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Abstract. We consider a random walk on the one-dimensional semi-lattice Z +

= {0,1,2,...}. We prove that the moving particle walks mainly in a finite
neighbourhood of a point depending only on time and a realization of the
random environment. The size of this neighbourhood is estimated. The limit
parameters of the walks are also determined.

1. Introduction. Formulation of the Problem and Results

Let us consider a sequence <s/ = {(q(x),r(x),p(x)); xeΈ + = {0,1,2,...}} of random
three-dimensional vectors whose components are non-negative, and q(0) = 0, q(x)
+ r(x) + p(x) = l for any xeΊL+. We shall call such a sequence a random environ-
ment. A random process (x(ί) :teZ+) will be called a random walk in the random
environment srf if the conditional distribution of (x(t): teZ+) under the condition
that si is fixed is the distribution of the Markov chain whose phase space is Z + ,
initial state is 0, and probabilities of transitions from x to x— 1, x, x + 1 are q(x),
r(x\ p(x), respectively; xeZ+. We shall denote by P(-\si) probabilities of events
depending on random walks if a realization of the random environment si is fixed.
Probabilities of events calculated without the assumption that the random
environment si is fixed (including events connected with any properties of the
random environment) will be denoted by P( ).

We assume that the random vectors {q(x\ r(x), p(x)) are mutually independent
for different xeZ+, {q{x\ p(x)) are identically distributed for x ^ l , and r(x) are
identically distributed for xeZ + . Moreover, we assume that the sequences of
random variables (r(x) :xeZ+) and (q(x)/p(x): x ^ 1) are independent,
Eln(q(x)/p(x)) = 0, E(\n(q(x)/p(x)))2 = σ2e(0, + oo), E(l - r ( x ) ) " 1 < + oo,
P{r(x)>0}>0. Sinai [1] proved that for random walks in similar random
environments with the phase space TL = {..., —1,0, 1,2,...} one can construct
random variables m(t) (teZ+) depending only on t and a random environment
such that x(t) — m(t) = o(ln21) (in probability) as ί-> + oo, and there exists the limit
distribution of m(ί) (lnί)~2 as t-> + oo which coincides with that of x(ί) (lnί)~2. An
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analogous statement can be proved in our case too (see [2]). The results of the
papers [1] and [2] mean that the conditional distribution of x(t) under the
condition that an environment si is fixed is concentrated in a small (with respect
to ln2ί, t-> + oo) neighbourhood of m{t) (depending on a realization of the
environment). We shall strengthen these results under the assumptions formulated
above in the following way.

Theorem. There exists a random process m(ί) (teZ+) depending only on si, for
which

(i) for any yelR there exists

lim P{x(t)-m(t)Sy}=F(y),
ί-> + oo

where F is a distribution function;
(ii) the finite-dimensional distributions of the processes (x(t + u) — m(t):ueZ)

converge as ί-> 4- oo to ones of a stationary random process (y(u) :ueΈ) (for
definiteness we put x(t) = O for t<0) the environment is not fixed;

(iii) if r(x) = const<l and ln{q{x)/p(x)) = σ ζ(x\ where Eξ(x) = O9 Eξ2(x) = ί9

σ > 0, Fσ is the corresponding distribution function from assertion (i) of the theorem,
then

σ(/) (),

where G is a distribution function.

The assertions (i) and (ii) of the theorem mean that the moving particle walks
mainly in a finite neighbourhood of m(ί) if t is very large assertion (iii) allows us to
estimate the size of this neighbourhood: its value is as large as
(E(\n(q(x)/p(x)))2yK

The limit distributions F and G and the random process (y(u) :ueΈ) will be
constructed in Sect. 2. The process y is a random walk in a random environment
with the phase space Έ and non-independent non-stationary with respect to
space translation transition probabilities, F is the one-dimensional distribution of
y(u\ the distribution G is a functional of two independent Bessel processes.

2. Main Constructions

Let us denote η(z) = \n(q(z)/p(z)\ s(z)= £ η(ι)9 z = l , 2 , 3 , . . . ; s(0) = 0; s(x)
0<i^z

= {x- z)s(z +1) + (z + 1 - x)s{z) if z ̂ x < z +1. Random variables η(z) (z = 1,2,...)
are mutually independent and identically distributed. Let us introduce random
variables σ(0) = 0, σ(k) = min {z : z > σ(k — 1), s(z) < s{σ(k — 1))} which are strict
descending ladder epochs for s(z), (x(k) = ma.x{s(z) — s(σ(k)):σ(k)^z^σ(k+l)},
keZ+ n(y) = min{k:a(k)^y}, y>0; v(ί) = rc(mf+ (lnί)1/2), m(t) = σ(v(ί)). The point
m(t) is the nearest to 0 local minimum of the function s(x) with properties: s(x)
>s(m(ή) for 0^x<m(t) and there exists at>m(t) such that s(m(ή)^s(x)^s(at)
for m(t)^x^at, s(at)-s(m(t))^\nt + (\nt)1/2.

Let us denote τ(z) = min{ί :x(t) = z}.
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Lemma 1. For any ε > 0

lim

Proof. See the appendix.

Let us describe the random environment in the neighbourhood of m(t). Here
and later we shall describe it in terms of the function s(x): it is clear that the
realization of the environment J / can be reconstructed if one knows the realization
of s(x) and the realization of the random variables r(z) (zeΊL+) which do not
depend on the random function s(x).

