A Uniform Bound on Trace ($e^{t \boldsymbol{t}}$) for Convex Regions in $\mathbb{R}^{\boldsymbol{n}}$ with Smooth Boundaries

M. van den Berg

Dublin Institute for Advanced Studies, Dublin 4, Ireland

Abstract

We prove a bound (uniform in $t>0$) on trace ($\left(e^{t \Lambda}\right)$ for convex domains in R^{n} with bounded curvature.

1. Introduction

Let D be a bounded domain in R^{n} with a smooth boundary ∂D. Let $\lambda_{1}>\lambda_{2}$ $\geqq \lambda_{3} \geqq \ldots$ be the eigenvalues of the eigenvalue problem

$$
\begin{equation*}
\Delta \phi=\lambda \phi \quad \text { on } D, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi=0 \quad \text { on } \quad \partial D . \tag{2}
\end{equation*}
$$

It is well known that

$$
\begin{equation*}
Z(t)=\operatorname{trace}\left(e^{t \Lambda}\right)=\sum_{j=1}^{\infty} e^{t \lambda_{j}} \tag{3}
\end{equation*}
$$

exists for all $t>0$, and that $Z(t)$ has an asymptotic expansion [1] of the form

$$
\begin{equation*}
Z(t)-\frac{1}{(4 \pi t)^{n / 2}} \cdot \sum_{k=0}^{K} c_{k} t^{k / 2}=O\left(t^{(K-n+1) / 2}\right), \quad t \rightarrow 0 . \tag{4}
\end{equation*}
$$

The coefficients c_{0}, c_{1}, and c_{2} have been calculated by McKean and Singer [4]. They depend on the geometrical properties of the domain D. For example

$$
\begin{equation*}
c_{0}=|D|=\text { volume of } D, \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{1}=-\frac{\sqrt{\pi}}{2}|\partial D|=-\frac{\sqrt{\pi}}{2} \cdot \text { surface area of } \partial D . \tag{6}
\end{equation*}
$$

In the special case of a two-dimensional domain $(n=2)$ the coefficients $c_{0}, c_{1}, \ldots, c_{6}$ are known [2-7].

On the other hand it was shown [8] that for convex domains in R^{n} there exists a bound on $Z(t)$ which is uniform in t :

$$
\begin{equation*}
\left|Z(t)-\frac{|D|}{(4 \pi t)^{n / 2}}\right| \leqq \frac{e^{n / 2} \cdot|\partial D|}{2 \cdot(4 \pi t)^{(n-1) / 2}}, \quad t>0 \tag{7}
\end{equation*}
$$

Bounds like (7) are useful in quantum statistical mechanics [8, 9]. In this paper we will derive such a uniform bound on $Z(t)$ taking the first two terms of its asymptotic expansion into account. The main result is the following

Theorem. Let D be a bounded convex domain in $R^{n}(n=2,3, \ldots)$ with a boundary ∂D such that at each point x of ∂D the curvature is bounded from above by $\frac{1}{R}(R>0)$, then for all t

$$
\begin{equation*}
\left|Z(t)-\frac{|D|}{(4 \pi t)^{n / 2}}+\frac{|\partial D|}{4 \cdot(4 \pi t)^{(n-1) / 2}}\right| \leqq \frac{|\partial D| \cdot t}{(4 \pi t)^{n / 2} R}\left\{b_{1}(n)+b_{2}(n) \log \left(1+\frac{R^{2}}{t}\right)\right\} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{1}(n)=\pi^{1 / 2} \cdot n\left(n^{3 / 2}+\frac{1}{2}\right), \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{2}(n)=n-1 . \tag{10}
\end{equation*}
$$

We see from (8) that the bound is small compared to the second term in the asymptotic expansion of $Z(t)$ for $\frac{t}{R^{2}}$ much smaller than one.

2. Pointwise Estimates on the Heat Kernel

In order to prove the theorem we need some pointwise estimates on the heat kernel $K_{D}(x, y ; t)$ corresponding to the operator $\Delta-\frac{\partial}{\partial t}$. By means of the Feynman-Kac formula we see that $K_{D}(x, y ; t)$ is increasing in the domain D. Exploiting this we are able to prove the following lemmas.

Lemma 1. Let D be a domain in R^{n} with a smooth boundary ∂D, and let x be a point in D with distance $\partial(x)$ to ∂D. Then

$$
\begin{equation*}
\left|K_{D}(x, x ; t)-\frac{1}{(4 \pi t)^{n / 2}}\right| \leqq \frac{2 n}{(4 \pi t)^{n / 2}} \exp \left[-\frac{\partial^{2}(x)}{n t}\right], \quad t>0 . \tag{11}
\end{equation*}
$$

For the proof we refer to [10].
Lemma 2. Let D be a convex domain in R^{n}, then for x in D

$$
\begin{equation*}
K_{D}(x, x ; t) \leqq \frac{1}{(4 \pi t)^{n / 2}}\left(1-\exp \left[-\frac{\partial^{2}(x)}{t}\right]\right), \quad t>0 \tag{12}
\end{equation*}
$$

This inequality appears in Kac's paper [3].

