βlc) be invariant under the Weyl group. Then there exists
QeOPSm(G), bi-invarίant, such that

Qπ^ = q(λ + δ)πγ. (3.5)

Conversely, for any bi-invariant QeOPSm(G), there is a g(Λ,)εSm(IRfc), invariant under
the Weyl group, such that (3.5) holds. The principal symbol qm{x,ξ) of Q and the
principal term qm(λ) in the expansion of q are related by the identity

T^G, (3.6)

which uniquely determines the correspondence between qm(x, ξ) and qm(λ).

As an application of Theorem 3.2, we will analyze the behavior as n-»oo of the
quantities

d~ι t r a c e d ™ " , Xeq. (3.7)

Here πn is the irreducible representation of G corresponding to the point nλί in
5£r\C, where A^JSfnC corresponds to an irreducible representation π 1 of G;
dn = dπn is the dimension of the representation space of πn, given by (3.2). The limit
of (3.7) was obtained in [18] and was used in [11] as a preliminary step toward
analyzing the limiting behavior of quantum partition functions. The result we
obtain here is more precise since it is a complete asymptotic expansion.

It is convenient to alter the exponent in (3.7) slightly, replacing \jn by
l/\\nλ1 + δ | | , so we will study the limiting behavior of

(3.8)

Now, consider the pseudodifferential operator

A = (-A + \\δ\\2)ll2e0PS1. (3.9)

It follows from (3.3) that

Λ π y = μ + <5||τ#, (3.10)

so

enn(X)/\\nλ1+δ\\=eA-1X (3.11)

on the linear span of {πj/λi: l^i,j^dn}, which is a direct sum of dn copies of πn.
Note that A'^eOPS0, and hence, eA~lχe0PS°(G).

Now one way to describe the quantity φ(n) in (3.8) is as follows. Conjugate
(X)/\\λι + δ\\ ky ̂  a c t i o n oϊπn(g), and average over ge G. The resulting operator is



570 R. Schrader and M. E. Taylor

a scalar, namely φ(n)I. Note that, with Rg denoting the right regular
representation,

f R- 1eΛ~lχRgdg=Te0PS°(G) (3.12)
G

is a bi-invariant operator. By Theorem 3.2 we have

V = τ(λ + <5)7# (3.13)

for some τeS°(IRfc), i.e.,

τ{λ)~τo{λ) + τ1(λ)+...9 (3.14)

with Zj(λ) homogeneous of degree —j in λ. Note, however, that

φ(n)-=τ(nλ1Λ'δ). (3.15)

We have the following result.

Proposition 3.3. For any given XEQ, as n—•oo, there is an asymptotic expansion

d^tracee*"™'^^ (3.16)

with Tj(λ) homogeneous of degree —j in λ. In particular, the leading term is

(3.17)

Here we regard ΛeIRkCcj*.

Note that (3.17) arises from (3.12), in view of the formula for the principal
symbol of a pseudodifferential operator conjugated by the action of a diffeomor-
phism. We can rewrite the inner product in the exponent of (3.17) as ζX, Ad*gλ}.
As g ranges over G, Ad*gλ ranges over a coadjoint orbit Γλ of G in cj*. Γλ is a dilate
of a coadjoint orbit Γλ/^=Γ*, and we see that (3.17) is equivalent to

τo(A)= j ^x^dμλ(ί)9 (3.18)
it

where dμλψ) is the natural homogeneous probability measure on the orbit Γ*.
This is the form in which the limit was written in [18,11]. In the latter paper it was
shown that φ{ή) — τo(nλ1 + δ) is bounded by a constant times n~1/2 the arguments
of [11] can be improved to obtain the sharp bound implied by (3.16), namely a
constant times n~ι.

It is clear that we could replace the vector field X by any left invariant
pseudodifferential operator X = κ(x,D)eOPS1(G), and then the leading term in
(3.16) is

τo(λ)= f <*««dμλV). (3.19)
ΓΪ

We will now re-derive the complete asymptotic expansion for d~1 traceeπn(X)/n,
equivalent to (3.16), using the study of maximal weight vectors. This tool figures
into the method of coherent projections, which we will use in Sect. 5.

If a choice is made of the set of positive roots A + of g, as those which are
positive on the Weyl chamber C, then the irreducible representation πA,
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has λ as its highest weight, with respect to the induced ordering on Jδf, and there is
a unique A-weight vector ψλ up to a complex scalar. Choose xpλ of norm 1 it is
called the highest weight vector. It is annihilated by all "raising operators", i.e., by
all root vectors in gμ for μsA +. The following "generating function" plays an
important role in the representation theory of G, including the Borel-Weil theorem
(see [28,31]):

Ψχ(ΰ) = <πλ(g)ψλ, Ψλ>> λeJ^nC, geG. (3.20)

Note that, although ψλ is defined only up to a phase eιθ, Ψλ(g) is independent of
this phase factor. Now given A,μeifnC, λ + μ is the highest weight for the
representation πA(x)πμ, and the unique highest weight vector is ψλ(g)ψμ; this vector
is hence contained in a copy of τcλ+μ. From this one has the following simple but
remarkable identity:

^λ(g)Ψμ(g)=ψ

λ + ^), Kμe^CΛC. (3.21)

This identity was proved by Zelobenko (see [31], Sect. 109). It was re-discovered
and applied to the study of quantum partition functions by Gilmore [6], and also
discussed by Simon [18]. It can be rephrased as follows. Let ev...,ek be the
fundamental weights in ^fnC, so any λ e i f nC can be written uniquely in the form

λ= Σ 'ft, 'j^9 integer. (3.22)

Then

yλ(g)= Y\y0J, (3.23)

where

ψj(g)=ψej(g)' (3.24)

This reduces the problem of determining Ψλ(g) for all weights λ to the finite
problem of determining the cases (3.24).

The relevance of Ψλ(g) to the study of trace e%n{x)ln is provided by the identity

traceeπ Λ Y ) = trace j eπλ{AάgY)dg
G

\ (3.25)
G

which follows from the fact that the first integral is scalar, by Schur's lemma. Now
pick λ^E^nC and set λn = nλv dn = dλn, πn = πλn, ψn = ψλn. It follows from (3.21)
that

ά~x tracee π " w / B = $(eπi{Ad9X)/nψvψi}
ndg. (3.26)

G

This sort of identity was also exploited in [18] and [11]. Here we show how it
yields a complete asymptotic expansion as rc—•oo. For the moment, set

B = π1(AdgX). (3.27)
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We are looking at

τB(B) = < « " > ! , Vi>"

= Qxpnlog(l + n ^ ( l / n ) ) , (3.28)

where

K(ε) = ((B + εB2/2\ + ε2B3/3\ + ...)ψ1,xp1} . (3.29)

