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Abstract. The equations for the D(/c,0) Killing spinor fields are integrated
assuming that the left conformal curvature does not vanish and that either
k φ 2,4,6,..., or the Einstein vacuum field equations are satisfied.

1. Introduction

In a remarkable paper, Walker and Penrose [1] showed that every type D solution
of the Einstein vacuum field equations admits a quadratic first integral of the null
geodesic equations. Their result, later generalized by Hughston et al. [2] to a class
of type D solutions of the Einstein-Maxwell equations, is based on the existence of
a Killing spinor, from which a conformal Killing tensor of valence two is
constructed. The proof given by Walker and Penrose follows from the Bianchi
identities and provides a method to find explicitly the above mentioned conformal
Killing tensor.

The equations for the Killing spinors have been studied by Hacyan and
Plebaήski [3] in the context of complex Riemannian geometry, which contains the
case of real spacetimes. A direct integration of the equations for Killing spinors of
type D(/c, 0) has been done by Finley and Plebaήski [4] in the case of Jf spaces
(left-flat spaces). In the present work the equations fort Killing spinors of type
D(/c, 0) are integrated under some restrictions. The results apply to complexified
space times as well as to real ones. The formalism and notation used here follow
those of Plebaήski [5]. All the spinorial indices are manipulated according to the
convention ψA = εABψ

B, ψΛ = ψBs
BA, and similarly for dotted indices.

2. Integrability Conditions

Let LAB D be a D(7c,0) Killing spinor [1], that is, LAB D is a totally symmetric
spinor field with 2k indices that satisfies the equation1

...m = 0. (1)

1 Round brackets denote symmetrization of the indices enclosed
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According to the Ricci identities2 V(T^V^LAB D)= —4kC(TRALBD)S. Therefore,
an integrability condition of Eq. (1) is given by

Denoting the components of LAB D by L(j), where j = 0,1,..., 2fe is the number of
i n d i c e s t a k i n g t h e v a l u e t w o , i.e., L { 0 ) = L ι ι v L { 1 ) = L ί ί t 2 , - , L { 2 k ) = L 2 2 ^ 2 , a n d
L{j) = 0 for j < 0 orj>2k, the integrability conditions (2) may then be written as the
set of 2/c + 3 equations

{ j ) (3)

where

In a spinor frame such that L ( 0 ) = 0 , it follows from Eq. (3) that C ( 5 ) = 0. This
means that each principal spinor of LAB D is a Debever-Penrose (DP) spinor.
Substituting the values L{0) = 0 and C ( 5 ) = 6 in (3), one finds that if &Φ2,4,6,...,
then C ( 4 ) = 0 . Therefore, when k is not an even integer, each principal spinor of
LAB D is, at least, a double DP spinor and (assuming CABCD φ 0) there are at most
two principal spinors of LAB D which are not proportional to one another. If there
are two of these then CABCD must be of type D, while if there is just one then L(2/c) is
the only nonvanishing component of LAB D, and from (3) one concludes that
CABCD is of type N.

When fe = 2 the condition (2) implies that LABCD is proportional to CABCD.
Hence, in this case, Eq. (2) imposes no restriction on the algebraic type of CABCD.

As a consequence of Eq. (1) it follows that each principal spinor lA of LAB D

satisfies the condition [2]
\A\BV Ί = 0 . (4)

This means that, in a complexified spacetime, the vector fields lΛdAB are tangent to
a congruence of null strings [6] (two-dimensional totally null surfaces), while in a
real_spacetime (i.e., with Lorentzian signature) the vector field lAlBdAB (where
lB = lB) is tangent to a congruence of shearfree null geodesies. If the Einstein
vacuum field equations are satisfied, then Eq. (4) implies that lA is a multiple DP
spinor [6] (and conversely). Therefore, if CABCD Φ 0, CABCD must be of type D or N.

Thus, the existence of a D(/c, 0) Killing spinor with k φ 2,4,..., implies the
existence of a spinor lA which is a solution of (4) and at the same time a multiple
DP spinor. When the Einstein vacuum field equations are satisfied the conclusion
applies for any value of k. In the forthcoming the discussion will be restricted to
these cases with the further assumption that CABCD does not vanish.