Lemma 3. Let D be a convex domain in R^{n} with a boundary ∂D such that at each point of ∂D the curvature is bounded from above by $\frac{1}{R}(R>0)$, then for all $x \in D$ such that $\varepsilon \leqq \partial(x) \leqq R$

$$
\begin{align*}
K_{D}(x, x ; t) \geqq & \frac{1}{(4 \pi t)^{(n-1) / 2}}\left(1-2(n-1) \exp \left[-\frac{\varepsilon R}{t(n-1)}\right]\right) \\
& \cdot \frac{1}{R-\varepsilon} \sum_{k=1}^{\infty} \exp \left[-\frac{t \pi^{2} k^{2}}{4(R-\varepsilon)^{2}}\right]\left(\sin \frac{\pi k}{2} \cdot \frac{\partial(x)-\varepsilon}{R-\varepsilon}\right)^{2} . \tag{13}
\end{align*}
$$

Proof. For all $x \in D$ such that $\varepsilon<\partial(x)<R$ we can find a cylinder C in R^{n} with radius $(\varepsilon R)^{1 / 2}$ and an axis A_{C} with length $2(R-\varepsilon)$ such that:

1. $x \in C$,
2. $C \subset D$,
3. $x \in A_{C}$ and x has a distance $\partial(x)-\varepsilon$ to the endpoint of the axis.

By the monotonicity of $K_{D}(x, x ; t)$ we obtain

$$
\begin{equation*}
K_{D}(x, x ; t) \geqq K_{\odot}(0,0 ; t) \cdot \frac{1}{R-\varepsilon} \sum_{k=1}^{\infty} \exp \left[-\frac{t \pi^{2} k^{2}}{4(R-\varepsilon)^{2}}\right]\left(\sin \frac{\pi k}{2} \cdot \frac{\partial(x)-\varepsilon}{R-\varepsilon}\right)^{2}, \tag{14}
\end{equation*}
$$

where $K_{\odot}(0,0 ; t)$ is the heat kernel corresponding to $\Delta-\frac{\partial}{\partial t}$ with zero boundary conditions on a ($n-1$)-dimensional sphere \odot with radius $(\varepsilon R)^{1 / 2}$, evaluated at the centre of \odot.

By Lemma 1 we find

$$
\begin{equation*}
K_{\odot}(0,0 ; t) \geqq \frac{1}{(4 \pi t)^{(n-1) / 2}}\left(1-2(n-1) \exp \left[-\frac{\varepsilon R}{t(n-1)}\right]\right) \tag{15}
\end{equation*}
$$

which proves Lemma 3.
If we write $K_{D}(x, y ; t)$ in its eigenfunction expansion

$$
\begin{equation*}
K_{D}(x, y ; t)=\sum_{j=1}^{\infty} e^{t \lambda_{j}} \phi_{j}(x) \phi_{j}(y) \tag{16}
\end{equation*}
$$

[where $\phi_{1}(x), \phi_{2}(x), \phi_{3}(x), \ldots$ is the orthonormal set of eigenfunctions of the problem (1), (2)], we see that

$$
\begin{equation*}
Z(t)=\int_{x \in D} K_{D}(x, x ; t) \cdot d x \tag{17}
\end{equation*}
$$

3. The Proof

In order to prove the theorem we will make extensive use of Steiner's theorem (4.3 of [11]) which we will state here in a modified form.

Theorem (Steiner). Let D be a convex domain in R^{n} with volume $|D|$, a boundary ∂D with surface area $|\partial D|$ and at each point of ∂D a curvature bounded above by $\frac{1}{R}(R>0)$. Let D_{y} be a family of regions contained in D with a surface δD_{y} parallel
to ∂D at distance y, then

$$
\begin{gather*}
\left|D_{x}\right|=|D|-\int_{0}^{x}\left|\partial D_{y}\right| d y, \quad 0 \leqq x \leqq R \tag{18}\\
\left|\partial D_{x}\right| \geqq|\partial D| \cdot\left(1-\frac{(n-1) x}{R}\right) \tag{19}\\
\left|D_{x}\right| \leqq\left|D_{y}\right|, \quad\left|\partial D_{x}\right| \leqq\left|\partial D_{y}\right|, \quad x \geqq y \tag{20}
\end{gather*}
$$

and the curvature at each point of D_{y} is bounded above by $(R-y)^{-1}$ for all $0 \leqq y<R$. Proof of Theorem. If we integrate (11) with respect to x over D we get

$$
\begin{equation*}
\left|Z(t)-\frac{|D|}{(4 \pi t)^{n / 2}}\right| \leqq \frac{n^{3 / 2} \cdot|\partial D|}{2 \cdot(4 \pi t)^{(n-1) / 2}} \tag{21}
\end{equation*}
$$