It is convenient to write

K(ε) = b1+εL(ε), (3.30)

with

bΐ = (BψvΨl), (3.31)

and

L(ε) = ((B2/2l + εB3/3l+ε2B4/4l + . . . J φ ^ φ ^ . (3.32)

Thus,

τn(B) = exp [ ( ^ 4-εL(ε))(l - εK(ε)/2 + ε2K(ε)2/3 + . . . ) ] , (3.33)

with

ε = l/n. (3.34)

in view of the expansion

log(l + x) = x(ί - x/2 + x2/3 - . . . ) . (3.35)

It is clear that the right side of (3.33) is analytic in ε near ε = 0; it is routine to
rearrange (3.33) in powers of ε. We work out the following couple of terms
explicitly, as follows:

τn(B) = exp [bx + ε(L(ε) - b.K^)/!) + •.. ]

= ebί exp ln-\L(0)- b^O)/!)] + 0{n~2)

2 ) ] , (3.36)

since K(0) = bί=(Bψvψί> and
Information on b1 = (ni{Y)xpvxp1}, Y=AάgX, is provided by the identity

<πλ(Y}ψλ9ψλy = KY9λy, 7 e g , λe&nC. (3.37)

In fact, πλ(Y)xpλ = ί(Y,λ)ψλ for YeTeT
k, since ψλ is a weight vector. Since it is the

highest weight vector, πλ(Z)xpλ = 0 when Ze(Cg is a root vector in §μ, for any
positive root μ. By duality, if Z is a root vector for a negative root, πλ(Z)ψλ is
orthogonal to ψλ. This proves (3.37). Thus, the principal term in (3.36) agrees with
the principal term in (3.16):
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SO

lim d:' trace eπ»(jr)/n = f ei<AdaX>λl>dg.

In fact, (3.36) gives

G (3.38)

We are motivated to generalize (3.37) to the study of

<πλ(P)ψλ,ψλ>9 Pe9ΐ(g), (3.39)

where $ft(cθ denotes the universal enveloping algebra of g. In fact, if we identify P
with a left-invariant differential operator on G, we have

<πλ(P)ψλ9ψλy = PΨλ(g)\β=e. ( 3 4°)

In light of (3.23), we see that (3.40) is a polynomial in (/1? ...,/fc) of order degP; in
other words, (3.40) is a polynomial in λ. In the special case arising in (3.38), we
have, for 7eg, λ of the form (3.22),

Y/=i
1)(yW)2+ Σ ^

(3.41)

Note that YΨ.{e) = i<J,e\ in view of (3.37), so the principal part of (3.41) is
-<y,A>2.

One advantage of the latter analysis of dn

 1 trace eUn{x)/n is that it is more
straightforward'to be explicit about further terms in the asymptotic expansion,
compared with (3.16), since it is not so easy to work with an explicit complete
symbol calculus for pseudodifferential operators on G. An advantage of the first
method is the uniformity of the expansion one obtains as l-^oo in a Weyl
chamber, not merely along a ray.

In fact, the two methods are not totally unrelated. In particular, the fact that,
for any bi-invariant differential operator Q one has (3.4) with a polynomial qm(λ)
follows from (3.40) and the subsequent observation, since in the bi-invariant case
we have

qm(λ + δ) = QΨλ(e). (3.42)

One can obtain the leading term in qm(λ) by an argument parallel to the
examination of (3.41), using (3.37). An additional argument would be required to
check the Weyl group invariance of qm(λ).

We end this section with a parenthetical remark that one can also use the
generating functions Ψλ(g) to produce formulas for the character χλ(g) of an
irreducible representation πλ, and the dimension dλ of its representation space. In
fact, averaging conjugates of Ψλ(g) clearly produces a scalar multiple of χλ{g) since
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Ψλ(e) = ί, we have

g (3.43)
G

for x,geG. Furthermore, since χλ(g) has L2 norm 1 on G, we have

}2dx. (3.44)
G\G

4. Asymptotics for Quantum Partition Functions via Microlocal Analysis

In this section only, we assume for simplicity that P-+M is a product bundle. We
aim to study

lim hvd;1 trace έΓ t H" = lim hyά~ 1Zn(t), (4.1)
n-+ oo

where Hn is given by (1.4)—(1.5), i.e.,

Hn = - h2g~ 1/2(dj + πn(Aj(xWkgm(dk + πn{Λk(x)))- ihπn(A0{x)) + V(x). (4.2)

Note that e~tHn operates on functions and distributions on M with values in the
dπ-dimensional representation space of πn. In the introduction we took n and h to
be related by

h = l/n. (4.3)

As is Sect. 3, we will find it convenient to modify this slightly, setting instead

ft=||nλ1+δ|Γ1. (4.4)

Consider the following operator on distributions and functions on GxM:

Ω=-A~2g~ ίl2(dj + Aj(x))gJkgll2(δk + Ak(x)) - iA^A^x) + V(x). (4.5)

Here A = {-ΔG+ ||<S||2)1/2 is as in (3.9), an operator on 2\G\ and, for O^ ^v, the
functions A.{x) on M with values in cj, are considered as vector fields on G thus,
dj + Aj(x) is the horizontal lift, to a vector field on G x M, of the vector field d. on
M, determined by the connection at hand. Thus, in (4.5), A'2 is composed with a
second order differential operator and A"1 is composed with a first order
differential operator. However, Ω is not a pseudodifferential operator on G x M, as
its symbol is singular at points in the cotangent bundle annihilating vectors
tangent to the fibers of G x M->M. Nevertheless, we will be able to analyze e~tΩ as
a pseudodifferential operator on G x M, for any t > 0. Before we get into this, let us
relate Wd 'Zβ) to e~tΩ.

The operator e~tΩ commutes with the left action of G on C^iGxM). If Rg

denotes the right action, set

Ξ{t)=\R-ιe-tS1Rgdg, (4.6)
G

so Ξ(t) is an operator on C^iG x M) commuting with the left and the right actions
of G. Now let ξ(t) = iv2LCQMΞ(t) denote the trace relative to M of Ξ(t); if the
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Schwartz kernel function of Ξ(t) is Ξ(t x, g, xf, g'\ then, provided this relative trace
exists (and we will see that it does in our case), the Schwartz kernel function of ξ(t)
is

ξ{t;g,g')= J S(ί; x,g,x,g')dvo\{x). (4.7)
M

Then ξ(t) is a bi-invariant operator on C^iG), so there are uniquely specified
scalars ωt(λ) such that, for A e if nC,

". (4.8)

Now it is clear that

d;1Zn(t) = ωt(nλ1+δ). (4.9)

Consequently, the asymptotic analysis of (4.1) will follow from the asymptotic
analysis of ωt(λ) in (4.8), which in turn will follow from the analysis of e~tΩ as a
pseudodifferential operator on GxM. We turn to this analysis.