Let us consider a measurable space (X, gβ) which is the union of the measurable
spaces (IRn,@n\ n = l , 2 , . . . , where 08n is the σ-field of Borel subsets of W. Let us
introduce the operation of sticking A : X x X -»X if v = (x0,..., xn) e IR"+1,
w = ( y o , , } ϋ e I R m + ; L > t h e n vAw = {xo,...,xn_v χ n + y p , χ n + y v ..,χn + y m )
eW + m+1. Also we introduce the operation of turning: if v = (xo,...,xn)eW+1,
then the turned vector v is vf = (xo + (xn-xn_i): i = 0, ..., n ) e R n + 1 . Let us
put Sk = (s{σ{k) + i) - s{σ{k)): 0 g i ̂  σ{k +1) - σ(/c))eX.

Lemma 2. Sk (keΈ+) are independent identically distributed random elements of
(X, J*). The distribution of Sk coincides with the distribution of part of the realization
of s(z) (zeΈ + ) from z = 0 to the first negative component.

Proof The statement of Lemma 2 is a simple corollary of the strict Markov
property of s{z) (zeΈ+).

Let us denote N(A) = min{z:z^l,s(z)eA}. In view of Lemma 2 and the
construction of m(t\ it is easy to demonstrate that the distribution of θt(k)
= s(m(t) + k) — s(m(t)) (keΈ+) and the conditional distribution of s(k) (keZ+) under

the condition that JV([lnί + (ln£)1/2, + oo))< JV((- oo,0)) are the same.
The investigation of the distribution of θt(k) (keZ+) is based on the following

Lemma 3. Let x(t) (teZ+) be a homogeneous Markov chain whose phase space is Y,
an initial state is xoeA Q Y, and transition probabilities for xeY are p(x, dy). Assume
that Y\A = B\JC, BnC = &, P{τB<τc}>0, where τB = min{t^O :x(t)eB},
τ c = min{ί^0 :x(t)eC}. Then the conditional distribution of (x(0), ...,x(τβ)) under
the condition that τB<τc and the distribution of (y(0), ...,y(τβ)) are the same, where
y(t) is a homogeneous Markov chain whose phase space is Y\C, an initial state is
x0, and transition probabilities for xeA are p(x,dy) = p(x,dy) Py{τB<τc} χγχc(y)
'(PχiτB<τc})~1' n e r e Pχ(') denotes the distribution of the initial Markov chain
whose initial state is x.

One can easily prove this lemma by means of simple calculations.

Lemma 4. Finite-dimensional probability distributions of θt(z) (zeZ+) converge to
ones of θ(z) (zeΈ+) as ί-̂  + oo, where θ(z) is a homogeneous Markov chain whose
phase space is [0, + oo), the initial state is 0, and transition probabilities for
xe[0,+oo) are p(x,dy) = dHx(y) f(y)-(f(x)Γί-χι^0)(y)- Here Hx(y) = H(y-x),
H(x) is the distribution function of ln(q(x)/p{x)\ f(x)= lim n P{N{[n, +00))

«->• + 00

<JV((- 00, -x))}. Moreover, the distribution of (0,(0), ...9θt(N([n, + oo)))) is ab-



494 A. O. Golosov

solutely continuous with respect to the distribution of (0(0), . ..,0(iV([rc, + GO)))), and
lim P{\ψt— l | > ε } = 0 5 where ψt is the corresponding Radon-Nikodym derivative,

t~> + 00

P{ } is the distribution of 0(z) (zeΈ+\ and ε is any positive number.

Proof. See the appendix.

Let us consider a sequence S l 5 S 2 , ...,SW,... of independent identically distri-
buted random elements of X whose distribution coincides with one of
(s(0), ...,s(JV([O, +oo)))). Let us construct a random sequence 0(z) (zeZ + ) in the
following way: θ = (SJΛ(S2)'Λ(S3yΛ... [i.e. 0= lim Sk9 where Θ^S^^SJ),

θγ ={SJ, and the limit is taken in the sense of the convergence of coordinates].

Lemma 5* The distributions of the random functions θ and θ coincide.

Proof See the appendix.
Before describing an asymptotic behaviour of the random environment to the

left of m(t) [asymptotic properties of the random environment to the right of m(t)
are described in Lemmas 4 and 5] we define infinitely deep well. By definition it is a
random function 0(z) (zeΈ) with the following properties:

(i) θ(z)^0(zeΈ\θ(0) = 0;
(ii) (0(z): z ̂  0) and (0(z): z S 0) are independent random functions

(in) (θ(z) :z^0) is the homogeneous Markov chain defined in Lemma 4;
(iv) (0(0), 0(—1), 0( —2),...) is a homogeneous Markov chain with the phase

space [0, + oo), initial state 0 and transition probabilities p(x,dy) = dfϊx(y) f(y)
*(/W)~1#Z(o +oo)0;)> where Hx(y) = H(y — x\ H(x) is the distribution function of
(-\n(q(z)/p(z))l f(x)= lim n P{N((- oo, - n ] ) < N ( [ x , +αo))} as x>0; /(0)

=7(+o).
Lemma 6. Let Sk(kEΈ+) be independent identically distributed random elements of
X whose distribution coincides with one of (s(0), 5(1), ..., s(N(( — oo, 0)))). Put

Rk = (0,Xn_χ-Xn9 Xn-2-Xn>'~>Xl-Xn>-χn) lf S f c = ( 0 , X χ , ..., Xπ), and

θ*=R0ΛRίΛ..., then the distributions of 0* and (θ( — k) :keZ+) coincide.