Notice that (21) is a sharper bound than (7) for $n=3,4, \ldots$. From (21) it follows that

$$
\begin{equation*}
\left|Z(t)-\frac{|D|}{(4 \pi t)^{n / 2}}+\frac{|\partial D|}{4 \cdot(4 \pi t)^{(n-1) / 2}}\right| \leqq \frac{|\partial D| \cdot t}{(4 \pi t)^{n / 2} \cdot R} \cdot \pi^{1 / 2} \cdot n\left(n^{3 / 2}+\frac{1}{2}\right), \tag{22}
\end{equation*}
$$

for all $t \geqq \frac{R^{2}}{n^{2}}$.
By Lemma 2, (18) and (19) we obtain an upper bound on $Z(t)$:

$$
\begin{align*}
Z(t) & \leqq \frac{|D|}{(4 \pi t)^{n / 2}}-\frac{1}{(4 \pi t)^{n / 2}} \int_{\{x \in D: 0 \leqq \partial(x) \leqq R\}} \exp \left[-\frac{\partial^{2}(x)}{t}\right] d x \\
& =\frac{|D|}{(4 \pi t)^{n / 2}}-\frac{1}{(4 \pi t)^{n / 2}} \int_{0}^{R} \exp \left(-\frac{y^{2}}{t}\right)\left|\partial D_{y}\right| d y \\
& \leqq \frac{|D|}{(4 \pi t)^{n / 2}}-\frac{|\partial D|}{4 \cdot(4 \pi t)^{(n-1) / 2}}+\frac{|\partial D|}{(4 \pi t)^{n / 2}}\left\{\int_{R}^{\infty} \exp \left(-\frac{y^{2}}{t}\right) d y+\frac{n-1}{R} \int_{0}^{R} \exp \left(-\frac{y^{2}}{t}\right) y d y\right\} \\
& \leqq \frac{|D|}{(4 \pi t)^{n / 2}}-\frac{|\partial D|}{4 \cdot(4 \pi t)^{(n-1) / 2}}+\frac{(n-1)|\partial D| \cdot t}{(4 \pi t)^{n / 2} \cdot 2 R} . \tag{23}
\end{align*}
$$

Let

$$
\begin{equation*}
A(t) \equiv \int_{\{x \in D: z \leqq \partial(x) \leqq R\}} K_{D}(x, x ; t) d x, \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
B(t) \equiv \int_{\{x \in D: \partial(x) \geqq R\}} K_{D}(x, x ; t) d x, \tag{25}
\end{equation*}
$$

so that $Z(t) \geqq A(t)+B(t)$. We use Lemma 1 to obtain a lower bound on $B(t)$:

$$
\begin{align*}
B(t) & \geqq \frac{1}{(4 \pi t)^{n / 2}}\left\{\left|D_{R}\right|-2 n|\partial D| \int_{R}^{\infty} \exp \left(-\frac{y^{2}}{n t}\right) d y\right\} \\
& \geqq \frac{1}{(4 \pi t)^{n / 2}}\left\{\left|D_{R}\right|-n^{2}|\partial D| \cdot \frac{t}{R}\right\} . \tag{26}
\end{align*}
$$

For $A(t)$ we find

$$
\begin{align*}
A(t) \geqq & \int_{\varepsilon}^{R}|\partial D| \cdot K_{\odot}(0,0 ; t) \cdot \frac{1}{R-\varepsilon} \sum_{k=1}^{\infty} \exp \left[-\frac{t \pi^{2} k^{2}}{4(R-\varepsilon)^{2}}\right]\left(\sin \frac{\pi k}{2} \cdot \frac{y-\varepsilon}{R-\varepsilon}\right)^{2} d y \\
& -\int_{\varepsilon}^{R}\left(|\partial D|-\left|\partial D_{y}\right|\right) \frac{1}{(4 \pi t)^{n / 2}} \cdot d y . \tag{27}
\end{align*}
$$