The operator we want to exponentiate is

Ω = A~2L0Λ-ίA~1A0 + V = A~2L + iA~1A0 + V1, (4.10)

where L = Lo — AG + ||δ\\2 is an elliptic second order differential operator o n G x M
and V1 = V-1. Note that A = (-AG+ \\δ\\2)1/2 commutes with L and also with the
first order differential operator Ao. If local product coordinates are chosen on
G x M, we get coordinates on T*(G x M):

{x'9x",ξ',ξ")9 x 'eG, x " e M , ξΈT*G, ξ'ΈT*M. (4.11)

The symbol of A~2L = LA~2 has the form

σLA.2(x, ξ)=Σ ίj(x, ξ)βj(x', ξ1) (4.12)
j

~2{with /j(x,ξ)eS2{MxG), βj{x\ξ')eS~2{G). Outside any conic neighborhood of
{ξ' = 0} it belongs to S°(G x M). {ξ' = 0} describes the normal bundle to the fibers
of G x M^M; we denote it by 9ΐ. The fact that Ω has a singular symbol at 91 will
complicate our symbolic construction of e~tΩ. Before we get into this, we will begin
with some more basic information on the nature of the operators e~tΩ.

If we let Eλ be the linear span of πl3

λ, for lShjύdλ, then

L2{GxM)= 0 £ λ ® L 2 ( M ) , (4.13)
λ

with each summand invariant under e~σL, σ^O, and hence,

e-tA-2L = e-tε2L o n Eχ®L\M), ε = μ + (5|Γ1. (4.14)

Note that 0 < ε ^ \\δ\\'\ so as long as O ^ ί ^ T o , the right side of (4.14)is uniformly
bounded. Thus, e~tA'2L is bounded on L2{GxM). More generally,

for O ^ ί ^ To, so e~tΛ~2L is bounded on the Sobolev space H2k(G x M) for each k,
and hence, on each Sobolev space HS(G x M), 5^0. It is easy to see that the



576 R. Schrader and M. E. Taylor

perturbations ίA~1A0 and V1 are bounded on each Hk(GxM), so, for f^O,

e~tΩ is bounded on each Sobolev space HS(G x M), (4.15)

for s^O. By duality we get this result also for s^O. Note that

e - t Ω = e-te2L-tBAo-tvι o n Eλ(g)L2(M^ ε = \ \ λ + δ\\-1. (4.16)

Now we can obtain the following regularity theorem, which eventually will justify
some formal symbolic constructions.

Lemma 4.1. Suppose we have

(S/at + fl)tt = fteC"([0,To]xGxM), w| f=0 = /eC°°(Gx M).

Then ue C°°([0, T0~]xGx M).

Proof. In light of (4.15), this is an immediate consequence of DuhameΓs principle,
which gives

0

Next we look at the action of e~tΩ near the singular set ξf = 0. This is easier to
understand for e~tΩo, where Ω0 = A~2L, so we first examine this. Note that

e-tΩ0 = e-tε2L o n Eλ®L2(M). But clearly,

\\AGxMe~tE2LAGxM\\nL2) = CkAte2yk~*' (4 1 7 )

Hence,

l l4χM^ ί β 0 4χM"l lL2^ci , r k -^ι i4 + ^n L 2 . (4. is)

We claim you get the same sort of estimate for e~tΩ:

WAGxMe~tΩAGxMU\\L2 = C'kίt~k ~*\^G*^U\\L2 (4-19)

This would follow from the estimate

II At -tε2L-tεA0-tVi Λk \\ < f f-k-ίp-2k-2£ (άOC\\

for 0 < t ̂  To, 0 < ε ̂  £ 0 . Now (4.20) is not an immediate consequence of (4.17), but
the singular perturbation analysis of Sect. 2 enables us to prove (4.20). Recall the
parametrix for U(t,ε) = e~tε2L~tεΛ°~tVί:

U{t,ε)f~ Σ $tjε^x,εξ)e-tt(x>εξ)f(ξ)eiχ ξdξ. (4.21)

Now applying the left side of (4.20) effectively throws in a factor of \ξ\2k + 2^
into (4.21), together with some lower order effects. Since \ξ\2k + 2£

= jk+ί\εξ\2k+2ίt-k-ίε-2k-2ί^ faς e s t i m a t e (4.20) is an easy consequence of
the analysis of (4.21) given in Lemmas 2.1 and 2.2. Thus, we have the estimate
(4.19). From (4.19) we can also deduce the estimate

-k-e\\Δ^(Δ-lMu\\L,. (4.22)
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From here we can deduce smoothness of e~tΩu whenever u has "wave front set"
in a "subconic" neighborhood of {ξf = 0} = 91, the bundle of normals to the fibers of
GxM^M. Pick αe(0,^), small, pick φeQ(IRμ) (μ = dimG), φ = l in a neigh-
borhood of the origin, and set

a , 0 . (4.23)

Then ψ is the symbol of a pseudodifferential operator ΨeOPS\_a a. If there exists
αe(0,f) such that

Ψu = u mod C°°(G x M), (4.24)

we say u has wave front set in a subconic neighborhood of 91. This notion depends
only on 91, not on the choice of coordinate system. This is a special case of results
in Appendix B of [24], on a refined wave front set WF. A general ue3)'(G x M) can
be decomposed as u = (I—Ψ)u+Ψu = u1+u2, where u2 has wave front set in a
subconic neighborhood of 91, and, in an analogous sense, the wave front set of uί

misses a subconic neighborhood of 9Ϊ.

Lemma 4.2. Suppose ueS>!(G x M) has wave front set in a subconic neighborhood of
9ΐ. Then, for any ί>0, β"ίβweC°°(GxM).

Proof. Let fc->oo and / = [α/c], where αe(0,1) is fixed, sufficiently small, compared
with some given αe(0,^). Then, with Ψ defined by (4.23), we have

Φ* = 4 + ^ G Ϊ M ^ > (4-25)

a sequence of pseudodifferential operators of type (1 — a, a\ with orders going to
- oo as /c->oo. Hence, if Ψu^umodC™, (4.22) gives estimates of \\Δ'GxMe~tΩu\\L2

for arbitrarily large /. This proves the lemma.
This lemma is equivalent to

e~tΩΨ: 9\G xM^C^iGx M) (4.26)

for any £>0. By duality, one deduces

Ψe~tΩ: <2)'(G x M)-+C™{G x M) (4.27)

for any t>0. Thus, for any ί>0, any ueQ)\G x M), e~tΩu has wave front set which
misses a subconic neighborhood of 91, in the sense indicated above.

Our strategy for analyzing e~tΩ is the following. Outside some subconic
neighborhood of 91, Ω agrees with the action of a pseudodifferential operator B in
0PS\_a a, where α>0 can be taken arbitrarily small. We expect pseudodifferential
operator techniques to analyze e~tB, and then we hope that Lemma 4.2 will lead to
e-^-e'^eOPS'™, for any ί>0.