Proof of lemma is analogous to that of Lemma 5.
Lemmas 5 and 6 give that lim 0(z) = + oo (this explains the term "infinitely

|z|-» + oo

deep well"). Using these lemmas and the properties of ladder epochs and ladder

heights (see [3, pp. 395 and 575]), one can easily check that lim 0(z) |z |~ 1 / 2 + ε

= +oo for any ε > 0 (with probability 1). It follows that the function g(z)
= (exp(-0(z)) + exp(-0(z-l))) ( l-r / (z))~ 1 5'~1 (zeΊL) is the invariant distri-
bution of the one-dimensional random walk in the environment stf' = ({q'(z\ r\z\
p\z))\ zeΈ), where r'(z) are independent identically distributed random variables
not depending on (0(z): zeΈ\ whose distribution coincides with that of r(z) (zeZ+)
for the initial random environment; using the equalities ^/(z) + r/(z) + p/(z) = l,
ln(^/(z)/p/(z)) = 0(z)-0(z- 1), one can reconstruct p\z) and qf{z) {ZEZ\ if (0(z) :zeZ)
and (r\z): zeZ) are known.
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This property of the random walk in the typical (with probability 1) realization
of the random infinitely deep well implies that this is an ergodic Markov chain,
and the transition probabilities converge to the invariant probabilities as £-• + oo.
Let (y(u):ueΈ) be a random process such that the conditional distribution of
(y(u) \UE7L) under the condition that the realization of the random environment si1

is fixed is the distribution of the stationary ergodic Markov chain which is the
random walk in this realization of the environment s$'. The random process y(u) is
the limit process of the theorem.

Let us describe now the random environment to the left of m(ί). To obtain this
environment we must take the random elements of X :S0,Sv ... (see Lemma 6)
until the first element Sk such that max{x :i = 0,...,/} ^lnί-f (Inί)1 / 2, where
Sk = (χ0, ...,xj). The environment to the left of m(t) is described by means of the
function R0ΛRίΛ...ΛRk_v where the correspondence between S and Rt is given
in Lemma 6.

3. Proof of the Theorem

To prove (ii) of the theorem it is sufficient to check that

P{x(t + u + ί)-rn(t) = ki:OSί^n}^P{y(u + ί) = kί:OSί^n} (3.1)

as ί^ + oo for any ueTL, n^O and k = (fe0, . . . , l c J e F + 1 . We shall demonstrate

that the expectation of the random variable Ct(u,li) = P{x(t + u + i) — rn(t) = ki :0
converges to that of the random variable ζ(k) = P{y(u + ί) = ki :0

Denote a(t) = mm{z>m(t):s(z) — s(m(t))^\nt + (lnt)1/2}. Let us consider a new
random environment ^ ( ί ) : if O^z^α(ί), then the transition probabilities q(z),
r(z), p{z) are the former ones, but if z = a(t) + 1, then put q(z) = l — r(z\ p(z) = 0. In
other words we place a reflecting barrier at a(t) + 1 . One can easily check that Sx(ί)
= (s(m(ή -z)- s(m(ή): 0 ̂  z ̂  m(t)) and S2(ί) = (s(z) - s(m(ή): m(t) S z ̂  a(tj) are in-
dependent elements of X.

Let us estimate JP{τ(α(ί)+l)<3ί| «*?/}.

Lemma 7. For any z ̂  1

Proof. Let jeZ + , 0^j<z. Denote by α the number of steps fromj + 1 to the left
during [0,τ(z)), i.e. ot=#{t:teZ+, 0^ί<τ(z), x(ί)=; + l, x(t+l)=j}. Put
= P{τ(z)<τ(J)\x(O)=j+l;^}. It is easy to demonstrate that the estimate
^exp(s(j) — s(z— 1)) obtained by Sinai [1] for the case when r(z) = 0 is also true in
our situation. The inequalities τ(z) ^ α and

give that P{τ(z)<ΛΓ|j/}^P{α<iV|^}^AΓ /c(j/)^iV exp(sO')-s(z-1)).
Therefore P{τ(z)<N|^}^iV exp(min{sO')-s(z-l):O^j<z}). Q.E.D.

Using this lemma we can estimate

^3ί exp(-(s(α(ί))-s

= 3exp(-(lnί)1/2)-^0 as
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Denote ζt(u9k) = P{x(t + u + i)-m{t) = ki:O^iSn\j/ί{t)}, where k = (/c0, ...,/cJ,
P(-\s/1(t)) is the distribution of the random walk in the new random environment
s^γ{i). From the estimate

it follows that

\ζ't(u, k) - ζt(u, k)| g 3 exp( - (Inί)1/2) (3.2)

for any u^t (t>n).
Let us consider the random walk z(u) (u ̂  0) in the infinitely deep well [i.e. in

the environment jrf' = ({θ(z)},{r'(z)}) described in Sect. 2] such that z(0) = 0.
Denote

Let us construct a new random environment j/'(ί) starting from the infinitely
deep well: place reflecting barriers in b(t) + l, where

and in (— d(t)), which can be found in the following way: let Sk = (x0,..., x^) be the
first element in the sequence (S.: ieZ+) (see the formulation of Lemma 6) such that

Then

One can easily check that

and

are independent elements of X, and moreover the distributions of Θ^ή and Sx(ί)
(for the environment j/x(ί)) coincide, the distribution of 52(ί) is absolutely
continuous with respect to one of Θ2(ή (see Lemma 4), and the corresponding
Radon-Nikodym derivative ψt converges to 1 (in probability) as t-+ + oo.