The existence of a solution of Eq. (4) which is a repeated DP spinor implies the
existence of coordinates qA, pA such that [7]

g1A'=-]/2(dpA'-QA'BdqB),

g

2λ=-γ2φ~2dqA\
2 See, for example, Hacyan and Plebaήski [3]
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is a null tetrad3, where QAB is a symmetric object and φ is a solution of

lBVAέlB = (l»dBέ\nφ)lA. (6)

Using the Ricci rotation coefficients for the tetrad (5)4, one finds that Eq. (1)
amounts to

(2k +1 -f)

u ) (7)
where

(8,

Since for the tetrad (5) C ( 5 ) = C ( 4 ) = 0, the integrability conditions (3) reduce to

1 )

(9)

3. Integration of the Equations

When the "left" conformal curvature, CABCD, is of type JV, one has C ( 3 ) = C ( 2 ) = 0 .
Then from (9) it follows that L ( 0 ) = L ( 1 ) = . . . = L ( 2 k _ 1 ) = 0. Substituting in (7) one
finds that φ~kL(2k) = ζk, where ζ is a function of qA only, which has to satisfy the
condition5

(10)

By an appropriate change of coordinates one obtains6 d/BQ/

B^ = 0, where the
primed quantities refer to the new set of coordinates, which implies that 7 Qf

AB
= ~ d'A d'όΞ f° r some function Ξ. With respect to the basis induced by the primed
coordinates, the only nonvanishing component of the Killing spinor is given by
φ ' " ^ 2 ^ = const.

Assuming now that C ( 3 ) does not vanish, from (9) one obtains that if k is an
integer then L ( 0 ) = L ( 1 ) = . . . =L ( f c _ 1 ) = 0 and, in order to have a nontrivial Killing
spinor, L{k) must be different from zero in contrast, for the values k = 1/2, 3/2,...,
the only solution of (9) is LAB D = 0. Hence, when the left conformal curvature is
of type D there can only exist nontrivial D(fe, 0) Killing spinors for integer values of
k. Then the set of Eqs. (7) tells that

+ (k + 2) (dBQ
B*)φk- 2L(k+ 1)-(k + 2) (k +1) {DBQ

B")φ%k) = 0, etc.

3 WithgΛέ-gcί)=-2εΛCεόί)

4 See, Finley and Plebaήski [8] and Torres del Castillo [7]

5 In the case where 1BVAI^1B = 0 (called case I in [8]) it follows that the spinor given by {φζ)ιl2δ2

A, with
respect to the tetrad (5), is covariantly constant
6 See Appendix
7 See Finley and Plebanski [8]
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The first two of these equations are easily integrated, giving

k k 2 ^ k k , (12)

where δ and ε are functions of qΛ only. Instead of substituting these expressions
into the third equation and trying to determine L^k+2) and so on, it is convenient to
use the existing freedom in the choice of coordinates in order to simplify these
equations.

Indeed, one can find a set of coordinates qA, pA such that 8 L ( f e + 1 ) = 0. Taking
j = k+ 1 in (9) and recalling that L ( f c _ 1 ) =0 J one gets the condition

6fcC(3)L(/c +1)- 2k{k +1) Ci2)L(k) = 0.

Therefore if L ( k + 1 ) = 0, then C ( 2 ) must also vanish. On the other hand, in a tetrad
such that C ( 5 ) and C ( 4 ) are zero, the Weyl spinor CABCD is of type D if and only if

2[C ( 2 ) ] 2 = 3C ( 1 ) C ( 3 ) ,C ( 3 ) φ0.

Hence, in a tetrad such that L ( / c + 1 ) = 0, the components C ( 2 ) and C ( 1 ) must vanish
and, as a consequence of (9), it follows that L{k) is the only nonvanishing
component of the Killing spinor. Then the set of Eqs. (7) gives φkL^k) = const and
requires DBQ

BS = 0.