We next turn to the question of constructing u such that

M(0) = / , δu/dt =-Bu mod C°°([0, To) x X), (4.28)

where X = GxM and B is a pseudodifferential operator on X with a non-classical
symbol. Whether such u agrees mod C00 with the exact solution to du/dt = — Bu is a
separate issue, which in our case of interest will be taken care of by Lemma 4.1. We
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attempt to construct u in the form

u = Sa(t9x9ξ)eiχ ξf(ξ)dξ9 (4.29)

in a local coordinate system. We will attempt to construct a(t,x,ξ) as an
asymptotic sum

φ9x,ξ)~ Σ cij(Ux,ξ), (4.30)

where, hopefully, a} are (non-classical) symbols with orders tending to -GO as
j—xx). If u is given by (4.29), then

Bu = \k(t,x,ξ)eiχ ξf(ξ)dξ, (4.31)

where

fc(ί, x, ξ) = e~ix'ξB(aeix'ξ). (4.32)

If B{x, ξ) and a(t, x, ξ) satisfy appropriate symbol estimates, one can write the
asymptotic expansion

k(t9 x9ξ)~ Σ (1/α 0^ ( α )fe ξ)aiΛ)(t9 -x, ξ), (4.33)

where B{a) = Da

ξB, a(oc) = Da

xa. Since we want da/dt + k~O, or

Σ (l/α!)5(α)(x,ξ)α(α)(ί,x,ξ)-0, (4.34)

it is natural to specify the terms α̂  in the expansion (4.30) by

dao/dt=-B{x9ξ)aθ9 (4.35)

and, for 7^1,

3αy5ί + B{x9 ξ)a. = Rp9 x9 ξ), (4.36)

where

Rβ9 x, ί ) ~ - Σ (Vα ί ί ^ U , ̂ ί ^ - ι(t, x, ξ). (4.37)

We have initial conditions

flo(0,x,ί) = l , α/0,x,ξ) = 0 for ^ l , (4.38)

so

ao(t9x9ξ) = e-tB<x'* (439)

and,

aft9 x,ξ)=] e-
{t-s)B{x> ξ)Rj(s, x, ξ)ds. (4.40)

o
Suppose now that, for some αe[0,^), we have



Small h Asymptotics 579

We will assume B(x,ξ) is bounded below, RQB(X, ξ)^ — C. In fact, suppose

e-tBix,ξ)eSo_a^ bounded, for 0 ^ ί ^ T o .

Then we clearly have ao(t,x,ξ)eS°1_aa. More generally, if aj{t,x,ξ)eSμ

1

j_a^ the
recursion (4.37)-(4.38) gives

β(α)(x, ξ)D«xaj(t, x, ξ)e S^~ 2 α ) | α | + a,

and hence,

Thus, (4.30) is asymptotic, provided a< 1/3. We have proved the following.

Proposition 4.3. Suppose we have

B{xΛ)eS\_a%ai (4.41)

and

e-tBix,ξ)eSo_a^ bounded, for 0^t^To. (4.42)

Then (4.29)-(4 40) give a construction of u satisfying (4.28), provided

3. (4.43)

The hypothesis (4.42) can be replaced by something more explicit, in light of
the following.

Proposition 4.4. Suppose B(x,ξ)eS°[_a}a and R e £ ( x , £ ) ^ - C . Then (4.42) holds,
with a = 2a.

Proof We have Dxe~tB=-t(DxB)e~tB, with e~
tB{x'ξ) bounded and DxBeS\a_aa.

The rest of the estimates follow similarly.

Corollary 4.5. Suppose we have

B{xΛ)eS\_ata (4.44)

and

RQB(x,ξ)^-C. (4.45)

Then (4.29)-(4.40) give a construction of u satisfying (4.28), provided

0^α<l/6. (4.46)

These propositions are not directly applicable to e~tΩ, since the operator Ω is
too singular. Nevertheless, the basic construction (4.29)-(4.40) can still be made to
work, with some modifications. It is more convenient to take a method which
works in the classical case B(x, ξ)eS°, i.e.,

B(x,ξ)~B0(x,ξ) + Bί(x,ξ)+ ... , (4.47)

where each Bj(x, ξ) is C00 on ξ Φ0 and homogeneous of degree —j in ξ. Of course,
the construction (4.29)-(4.40) works in this case, but we will modify it slightly, so
each cij(t,x,ξ) will actually be homogeneous, rather than in the symbol class S~j.
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To do this, replace (4.32)-(4.33) by

k(t,x,ξ) = e-ix'ξB(aeiχmξ), (4.48)

with

Kt,x,ξ)~ Σ Σ(Vα!)B$β)(x,£K)(f.*,ξ). (4-49)
j £ 0 α ̂  0

Thus, our transport equations become

dao/dt=-Bo(x,ξ)ao, (4.50)

and, for j ^ l ,

daj/dt + B0(x9 ξ)a. = R*(t9 x, ξ), (4.51)

where

R*(t,x,ξ)=- Σ (ί/«\)B^(x,ξ)Dι

xaί{t,x,ξ). (4.52)
? + k+\\ j

With the initial condition (4.38), we have

a0(t9x9ξ) = e'tBoix^9 (4.53)

and, for 7 ^ 1 ,

aft, x, ξ) = ί e~ ( i- s ) j B o ( x ' «>R*(s, x, ξ)ds. (4.54)
o

It is easy to see that α; is homogeneous of degree —j in ξ. Inductively, one sees that

ap9x9ξ) = aJit9x9ξ)e-tBo^9 (4.55)

where άj(t,x,ξ) is obtained from B^(x,ξ), O^rgy, through the process of taking x
and ξ derivatives, and forming sums and products, and aft, x, ξ) is homogeneous
in ξ of degree — j .

What happens if we apply the construction (4.52)-(4 55) with JB replaced by £2,
given by (4.5)? We can write the "symbol" of Ω as a formal sum

Ω(x,ί)~Ω0(*>f) + Ω i ( * , £ ) + . " (4.56)

of the following nature. Each ί2J.(x, ξ) is C00 in x and ξ except at ξ = 0, and
homogeneous of degree — j in ξ. Near ξ' = 09 Ωj(x, ξ) has an algebraically bounded
singularity, i.e., for any given j and k, if |α'| is taken sufficiently large, {ξ'f'Ωpc, ξ) is
smooth of class Ck near ξf = 0. Let us denote by ^~j the set of such functions.
From (4.55) we have

aft,x,ξ) = cιft,xΛ)e-tΩo{x>ξ\ (4.57)

with

. (4.58)

Now Ω0(x,ξ) tends to + oo at the singular set ξ' = 09 and it is clear that e~tΩo{Xiξ)