Denote ziu) the position of the randomly moving particle at the moment of
time u in the environment s$'{t) the initial position of the particle is 0. Put κ't(u, k)
= P{z\u + i) = fc.: 0 ^ i^ w|«β/'(ί)}, and denote (g't(z): zeZ) the invariant distribution
of this finite Markov chain.

Let ε > 0 be fixed. From the ergodicity of the process y(u) (when the
environment is fixed), it follows that the one-dimensional distribution of z(u)
converges to the invariant distribution g = (g(z): zeZ), where g is a function of the
environment. Consequently there exists wo(ε) such that E\\κ(u) — g\\1<ε for
w^wo(ε), where κ(u) = (κ(u, k) :keZ), IH^ is the norm in /1(Z). It is easy to
demonstrate that for any large enough ί £||/c(wo(ε)) — κ:|(uo(ε))||1<ε, where κ't(u)
= {κ't{% k): ke Έ). Therefore
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for this ί. One can check that the inequality E\\g — g't\\ί<ε holds for all sufficiently
large ί from this inequality it follows that

if t is large enough. But || κ't(u) - g't || t ^ || κ't(u0(ε)) - g't || x for u ̂  uo{ε) because g't is the
invariant distribution for the corresponding Markov chain. Therefore
E||κ't(u)-g't\\1<3ε for u^uo(ε) and sufficiently large ί. This gives E\\κ't{u)-g\\1

<4ε, and

if u ̂  wo(ε) and ί is large enough, and

\Eκ't(u,k)-Eζ(k)\<4ε

for these u and ί. We have

ζ't(u,k)= f C;(̂ ;

where

The correspondence between the distributions of the random environments
and srfγ{t) mentioned above gives that

\Eζ't(S u, k) - £/<(ί + « - ^ k)| < s

for 0 ^ ^ ̂  1/ +1 and sufficiently large ί. Using this estimation and Lemma 1 we
obtain

(3.3)

if t is large enough and u ̂  — ί/2. From the inequalities (3.2) and (3.3) it follows that

\Eζt(u, k) - Eζ(k)\ < 6ε + 3 exp( - (In t)m) < Is

for sufficiently large t and MG[ —ί/2, ί]. Therefore ££ί(w>k)->EC(k) a s -̂
uniformly on we [ — ί/2, ί], and (3.1) holds. The assertions (i) and (ii) of the theorem
are proven.

Denote gσ(z) = \ (exp (— σθ(z)) + exp (— σθ(z — 1))) Ξ~1, the invariant distri-
bution of the random walk in the infinitely deep well s/f

σ = ({σθ(z):ze'E},
{r'(z)\zeΈ}\ where Ξ~x is a normalizing factor, and put Fσ(x)= Σ gσ{z). Let

(w(s):s^0) and (w( — 5): 5^0) be independent identically distributed random
processes whose distribution is one of the radial part of the three-dimen-

X

sional Wiener process. Put G{x)= J E(exp( —^(s))-^^ 1 )^, where
+ 00 - o o

Ξo= j exp( — w(s))ds is a normalizing factor.
— 00

In order to complete the proof of the theorem it is sufficient to prove the
following
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Assertion. For any x e R

Fσ(x/σ2)^G(x) as σ-»0.

Proof. Let us consider a random function /σ(x) = exp( — σθ(x)) for xeZ, and the
value of fσ(x) for xφΈ we define by means of the linear interpolation. We have

+ 00

Ξσ= \ fσ{x)dx. Put hσ{x) =fσ(x)'Ξ~x. One can easily check that the weak limits of

the distributions dFσ(x/σ2) and Eσ~2hσ(x/σ2)dx coincide.

Lemma 8. The common probability distribution of

converges to one of

((exp(-w(x)):x6R),S0),

as σ->0; here we claim the convergence of distributions in C(IR) x IR, where C(R) is
provided with the topology of uniform convergence on compact subsets of R

Proof See the appendix.

Form Lemma 8 it follows that the distributions of the continuous random
functions σ~2hσ(x/σ2) converge to one of ho(x) = exp(— W(X)) ΞQ 1 as σ-»0. For
any x e R we have σ~2hσ{x/σ2)^0, ho(x)^0, and one-dimensional distributions of
the random functions σ~2hσ(x/σ2) converge to ones of ho(x). Therefore

lim inf Eσ~ 2hσ(x/σ2) ^ Eho(x) (xeR).

Using Fatou's lemma we have
b b

G{b) - G(a) = j Eho{x)dx S J Aim inf Eσ~ 2hσ(x/σ2)) dx

\Eσ-%(x/σ2)dx

= liminϊ(Φσ(b/σ2)-Φσ(a/σ2)),
X

where — o o ^ α < έ ^ + oo, and Φσ(x) = £ | hσ(s)ds. We have G(b) ̂  lim inf Φσ(b/σ2)
— oo σ->0

for a= — oo, and 1 — G(α)^ lim inf (1 — Φσ(α/σ2)) = 1 — lim sup Φσ(α/σ2) for b =
4- oo.