4. Induced Killing Vectors

If LAB is a D(l,0) Killing spinor, then the vector KAB = ^V^LCA satisfies [9, 10]

where lAB and lR$ are symmetric spinors. Thus, when C^A

RSLB)N = 0,
K= — ̂ KA^dAB is a Killing vector. In general, K is a complex vector field.
Therefore, due to the linearity of the Killing equations, the real and imaginary
parts of K are Killing vectors.

Assuming that the left conformal curvature is of type N and that there exists a
set of coordinates such that dBQ^ = 0, LAB = φδ2

Aδ\ is a D(l,0) Killing spinor.
Thus, from (13) it follows that K= -WBLCA)^ i s a Killing vector provided that
CIIAB = CI2AB = Q' Bv a direct computation one gets

K=-2(dAφ)δA. (14)

Similarly, when the left conformal curvature is of type D and DBQ
έs = 0 in some

set of coordinates, LAB = φ~1δ(Aδl) is a D(l,0) Killing spinor. H C11AB = C22AB = 0,
then K= — τ(Vj;LCA)dAB is a Killing vector. In this case one obtains

X=W)Λ-ί^. (15)
dqΛ dqA

Notice that in both cases the Killing vector K is tangent to the hypersurfaces
φ = const.

8 See Appendix
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5. Conclusions

The results derived here show that, in the cases under consideration, the D(k, 0)
Killing spinors are symmetrized outer products of a single Killing spinor with
itself. Therefore, there exists essentially one D(/c,0) Killing spinor [of type D(l/2,0)
or D(l,0) if CABCD is of type N or D, respectively] provided, of course, that the
corresponding existence conditions are satisfied.

The integration of the equations for the D(fc,0) Killing spinors presented here is
somewhat simpler than that in the case of Jf spaces [4] due to the fact that the
integrability conditions are very restrictive when the conformal curvature does not
vanish.

The condition for the existence of a D(k,0) Killing spinor when the left
conformal curvature is of type N [Eq. (10)] has been integrated giving the form of
the metric which admits such spinor field. However, the corresponding condition
in the case where the left conformal curvature is of type D (DBQ

B^ = 0) has not been
integrated here.

Appendix

The coordinates qA are two independent functions which are constant on the null
strings, i.e., lAdABq

c = 0. Therefore one can use in place of qA any other pair of
independent functions q/A = q/A{qR) On the other hand, the function φ is not
uniquely defined by Eq. (6). If φ' is another solution of Eq. (6), then
lΛdABln(φ/φ') = 0, which means that ρ = φ2/φ'2 is a function of qR only. The new
"longitudinal" coordinates p'Λ are then given by

p'A=-Q-1TϊlApέ + σΛ

9 (Al)

where (TB~
iA) is the inverse of (T/) = ( δ ^ / δ ^ ) and σA = σΛ\qR).

From (5) it follows that dqA-dqB = 0, dqΛ.dp* = φ2εAB, and dp*-dp*

= -2φ2QAB. Hence writing dp'λ dpti*= -2φ'2QAB and using (Al) one finds

Q,AB = ρ-lT-lAT-lBQCD_T-lca<W^m ( A 2 )

The null tetrad g'AB, induced by the coordinates q/Λ, p'A, is obtained by replacing
the objects which appear in (5) by their primed versions. The result can be written

in the form ,AB A B cb < A ^
'AB ABgCD, (A3)

with the SL(2, <C) matrices (mA) and {πφ given by

(A4)

where

TΞdet(T/),
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Using (Al) and (A2) one gets

S'AQΆή = Tf lύ(d%ό - δ lnρ3 '2 W ) ,

where d'A denotes δ/dp'A. Therefore, if Q^ satisfies (10), then by a coordinate
transformation such that ρ3l2T = ζ, one obtains d'AQAB = O.

In the case where CABCD is of type D, denoting by L'U) the components of the
Killing spinor with respect to the basis induced by the coordinates q'A, p'A, and
since L(O) = L ( 1 ) = . . . = L ( k _ 1 ) = 0, from (A3), (A4), and (12), one gets

Thus, choosing qfk = qk, ρ = δ2/\ and σk such that dσk/dqk = (2ε/k)δ-1-2l\ one

obtains L[k+1)
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