= ao(U x, ζ) is C00 and vanishes to infinite order at ζ' = 0, for any t > 0. This infinite
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order vanishing cancels out the algebraically bounded singularity in ap and we
deduce that the construction (4.52)-(4.55) applied to Ω in place of B yields

aft,x,ξ)eS~j, vanishing to infinite order at ξ'= 0, for any ί > 0 . (4.60)

It is not convenient to demonstrate the validity of the resulting approximating
operator for e~tΩ directly from the construction (4.48)-(4.55), as the product nature
of Ω makes it hard to obtain (4.49), and the smoothness of (4.57) does not hold
uniformly as ί-»0. Therefore, what it is convenient to do is apply a cut-off/— Ψ to
the initial data, where Ψ is as in (4.23)-(4.24). Pick α<l/6, sufficiently small.
The formal construction (4.48)-(4.55), modified so ao(O,x,ξ) = l — ψ(ξ\ gives
(4.57H4.59), with aft, x, ξ) multiplied by 1 - ψ(ξ). If we replace Ωby B = Ω(I-Ψ1)9

where Ψ\ is similarly defined, with a enlarged slightly, we see that u is constructed
so that

, u\t = 0 = ( / - Ψ)fmoάCGO . (4.61)

On the other hand, since (ί — ψ(ξ)) is a factor in each term in the parametrix for
e~tB, we see that

Ωu-BueC™, (4.62)
so

, u\t^0=(I-Ψ)fmodCco. (4.63)

Consequently, we see that, modC0 0,

e~tΩ(I- Ψ)f= ί (1 - ψ(ξ))a(t, x, ξ)eίχ-ξf(ξ)dξ, (4.64)

where a(t,x,ξ)eS° vanishes to infinite order at ξ' = 0, for ί > 0 . Note that
xp(ξ)a(t,x,ξ) has order — oo under such circumstances, so, for any fixed ί^O,

e'tΩ{I- Ψ)f= Jα(ί,x, ξ)eίχ ξf(ξ)dξmoάCco , (4.65)

with a(t,x, ξ) as above. On the other hand, for any £>0 fixed, Lemma 4.2 implies
e~tΩΨ is a smoothing operator. This proves the following main result of this
section.

Theorem 4.6. For any fixed t > 0, we have the classical pseudodifferential operator

e~tΩe0PS°(GxM). (4.66)

Its complete symbol, in a product coordinate system, is given by the same rule as for
e~tB with classical Be OPS0. Furthermore, Us complete symbol vanishes to infinite
order on the bundle 91 of cotangent vectors normal to the fibers in G x M^M.

Recall we are interested in the relative trace of e~tΩ, as an operator on Q)'{G).
We have the following general result.

Proposition 4.7. Suppose P is a classical pseudo differential operator

PeOPSm(GxM) (4.67)

whose complete symbol vanishes to infinite order on 91. Then the trace of P relative
to M is well defined as a pseudo differential operator on G:

v(G), v - d i m M . (4.68)
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Proof Since a smoothing operator on Q)\G x M) clearly has relative trace which is
a smoothing operator on @)\G\ we can suppose the Schwartz kernel function of P
is supported near the diagonal and work in local coordinates. Say

Pu=J p(x', x", ξ, ξ")ύ(ξ)eiχ ξdξ. (4.69)

Then

where

q(x\ ζ') = tf p(x\ x\ ξ', ξ")dx"dξ". (4.71)
T*M

If p(x',x\ξ\ξ") is homogeneous of degree m—j in ξ = (ξ\ζ") and vanishes to
infinite order at ξ' = 0, it is easy to see that

qfx', O = ft Pfx', x", ξ', ξ")dx"dξ" (4.72)

is smooth and homogeneous of degree m—j+v in ξ'. This establishes (4.68).
In the case P = e~tΩ, with f >0, we have

e~tΩ = Q(t)e0PSv(G)9 (4.73)

with symbol

q(t, x, ζ') ~ q0 + qt + ..., (4.74)

and

Thus, with

£{x, ξ) = (ξ'j + σfx, ξ'))gJk(x") (ξ'l + σk(x, ξ')), (4.76)

where σfx, ξ') is the symbol of Afx)/i, real valued and linear in ξ', we have

Γ*M

If we make a change of variable, we can replace /(x, ξ) by

iiίΊi^ί WKi', (4.78)

and write

qo{i, x , ς ) = j e ax aς
T*M

— Us II J K αx ας , ^ . /yj

which gives

; Γ ^~ί[σo(χ,<f/ll£/ll) + t Λ ( : > c ")] / j v n i r v"\ M o m

M
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Since σ0 is the symbol of the operator A0{x"), we can write

qo{t,x\ ξ') = ( π / t γ v | | ξ ' \ \ v J e ' t [ < A o { x " ] > ξ Ί { [ ξ ' { l y + V ( x " ) ] d v o l M ( x " ) . (4.81)
M

If we average over G with respect to the action Rg as in (4.6), we get for the
operator ξ(t) of (4.7)-(4.9) that

ξ(ήeOPSv(G) for ί>0, (4.82)

and its principal symbol is

ξo(t,x',ξ')=(π/t)v/2\\ξ'\\vS j e-^'^'^^'^^-^'yvolix^dg. (4.83)
G M

In light of (4.8)-(4.9), we can read off the asymptotic behavior of the quantum
partition function Zn(t) = dnωt(nλί+δ). In fact,

ωt(λ) = ξ(t, e, λ) ~ ξo(t, e, λ) + ξx(ί, e,λ) + ..., (4.84)

where

$ J ) ^ , (4.85)
G M

and, generally, ξj(t, e, λ) is smooth and homogeneous of degree v —j in λ. We thus
have Theorem A in this context. Let us formally state the result.

Theorem 4.8. Let Zn(t) be the quantum partition function, given by (4.1), (4.2), with

h=\\nλ1+δ\Γ1. (4.86)

Fix ί > 0 . Then, as h-+09 there is an asymptotic expansion

d;1Zn(t)~h-Tao(t) + a1(t)h + a2(t)h2 + ..l, (4.87)

where v = dimM. The coefficient ao(ή is given by the integral formula

j f e-tUι\\-1<Λo(χΊ.
G M

(4.88)

where Γλι is the coadjoint orbit in g* containing λ1EQ* and dμΓλ is the natural
homogeneous probability measure on this orbit.

5. Coherent States and Uniform Parametrices

In this section we will give another derivation of the asymptotic expansion of

hvd; * tmcee-tH» = hvd; ιZn(t). (5.1)

This treatment will be based on a modification of the singular perturbation
method of Sect. 2, and will incorporate the method of coherent projections. Here,
Hh is given as in (1.4) and (1.5), by

Hh=- h2g-1/2(δj + πn(Aj))gJkg1/2(dk + πn(Ak)) ~ ' K ( ^ o ) + V. (5.2)
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As in the introduction, h and n are related by

h = l/n. (5.3)

We choose λίeJ£nC, and set λn = nλv with associated representation πn = πλn, on
a space ί)w of dimension dn = dλn.