The second term in (27) is bounded from below by

$$
\begin{equation*}
-\frac{1}{(4 \pi t)^{n / 2}}\left(|\partial D| \cdot R-|D|+\left|D_{R}\right|\right), \tag{28}
\end{equation*}
$$

since $\left|\partial D_{x}\right| \leqq|\partial D|$.
The first term in (27) is bounded from below by

$$
\begin{align*}
& \frac{1}{(4 \pi t)^{(n-1) / 2}}\left(1-2(n-1) \exp \left[-\frac{\varepsilon R}{t(n-1)}\right]\right) \cdot \frac{|\partial D|}{2} \cdot \sum_{k=1}^{\infty} \exp \left[-\frac{t \pi^{2} k^{2}}{4(R-\varepsilon)^{2}}\right] \\
& \geqq \frac{1}{(4 \pi t)^{(n-1) / 2}}\left(1-2(n-1) \exp \left[-\frac{\varepsilon R}{t(n-1)}\right]\right) \cdot \frac{|\partial D|}{2} \cdot\left(\frac{R-\varepsilon}{(\pi t)^{1 / 2}}-\frac{1}{2}\right) \tag{29}
\end{align*}
$$

for all $\varepsilon \leqq R$ and

$$
\begin{equation*}
\exp \left[-\frac{\varepsilon R}{t(n-1)}\right]<\frac{1}{2(n-1)} \tag{30}
\end{equation*}
$$

Combining (26), (28), and (29) we have

$$
\begin{equation*}
Z(t) \geqq \frac{D}{(4 \pi t)^{n / 2}}-\frac{|\partial D|}{4 \cdot(4 \pi t)^{(n-1) / 2}}-\frac{|\partial D|}{(4 \pi t)^{n / 2}}\left\{\frac{n^{2} t}{R}+\varepsilon+2(n-1) R \exp \left[-\frac{\varepsilon R}{t(n-1)}\right]\right\}, \tag{31}
\end{equation*}
$$

subject to (30). Choose

$$
\begin{equation*}
\varepsilon=\frac{t(n-1)}{R} \cdot \log \left(\frac{2 R^{2}}{t}\right), \quad \text { for } \quad t \leqq \frac{R^{2}}{n^{2}} . \tag{32}
\end{equation*}
$$

Combining (31)-(33) we get for $t \leqq \frac{R^{2}}{n^{2}}$:

$$
\begin{equation*}
\left|Z(t)-\frac{|D|}{(4 \pi t)^{n / 2}}+\frac{|\partial D|}{4 \cdot(4 \pi t)^{(n-1) / 2}}\right| \leqq \frac{|\partial D| \cdot t}{(4 \pi t)^{n / 2} \cdot R}\left\{\frac{3}{2}(n-1)+n^{2}+(n-1) \log \left(\frac{2 R^{2}}{t}\right)\right\} . \tag{33}
\end{equation*}
$$

But $\log \frac{R^{2}}{t}<\log \left(1+\frac{R^{2}}{t}\right)$ for all $t>0$, and the theorem follows since

$$
n^{2}+(n-1)\left(\frac{3}{2}+\log 2\right) \leqq \pi^{1 / 2} n\left(n^{3 / 2}+\frac{1}{2}\right), \quad n=2,3, \ldots
$$

References

1. Minakshisundaram, S.: Eigenfunctions on Riemannian manifolds. J. Indian Math. Soc. 17, 158-165 (1953)
2. Pleyel, A.: A study of certain Green's functions with application in the theory of vibrating membranes. Ark. Mat. 2, 553-569 (1954)
3. Kac, M.: Can you hear the shape of a drum? Am. Math. Monthly 73, 1-23 (1966)
4. McKean, H.P., Singer, I.M. : Curvature and the eigenvalues of the Laplacian. J. Diff. Geom. 1, 43-69 (1967)
5. Louchard, G.: Mouvement brownien et valeurs propres du Laplacien. Ann. Inst. Henri Poincaré B4, 331-342 (1968)
6. Stewartson, K., Waechter, R.T.: On hearing the shape of a drum: further results. Proc. Camb. Philos. Soc. 69, 353-363 (1971)
7. Smith, L. : The asymptotics of the heat equation for a boundary value problem. Invent. Math. 63, 467-493 (1981)
8. Angelescu, N., Nenciu, G.: On the independence of the thermodynamic limit on the boundary conditions in quantum statistical mechanics. Commun. Math. Phys. 29, 15-30 (1973)
9. van den Berg, M.: On condensation in the free boson gas and the spectrum of the Laplacian. J. Stat. Phys. 31, 623-637 (1983)
10. van den Berg, M.: Bounds on Green's functions of second-order differential equations. J. Math. Phys. 22, 2452-2455 (1981)
11. Guggenheimer, H.W.: Differential geometry. New York: Dover 1977

Communicated by A. Jaffe
Received July 19, 1983