Therefore there exists lim Φσ(χ/σ2) = G(x) for any xeIR, and lim Fσ(x/σ2) = G(x),

because the limits of Fσ(x/σ2) and Φσ(x/σ2) coincide (this fact was mentioned
above). Q.E.D.

The assertion (iii) of the theorem is proven.

Appendix. Proofs of Lemmas

Proof of Lemma ί. Let us prove the inequality

• z2exp(max{φ)-s(u) :0^u^v<z}). (A.I)
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Denote a(z) = max {s{v)-s(u) :0^uSv<z}, β.= # { ί : ί<τ(z), x{t) = i} (i = 0,l,
...,z—1), 7ij = P{the moving particle arrive at z earlier then returned to i | j/;
x(0) = i} The equality

is analogous to the similar formula for the probability of non-returning of the
moving particle to the initial state obtained by Sinai [1], and can be checked with
the same methods.

From the obvious equality

it follows that E(βi\s/) = π71. We have

π Γ 1 = (1 - r(ί))~ '(piί) + q(ί)) *

Therefore ^ . ( ^ ^ ( l - K O ) " 1 - ( 2 - ( 5 0 .)(z-i)exp(α(z))? and

1 (A.2)

Using (A.2) and the equality τ(z) = j80 + ... +βz_v we obtain (A.I).
Let us estimate φt = max{s(v) — s(u) :0^u^v<m(t)}. It is easy to demonstrate

that the functionals μ{s) = min{u:3v>u such that s(i ) —s(w) = l, S(M) ̂  s(ί) ̂ s(ι ) as
u S t S v} and φ(s) = sup {s(ί ) — 5(1/): 0 ^ u ̂  1; ^ μ(s)} are determined and continuous
in C([0, + 00)), ^-almost surely, where Ψ* is the Wiener measure in C([0, -h 00)),
seC([0, + 00)). The distribution of continuous random function s(t u)
•(tσ2)~i/2(ue[0, + 00)) converges to the Wiener measure Ψ* in C([0, 4-00)).
Therefore the distributions of <pί (lnί + ( ln ί ) 1 / 2 Γ 1 and m(ί) (lnί + (lnί) 1 / 2)~ 2 σ2

converge to ones of the functionals φ(w) and μ(w), respectively, where w is the
Wiener process (see Theorem 5.1 in [4, p. 30]). It is clear that the limits of the
distributions of φt (In t)~ι and m(t) (Int)~ 2 σ2 are the same. One can calculate the
limit distribution of φt considering the case when ln(q(z)/p(z)) = ± 1 with pro-
babilities 1/2. The explicit expression of this distribution is not important for us,
we shall use only the fact that it is absolutely continuous and concentrated in the
interval [0,1]. Using (A.I) we can estimate

P{τ(m(t))>εt\s(x):xeZ+}S(st)~1

Έ(τ(m(t))\s(x):xeΈ+)^const'(εt)~1(m(t))2 Qxp(φt)

[we used the fact that m(t) depends only on six) but not the whole random
environment J / ] . We have P{J3(ε1? t)} > 1 — ε1 for any ελ >0, suitable δ = 3(8^, and
sufficiently large ί, where B(εί9t) = {j^ :m(ί)<^~ 1 (lnί)2, φt<(l-δ)lnt}.
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Therefore

P{τ(m(ή)>εt\s(x):xeΈ+}^const (εt)~1δ~'2

if seJ5(εl5ί), and P{τ(m(ί))>εί}->0 as t-> + oo because ε1 is any positive
number. Q.E.D.

Proof of Lemma 4. From Lemma 3 it follows that it is sufficient to show that

lim n-P{A(n9x)}=f(x)9 (A3)
n-> + oo

where f(x) = — Es(N((— oo, — χ)))5 and

E(s(N([n9 +oo)))—n| A(n, x)) = o(n) (A.4)

as n-> + oo, where A(n, x) = {N([n9 + oo)) < ΛΓ(( — oo, — x))}.
Let us derive (A.4) from (A.3). Denote N = min{N([n, + oo)), N((— oo, — x))}.

The random function s(z)(zeZ+) is a martingale. Therefore

0 = Es(N) = P{A(nf x)} E(s(N) \ A(n, x)) + P{A\n9 x)} E(s(N) \ Ά(n, x)),

where A'(n,x) = {N([n,+co))>N(( — co,—x))}. From the equality (A.3), it
follows that P{A(n9x)}~f(x)/n, P{A\n9 x)} = 1 -/(xj/n + oίn" 1), ^ s ^ M ' f n , x))
= £s(iV((- oo, -x))) + o(l) (w-> + oo). Therefore