We introduce the notion of coherent projections here for more details see
[18, 11]. Let Γλί denote the co-adjoint orbit in cj' containing λv If λ = Ad*gλv

then the orthogonal projection onto the linear span of

πnteΓ'ψnXt' (5'4)

a one dimensional subspace of ϊ)w, is a projection which depends only on λ, and n;
denote it Pn(λ). Also if dμΓ is the unique homogeneous measure on Γλι, of total
mass 1, then, as proved in [18], as an easy consequence of Schur's lemma,

dn J Pn(λ)dμΓ(λ) = Il)n. (5.5)

If / is a function of xeRv with values in ί)n, let

ftξ, λ) = (2π)"v J PB(λ)/(x)e " '*•<#

= Pn(λ)f(ξ) (5-6)

We will construct a uniform parametrix for the initial value problem

δUJ8t=-HhUn, Un\t = 0 = Ihn, (5.7)

such that, in local coordinates,

Un(t)f(x) = dn if a(t, ft, x, ξ, λ y * «/(ξ, λ)dμΓ(λ)dξ. (5.8)

Expression in local coordinates will be patched together via a partition of unity, as
in Sect. 2 we will not dwell further on this in this section. We will specify the
amplitude α(ί, ft, x, £, λ) through a series of transport equations.

In parallel with (2.2), we can write

Vn, (5.9)

where

L = Δ, Xn = 2πn(Aj/n)gJkδk + g~ ^{d^g^Ajή)),

Vn=-V+ iπn{A0/n) + ^ A j ^ A j )

We may as well consider a slightly more general situation, where, in local
coordinates,

L = gjk(x)djdk + bj{x)dj + c{x) (5.11)

has scalar coefficients (gjk still denoting the metric tensor),

Xn = πn(B\x)/n)dj + iπn{B°(x)/n) =XΠ

# + iπn(B°(x)/n), (5.12)

and

Vn=- V+iπJtA0(x)/n) + gik(xKUM)/nK(Ak(x)/n) ( 5 1 3 )



Small h Asymptotics 585

Here Bj(x) and Afx) are given C00 functions of x with values in g.
We introduce the following quantities that will play a role in deriving the

transport equations. Let

X = KB\x), λydΓ{B°{x\ λ} =X* - <B°(x), λ), (5.14)

WΊ = -<>lo(x),λ>, (5.15)

W2=-gjk(x)(Aj(x),λ) <Ak{x),λ), (5.16)

so X=X(x,λ), etc. Following [11] we introduce the quantities

», AeQ. (5.17)

In [11] these functions were shown to describe the quantum fluctuations of (for
example) the isospin in the SU(2) case around its classical limit. We will also need
the following quantities:

Y=ίΦnfλ(B\x))dj-Φn>λ(B°(x))= Y* -ΦΠ f λ(ΰ°(x)), (5.18)

Z^-Φ^.UoW), (5.19)

Z2=- gS\χ)Φnt λ(AJix))ΦΛt λ{Ak(x)), (5.20)

Z 3 = -2g>\x)Φnfλ(AJίx)) <Ah(x)9λ>, (5.21)

so 7 = Yn(x,λ\ etc. Then, for each λeΓλi, we have the identity

-Hh = h2L + h(X + h1/2Y)-V+W1+h1/2Z1 + W2 + hZ2 + h1/2Z3i (5.22)

as long as (5.3) holds.
To derive the transport equations, we apply d/dt + Hh to aeiψ, where ψ = x ξ, as

in Sect. 2. We use the fact that

L(aeίψ)e-ίti)= - | |ξ | | 2α + 2i<ξ, Va> + i{Mψ)a + La9 (5.23)

where

|| ξ | | 2 = ̂ f c ( x ) ^ f c , < £ t;> = Λ ) ^ , (5.24)

and

Mψ = bj(x)djip = bj(x)ξj. (5.25)

Similarly we have

X(aeiψ)e "iψ = i(X * ψ)a +Xa,

Consequently, we require of the amplitude a = a(t, h, x, ξ, λ) that, in an appropriate
sense,

W2a~0. (5.27)
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For awhile, we shall proceed from (5.27) treating h and n as independent variables.
We will resume the identification (5.3) later.

We will produce the amplitude an(t, h, x, ξ, λ) in the form

a\U K x, ξ, λ) ~ Σ *% K x, L λ), (5.28)

where each a" is defined by an inductive process. As in Sect. 2, we want to assign
weights to the terms in the associated formal expansion of (5.27). We assign
weights as follows:

-daj/dt-h2\\ξ\\2aj + ίh{X*ψ)aj + {W1 + W2-V)aj has weight - j , (5.29)

and

2ih\ξ, Vdj} + h2Laj + ih2(Mxp)aj-ίh3/2(Y*ψ)aj-h3/2Yaj

-hXaj-hZ2aΓh
ιl2Z1aj-hll2Z?)aj has weight - j - 1 . (5.30)

Our iterative procedure will consist of requiring the sums of all terms of weight
0, — 1, — 2, etc., to vanish. Requiring the terms of weight 0 to sum to zero leads to
the "first transport equation"

8ajdt = {-h2m2 + ih{χ*ψ)+wi + W2-V)a0; (5.31)

in light of (5.5) it is desirable to take the initial condition

ao\t = o = Pn(λ). (5.32)

Thus

<fo(t, h, x, ξ, λ) = e-
ttix>hξ> λ)Pn(λ), (5.33)

where

Γ{x^λ)=\\ζ\\2-i{X^xp1)-W1-W2^V, Ψl=x-ζ. (5.34)

Note that this exponent is scalar, and independent of n. Part of the reason for
introducing (5.14)—(5.17) was to arrange this. Note that, in case Hh has the form
(5.2), we have

Γ(x, ζ,λ)=K + <A, λ}\\2 + <A0, λ} + V, (5.35)

where

λ>,. . . ,<^ v ,λ». (5.36)

This is the classical Hamiltonian with the momentum ζ and classical isospin λ in
the SU(2) case; see e.g., [11]. For j ^ l , the transport equation becomes

daJ/dt=-ΓaJ + Ωj9 (5.37)

where now

(5.38)j _ ί + h Z 2 a j _ 1 + h Z x a ^ x + h Z 3 a j _ ί .
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Again, the amplitude d] is obtained as

t

anj(t, h,xX,λ) = \e~{t~ s)tΩj(s)ds. (5.39)
o

We have the following analysis of the amplitude α", parallel to but necessarily
more complicated than that of Lemma 2.1.

Lemma 5.1. We can write

a% ft, x, ξ9 λ) = b% ft, x, hξ9 λ)e~tt{x> ft« λ)Pn{λ), (5.40)

and

bnj(t, ft, x, hξ, λ) = bnj(t, ft, x, ω, σ, λ), (5.41)

where b" is smooth in x, λ and a polynomial in ω, σ, and the following arguments:

ftί, ftσ, ̂ 1 / 2 σ Φ n j λ(BJIIV(x)), ft1/2ίΦΠj A(B j n v(x)), ftίΦw, ; ( V x ) ) Φ Λ f A ( B ; V ( X ) ) , (5.42)

for some smooth Bjnv(x\ B'jnv{x) with values in g. Every monomial in b" contains at
least j factors of the form (5.42). Here,

oj = tll2hξ, σ = thξ, (5.43)

and only even powers of ω appear.

Proof As in Lemma 2.1, the proof proceeds by induction on j , the case j = 0
following from (5.33). In view of (5.34), we can write

tf(xJiξ,λ)=\\oj\\2-ί(X*ψ2)-t(Wι + W2-V) (ψ2 = x-σ)

= | |ω | | 2 + κ(x, σ, λ91)

= Γ*(Ux,ω,σ,λ). (5.44)

Now, assume (5.40)-(5.42) true for a". The transformation from a" to an

j+1 is
determined by (5.38) and (5.39). Note that

V}+ ,(ί, K x9 ftξ, λ) = } Ω/s, ft, x, ftξ, λ)ds,
o

where Ω = Ω.e~tΓ. Thus, this transformation can be analyzed as a sum of nine
contributions, from (5.38). It is routine to verify that, if b" has the form (5.41) and
(5.42), then each of these nine contributions respects this form, and throws in an
extra factor from among the five types listed in (5.42). This proves the lemma. Note
in particular that the dependence on n comes entirely from the factors listed in
(5.42).

In order to analyze the trace of (5.8) we will need to understand trBnPn(λ) when
BneEnάί)n is a product of terms listed in (5.42). Also, in order to get good symbol
estimates, we will want to estimate \\BnPn(λ)\\2

is = tΐ{Pn(λ)B*BnPn{λ)) = tΐ{CnPn{λ)l
where Cn = B*Bn is also a product of terms listed in (5.42). We will use the notation

^PB(A)). (5.45)
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The following lemma will provide the needed information. This lemma has som
points in common with lemmas from Sect. 4 of [11], particularly Lemma 4.7 o
[11].

Lemma5.2. For any Bv...,BkeQ,

(*i) •••*,. A ( B * ) » M (5.46

is zero for fc=l and a polynomial of degree ^/c —2 in n~112 for fc^2, whos
coefficients depend smoothly on λ. Furthermore, if h is even (respectively, odd) the,
only even (respectively, odd) powers of n~112 appear.

Proof. The case k = 1 is equivalent to (3.37). The case k~^2 will exploit the identit
(3.21) for the generating function

S l W l )), (5.41

namely that Ψnλι(g)=Ψλι(gf. Note that, if we set, for λεΓA l, λ = Ad*gλ1,

ΨnM) = t™cφιnfa)Pn{λ)) = <<πni9i)>\χ, (5-48

since PH{λ) = πn{g)-1Pn(λ1)πn(g), we have

and hence, for any λeΓλι, geG,

ψnχ(a)=Ψχ{9T. (5.5C

We now set things up to apply (5.50). We have (5.46) equal to

Γk(d/dz1)...(d/dzk)«exp(iΦn λ{zxBJ)...oxp(iΦ^λ(zkBk))y>n,λ^... =,k = o•

(5.51

Now the quantity being differentiated in (5.51) is equal to

e x p ( - i n ι l \ z γ B x + ... + zkBk, 1 » « e x p π > ~ 1 / 2

Z l B J ... expπ^n" ^ V Λ , i •

(5.5ί
It follows from the Campbell-Hausdorff formula that there is a function j
analytic in a neighborhood of the origin in g*, taking values in g, such that, fc
XJ<=Q, \\Xj\\ <δ, expTk(Xv...,Xk) = {expX1)...{expXk). Then (5.52) is equal to

z 1 β 1 + ... +zkBk\λ})
1 / 2 z 1 β 1 , . . . ,n- 1 / 2

Z A))» i ,A]"- (5.5:

by virtue of (5.50). In order to compute (5.46), in light of (5.51) we want to pull th
coefficient of zv ...,zk out of (5.53). Expansion of the right side of (5.53) gives

)" [35(0)=0]

= exp(nlog(l+S(n- 1 / 2z)))
1 / 2 z ) 3 / 3 - ...]). (5.54
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Note that

) = exp(- i<z 1 B 1 + ... zk

Since Tk(X19 ...,Xk)=X1 + ...
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\Xj\\2), we have, with z B = z1Bi

in light of (3.37). In other words, S(z) = O(|z|2). Say

%}(z) = ZjZfEj*(z) (summation convention),

with E3\z) analytic for z near 0 in (Ck. Then (5.54) becomes

(5.55)

where κα(n) is a polynomial in ?z~1/2 of degree ;g|α| —2, with only even (re-
spectively, odd) powers appearing when |α| is even (respectively, odd). Examining
the coefficient of zx ... zk proves the lemma.

Our first application of Lemma 5.2 will be to get symbol estimates for the
amplitudes d] which were given a qualitative analysis in Lemma 5.1. On the space
Endϊ)M, the Hilbert-Schmidt (HS) norm is defined by || T | | 2

S = trace(T*T).

Lemma 5.3. Fix positive T and E. Then, for 0 ̂  t ̂  T and O^h^E we have

\\DiDla%h,xAΛ)\\us^Cjaβtyt2{l + \ξ\)-^e-t^212, (5.56)

and

\\DiDla%h,x,ξ,λ)\\m^C'jaβ{\+\ξ\yil2'^, (5.57)

with Cjaβ and Cjocβ independent of λ and of n.

Proof From Lemma 5.2 we conclude that all terms of the form
ΦΠ > A(β 1)... Φn λ(BkPn(Q) have uniformly bounded Hilbert-Schmidt norms as n->oo.
Thus the estimate (5.56) follows from (5.40)-(5.42), together with the formula (5.34)
for the exponent Γ. The estimate (5.57) follows from (5.56). Note that applying
Dμ

tDl to Dβ

xD«anj increases the order in ξ by at most 2(μ+v) units.