Let us prove (A.3). Considering the simplest random environment for which
\n(q(z)/p{z)) = ± 1 with probabilities 1/2, we can demonstrate that the distribution
of the random variable

y(t)=-s(m(t))/lnt (A.5)

converges as ί-> + oo to the exponential distribution with the expectation 1
[because —w(μ(w)) is a continuous functional of the Wiener process w a.s.]. The
distribution of γ(t) can also be written in terms of JV([«, + oo)) and N((— oo, — x)).
Let us consider a new random variable mx(t): put σx(0) = 0, σx(/c) = min{z :z
> σx(/c-1), s(z) < s(σjc(fe- 1)) - x}, ax{k) = max{5(z) - s(σx(fc)): σx(k) S z g σΛ(fe +1)},
wx(3;) = min{fe:αJC(fe)^3;}, vx(ί) = nx(ln ί), mx(ί) = σx(vx(ί)). Using the weak conver-
gence of the continuous random function 5(x / 2 σ~2) / ~ 1 to the Wiener process
as /-• -h GO and properties of the functionals φt (see proof of Lemma 1), one can
check that mx(t) — m(t) = o(ln2t) (in probability) as £-> + oo. Therefore the limit
distributions of random variables γ(i) and yx(t) = — s(mx(t))/\n t coincide. We have

vχ( ί )- l

-s(mx(t))= Σ Cx(t>i)>
i = 0

where random variables ζx(t, ί) = s(σx(ί)) — s(σx{i +1)) are independent and identi-
cally distributed (O^z<vx(ί)). The distribution of ζx(t9ί) coincides with the
conditional distribution of ( — s(N((— oo, — x)))) under the condition that N((— oo,
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— x))<JV([lnί, +00)). The distribution of vx(ί) can be also calculated:

where i e Z + , and ρf = P{JV((-oo, -x))<JV([lnί, +00)). Therefore E(-s(mx(t)))
~/(x) (l —ρ,)" 1 as ί-+ + oo, and the distribution of

(-s(mx(t))) (l-ρt)/f(x) (A.6)

converges to the exponential one with the expectation 1. Comparing the normaliz-
ing factors in (A. 5) and (A.6), we obtain

and therefore the equality (A.3) holds. Q.E.D.

Proof of Lemma 5. Denote by π, μ, and v probability measures on (1RZ+, ̂ z + )
corresponding to the random processes (s(z):zeΈ+), (Θ(Z):ZEΈ+) and (θ(z):zeΈ+),
respectively. The distribution of the vector consisting of the first n + 1
coordinates of x = (x0? xv ...)eIRz+ we shall denote by dπ(x0, ...,xn), dμ(x0, ...,xw),
dv(x0,...,χn). Note that dv(x0,...,xn) = dπ(x0,...,xn) χ{x.^O:Oύiύn](x) /(xΠ)//(0). To
prove Lemma 5 it is sufficient to demonstrate the equality dμ(x0, ...,xn)
= dv{x0, ...,xM) for any n^tO, i.e. to check that

x0,..., xn)

for any measurable map h :IR ί l+1-^IR such that

sup { | / I ( X ) | : X G I R " + 1 } ^ const.

Denote by γ the map of X N into R z + defined before the formulation of Lemma
5, y :(SV S2, ...)ι-^(θ(z) :zeZ+). The vector (0(0), ...,θ(n)) depends on not more than
w initial terms of (Sv S2,...) because l S J ^ l for any i (a.s.), where by definition
\υ\=n if ι;elR"+1; it is clear that |ι;ylw| = |ι;| + |w|. Let us consider subsets N

where

Using this notation we have

j hdμ(xo,...9xn)

= J h(xφ))dμφ)= ί /i(x(T(v)))dP(v)
RN χlN

= Σ ί M4τ(v))
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where x(α0, av α2,...) = (α0,..., α j , P( ) is the distribution on (XN, J>N) correspond-
ing to the random sequence (Sv S2, ...)• Denote

where ^ = ̂  + . . . + ^ , | S f | = ^ , i = 0,...,n. We have

rf^->'*)= ί W f c «

where x'(α0, ...,αjf) = (α0, ...,αn). Using the definition of S and the property of
duality of sums of independent random variables (see [3, p. 377]), one can check
that

fc-l

'(y)) Π ^ > y m i + 1 :m1<j<m i + 1>(y)
ί = 0

where mo=O, mi = mi_ί+ίi, mk = ί, y = (y0, . . . , ^ ) . Denote

^.(M, t;, w)

= J απ(

where j ^ 1, y = (y0,..., ĵ j). We have

= idπ(yo,...,yn)h(yo,...9yn)
k-2

ymi+ι '• mt < j<mi + l
ί = 0

Let us find

+ 00

(JOfίtt, ϋ, W)
l

+ 00

= ^] P { Ϊ is a strict descending ladder epoch for s(z\
i— 1

zeZ+, and s(i)e[ι; —M, W — U)}
+ 00 +00

= Σ Σ ^{^ ̂ s t n e / h s t r i c t descending ladder epoch for s(z)9

and s(i)e[ι; —M, w — M)}

value of s( ) in the j t h strict descending

ladder epoch belongs to [_v—u, w — u)}

+ 00

j t h

= U((u-w,u-ύ]),
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where 1/ = /? + /?*/? + /?*/?*/?+..., /? is the distribution of the first strict ascending
ladder height for (— s(z)).