Since we want to compute traces, we will also need to estimate the trace norms
of various symbols. Sufficiently good estimates for our purposes will follow from
the simple observation that

TeEndί)n (5.58)

where dn = dim\)n. Here the trace norm is defined by | |T | | t r = trace(T*T)1 / 2. Recall
that WeyΓs formula for dn is given by (3.2). We deduce that

(5.59)
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where k is the dimension of the maximal torus in G. Thus, if (5.3) is satisfied, we
have

| ^ ( ί , Λ, JC, ^, A)|| ^^

SCjaβ(l + \ξ\f--j-W, if j^2k. (5.60)

Let us consider a partial sum of the expansion (5.28):

A% K x, ξ,λ)=Σ a% K x, ξ9 λ). (5.61)
7 = 0

Form

Wf(t)f(x) = dn \\ A% h, x, ξ, λ)e^m λ)dμΓ(λ)dξ. (5.62)

We see that

Wn(0) = I, (5.63)

by virtue of (5.5), and, with h=ί/n,

(δ/dt-Hh)Wn(t)f(x) = dn N B% h, x, ξ, λ)eiχ-ξPn(λ)f(ξ)dμΓ(λ)dξ, (5.64)

where Bn is a sum of danjdt and expressions of the form (5.39) with a^_ ί replaced by
α"_1 and an

t We see from Lemma 5.3 that

% h, x, ξ, λ)\\m ^ C,aβ{htfe- Hi + \ξ\T | β | e - t | | Λ 5 l | 2 / 2

^+1-W if ^ 2 . (5.65)

We next need a replacement for Lemma 2.3. For an element weC°°(M,ί)π), let
Λs = (l — Δ)s/2, a scalar elliptic operator of order s, and define

\\u\\i=$\\Λsu\\ldx, (5.66)
M

and

{u,v)s=\{Λsu,Λsυ\ndx, (5.67)
M

where || | | ^ and (,)^ denote the norm and inner product on ί)n. Similarly, if
FeC°°(M,EndljJ, let"

M

For starters, we want to estimate the operator norm of

e-'HκH\MX)^Hs{MX), h = ί/n, (5.69)

obtaining an estimate independent of n. We will prove the following.

Lemma 5.4. With h = 1/π, we have the operator norm estimate on (5.69) :

We-^H^S-AJ*, (5.70)

with A and B independent of n (perhaps depending on s).
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Proof. Recall Hh is given by

Vn. (5.71)

Since L is scalar, we can apply Garding's inequality to get

- C 1 | | t / | | s

2 , (5.72)

with C o and Cί independent of n. In order to extend the reasoning used to derive
(2.37), let us note that

Xeg => \\πnQC/ή)\\^C\\X\\, independent of n. (5.73)

This follows from the fact that X{-ΔG)~xl2e0PS°{G\ if we fit all πn inside the
regular representation of G and use (3.3). Another proof of (5.73) is given in [11].
Using this and the form (5.12) and (5.13) of Xn and Vn in (5.71), it is elementary to
derive, at least for s an even integer, that

Re(JJΛκ, u\ = h2 Re(-Lu,u\ + h Re(-Xn% u)a + {- Vnu,u)s

^C0h
2\\u\\2

+1-Kh\\u\\s+1\\u\\s-C2\\u\\s

^-C\\u\\2. (5.74)

Here Co, C 2, X, and C are all positive and independent of n (hence of h). From this,
(5.70) is an immediate consequence, at least if 5 is an even positive integer. The
result follows for all positive real 5, by interpolation, and then for all real s, by
duality.

We now can obtain our energy estimates.

Lemma 5.5. Let vn{t, x) take values in ί)n and satisfy (with h = 1/n)

(d/dt + Hh)vn = gn{t, x), υJO, x) =fn(x). (5.75)

Then, for0^t^T,we have

^(ί,.)llH., (5.76)

where the Hs norm is defined by (5.66), and C1 and C2 are independent of n. One has
similar estimates on

sup\\Dϊυn(t,-)\\HS-2μ. (5.77)
t

Proof In view of DuhamePs principle,

the estimate (5.76) follows directly from Lemma 5.4. Analogous estimates for (5.77)
follow easily. Let us remark we also have the same sort of estimates when gn, fni

and vn take values in Endϊ), given the Hilbert-Schmidt norm.
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We apply this to Un(ή- W£

n(t\ We have

t/n(0)-W?(0) = 0, (5.78)

and

(d/dt + Hh)(Un(t)- Wftt)) = Bi(t), (5.79)

defined by the right side of (5.64). Using (5.68), we see that, for

»,efl ' 1 ( v + 1 ) (M,W, (5.80)

H^(ίKllm<v+.,^C/fe)*'"v"2l|MnllH-i<v+1,, for ί>2v + A, (5.81)

with a similar estimate for ueH'i(v+1)(M,EndhJ; C( is independent of n. Recall

v = dimM. If we take un = δy®l^n, we have

\\un\\H-Uv+l)ύCdl12, (5.82)

so, for O ^ ί ^ i ;

and hence, by Lemma 5.5,

\\{Un{t)- ^ f ( ί ) )^ | | H l ( . t l ,gCX / 2 ( f t tp-"- 2 . (5.83)

By the Sobolev imbedding theorem, we have, for ( > 2v + 4,

s u p \\(Un(t)- ^ f V

y,xeM

sup \\(un(t)-w
y,xeM

In light of (5.58) and (5.59), this gives, for^O^f^i; h=l/n,

\ (5.84)

which in turn yields the important estimate

Things wind down fairly quickly from here. We have only to analyze the traces of
the terms F/(ί) in W^{t)=V^(t)+ ... + J?(ί):

V?{t)f{x) = dn JJ a% % x, ξ, λ)ei^Pn{λ)f{ξ)dμΓ{λ)dξ

= dn N b% K x, hξ9 λ)<Γίf <*•**• λ)eiχ ξPn(λ)f(ξ)dμΓ(λ)dξ. (5.86)

In analogy with (2.47), we have

trace VJ{t) = dn \\\ tr &J(ί, K x, hξ, λ)e " tt(x> hξ> λ)Pn(λ)dμΓ(λ)dξ dx

= dnh~v JJj trftj(ί, ft, x, C, λ)e" ί f ( x ζ' λ)Pn(λ)dμΓ(λ)dζ dx. (5.87)

Now, by (5.41)-(5.42), we see that bj(t,h,x,ζ,λ) is a polynomial in hί/2 = n~112

containing at least hj/2 in each term, and there are an odd number of factors
Φn λ(Bjnv(x)) in a term if and only if the exponent of h is not an integer. In light of
Lemma 5.2, any such term in bnj(t,h,x,ζ,λ) contributes to (5.87) a multiple of
(dnh~v)hJ, where J^j/2 is an integer. In other words,
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t r a c e V?(t) ~ dnh-y(<zJ0(t)hi*ij+1)] + an(t)h[W+1)] + x + . . . ) , (5.88)

which, combined with (5.85), proves our main result:

Theorem 5.6. // Hh is given by (5.9), with h = l/n, we have, as n->oo,

hvd~1 tracee~ίH* ~ao(t) + aγ(t)h + a2(t)h2 + ..., (5.89)

and αo(ί) is given by

ao(ή = d~ι trace V£(t) = ̂  e~tt{x>ζ' λ)dζ dμΓ(λ)d vol(x). (5.90)

Of course, this result coincides with Theorem 4.8. Note that, after the fact, we
can sharpen up (5.85), replacing n-^-"-2~k) by n~v^λ~γ.
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