By means of simple transformations we obtain

Σ ffCi. A )

Σ Σ gVv - Λ-vn-nk-i + ΰ

= $dπ{xΌ9...9xn)h(xO9...,xn)

Ik-2

Lu 1 1 %{xj>Xmi + 1 :wi<j<m ί + i

> %{xj>xmi :mo<j<mi}vv ' ' X{Xj>χn:nik- ι<j<n}

= ί ft(x0,..., xn) (χ[Of + ^ ( x j + l/((0, xj))

dπ(xo,...,xB), (A. 7)

because for any vector x = (x0, ...,xj we can define /1(x) = min{i: i>0, Xj^xt as
j > z}, /2(x) = min{i: z>/1(x), Xj^xt as j > z},..., ^fc(x) = n, the expression appearing
in (A.7) under the symbol Σ does not equal 0 only for the following vectors
(Λ, .. .,4_ 1):0, (/^x)), (^1(x)^2(x)λ ..,(^i(xλ...^k(χ)-i(x)λ and this expres-
sion equals t/((xn-x, l ( x ),xj), U((xn-x,2{xγ xΠ-x^ l ( x )]), ..., ί/((0,xw-x^(x)_1(x)])
+ χ [ 0 + 0 0 ) (xJ , respectively. Finally we obtain

d/φc0,...,xΠ) = ̂ π(x0, . . , x j (χ[0> + ^ ( x j + l/((0,xj)). (A.8)

It is sufficient now to show that χ[0 +oo)(x)+C/((0,x])=/(x)//(0). Using the fact
that the functions /(x)//(0) and χ [ 0 j + 00)(x)+t/((0,x]) are monotonous, and the

equanes rfv(x x ) = ̂ ( x x ) χ ( x ) /(

and (A.8), one can easily check that these functions are solutions of the equation

ί g(y)dHx(y) = g(x), xe [0, + oo) (A.9)
[0, +oo)

with the boundary condition g(χ) = 0 as x < 0, where Hx(y) = H(y — x), H is the
distribution function of \n(q(z)/p(z)). Equation (A.9) has only one asymptotically
linear solution up to a multiplicative constant, and we now use the fact that /(x)
~ const x as x-» + oo, C/((0, x]) ^ const xasx-> + oo (see [3, p. 347]). Lemma 5 is
proven.

Proof of Lemma 8. Let us denote by C(IR) the space of real-valued continuous
functions defined on IR. Let us supply C(IR) with the topology of uniform
convergence on compact subsets of IR. Extend the function θ from Έ to IR by
means of linear interpolation. We shall prove that the distributions in C(IR)
corresponding to the random functions σθ(x/σ2) (xeR) converge as σ->0 to the
distribution corresponding to the process w(x). Denote by μ the distribution of
random continuous function w(x) such that (w(x): x ^ 0) and (w( — x): x ^ 0) are
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independent Wiener processes. Let us consider the map α :C(IR)-»C(IR),
α : φ \-+ α[φ] such that (α[<p] (x): x ^ 0) depends only on (φ(x): x ^ 0),
(α[φ]( —x) :x^0) depends in the same manner on (φ( —x) :x^0). Now we shall
describe the construction of (α[<p](x) :x^0). Denote φ(x) = max{φ(y) :0^y^x},
ιp(x) = φ(x) — φ(x); the open set {x :XG(0, + oo), ψ(x)>0} is the union of intervals
Ik = Ik(φ) = (βk(φ), γk(φ))9 keΈ, for μ-a.s. φeCQK)- Put vK*) = O if φ(x) = 0, tp(x)
= ψ(yk(ψ)-(χ-βk(<P))) i f * e 4 ( φ ) Finally, put α[φ](x) = φ(x) + ψ(x), x^O. The
map α is continuous in φe C(IR) such that the values of φ in different local extrema
of φ are different. The μ-measure of the set of such functions φ equals 1 because the
distributions of extremal values of w(x) in any fixed interval are absolutely
continuous. Therefore the map α is continuous almost everywhere in C(IR). From
this fact it follows that distributions of continuous random functions
(α[sσ](x) XGIR) converge as σ-*0 to the distribution of (α[w](x) XGIR), where
sσ(x) = σs(x/σ2). The distribution of (α[w](x) xeIR) coincides with that of the
random function w(x) = 2 max {w(y) :y lies between 0 and x} — w(x), where xelR.
To demonstrate this fact it is sufficient to consider again the simplest case when
ζ(z) = ± 1 with probabilities 1/2: in this case the distribution of φ(x) + ψ(x)
coincides with that of φ(x) + ιp(x) = 2φ(x) — φ(x). Now it remains to use Pitman's
theorem (see [5]). From the independence of random processes (θ(x) : x^0) and
(θ(x): x ^ 0), it follows that it is sufficient to prove that the distributions in
C([0, + oo)) corresponding to (σθ(x/σ2): x ^ 0 ) and (σθ( — x/σ2): x^O) converge as
σ->0 to the distribution of (vv(x): x ^0). We shall check only the convergence of the
distribution of the first of these two processes, the second case can be investigated
analogously.

Let us consider a map ασ defined on the set of continuous functions which are
linear on the intervals [σ2 /c, σ2 (k+l) ] (heZ + ). If Ik(φ) = (βk(φ), yk(φ)) and
yk(φ)e(σ2-n, σ2 (n+l)l then for xe\_(yk(φ)-nσ2) + βk(φ), (rc+l)σ2], put ασ[φ](x)
= «[φ] (x - ((n + l)σ2 - yk(φ))) + (α[φ] (σ2 (n + 1)) - α |>] (yk(φ))) for other
XG[0, + oo) put ασ[φ](x) = α[φ](x). If φ does not belong to the set of functions
described above, then we put α σ[φ] = α[φ]. Let A>0 be fixed. We have

for any function φeC([0, + oo)) from the domain of definition of α. Thus the
distributions of ασ[sσ] converge as σ-»0 to the distribution of α[w](x) and w(x)
(XG [0, + oo)). The distributions of σθ(x/σ2) and σθ(x/σ2) (XG [0, + GO)) are the same
(see Lemma 5), and uσ[_sσ] = σθ(x/σ2). Therefore the distribution of
(σθ(x/σ2) : X G [ 0 , + OO)) converges to one of (w(x):x^0) as σ-»0. Using the
inequality

(where A > 0 is arbitrary) and convergence of the distribution of (σβ(x/σ2): x ^ 0) to
that of (w(x):x^0) as σ->0, one can easily prove that the distribution of
(/σ(x/σ2) :x^0) converges to that of (exp(— vv(x)) :x^0) as σ-»0. The convergence
of the distribution of (/σ(x/σ2): x ^ 0) to that of (exp( — w(x)): x ^ 0) can be proven
analogously. Therefore (/σ(x/σ2) :xGlR)^(exp( —vv(x)) : X G R ) as σ->0 (in distri-
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bution). The independence of (fσ(x): x S 0) and (fσ{x): x ̂  0) and similar properties
of w should be also used.

To complete the proof of Lemma 8 it is sufficient to to demonstrate that

J fσ{xlσ2)dx= J jσ{xla2)dxλ- j fσ(x/σ2)dx (A.10)
m\[-A,A] (-co,-A) U,+oo)

is infinitely small (in probability) as A-* + oo uniformly on σe(0,1), because the
functional

ζ: (φ(χ)' •*

is continuous on C(R). We shall check this assertion only for the second integral
on the right side of (A. 10), the first one can be estimated analogously. We have

j fσ(x/σ2)dx^σ2 Σ / » = σ 2 Σ exp(-σθ(z)).
(A,+oo) σ2z>A-σ2 σ2z> A- σ2

Denote s(z) = max {s(i) : ί^z} . Using Lemma 5 and inequality

we obtain

_ exp(-σs(z)).
σ2z>A-σ2 σ2z>A-σ2

Let us consider random variables τk = τfc(σ, A):

τ 0 = min{z :zeZ + , σ2z>A — σ2, s(z)>s(Aσ~2 — 1)},

_,)}, fc=l52,....

Denote

C/< = s(τfc) - s(τk _ x ) , B(σ, 4̂) = e x p ( - σ ^ σ " 2 - 1)),

K(σ,A) = σ2 Σ ( τ n + 1 - τ j e x p - σ L ςf

We have
σ2 Σ exp(-σ5(z))^β(σ,yl)D(σ,^) + 5(σ,

From the convergence of the distribution of the continuous random function
a~ 1/2s(ax) (xe[0, + oo)) to that of the Wiener process as a^ + oo, it follows that
there exist limit distributions as ,4σ~ 2 ^ + oo of the random variables κ(σ,A)
= s(A/σ2-l)-(A/σ2)'1/2 and d(σ9A) = D(σ,A)A~\ and these limit distribu-
tions are concentrated on [0, + oo). Therefore, random variables B(σ, A)
— exp( — A1/2κ(σ,A)) and B{σ,A)D(σ,A) — exp( — A1/2κ(σ,A)) A d(σ,A) are in-

finitely small as A-> + oo uniformly on σe(0,1). To finish the proof of Lemma 8 it
remains only to check that K(σ,A) is bounded (in probability) as ,4-^ + oc
uniformly on σe(0,1). Random vectors {τk+ί — τ f c 5ζk + ί) are independent and
identically distributed (feeZ+), and the distribution of these vectors does not
depend on A and σ. We have

μ = Eζk< + OΌ, P{τ/c+1-τ/c>_y}—const y~1 / 2 as y-+ + oo (A.ll)
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(see [3, pp. 575 and 395]). Denote by φ{λ) the logarithm of the Laplace
transformation of the random variables τ / c + 1 — τk; φ(λ)~ const -λ1/2 (λ->Ό) because
(A. 11). Let us estimate + o o

K1{σ,A) = σ2 £ ( V - i ^ + i ) - ^ - ^ J exp(-nμ/2).
« = o

We have a^

{ ~72 : n = l , 2 , ...J ^ 1 -

when σe (0, σ0), where ε is any positive number and σ0 = σo(ε). One can easily check
that

\n=0

^exp(const /l1/2).

Therefore random variables K^σ.A) are bounded in probability as A-+ + 00
uniformly on σe(0,1). Let ε>0 be fixed. The estimation

holds when y>yo(ε\ σe(0,σ0); the estimation
+ 00

K(σ,A)S Σ (τk+1(σ0(ε\A)-τk{σ0(ε\A))
n = 0

holds when σe[σ0,1), where the distribution of the random variable Lε(A) does
not depend on A. Therefore

P{K(σ,A)>y}<ε,

as y>y1(ε) uniformly on σe[σ0,1) and A>0. Finally, the random variables
K(σ, A) are bounded in probability uniformly on σe(0,1) as A-* + GO. Lemma 8 is
proven.
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