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Abstract. We investigate the state on the Fermion algebra which gives rise to
the thermodynamic limit of the Gibbs ensemble in the two-dimensional Ising
model on a half lattice with nearest neighbour interaction. It is shown that the
operator P~ in the GNS space, which performs the essential functions of the
renormalized transfer matrix, has a quasi-particle structure.

1. Introduction

In lattice models with an interaction potential of finite range, the free energy in a
finite volume is determined by the largest eigenvalue of a matrix, known as the
transfer matrix. One question which naturally arises is how to normalize the
transfer matrix so that it becomes a well-defined operator in the thermodynamic
limit. Such a renormalization is easy to make in the domain of Gibbs-state
uniqueness (Minlos and Sinai [19]). The limit in this case is a stochastic operator
which has a property of asymptotic multiplicativeness which suggests the conjec-
ture that the spectrum of the operator has a quasi-particle structure: there is a
grading of the Hubert space on which the stochastic operator acts into subspaces
corresponding to different sets of quasi-particle occupation numbers; these
subspaces are invariant under the action of the stochastic operator; on these
subspaces the stochastic operator has a simple structure and acts by multipli-
cation. A general analysis of the spectral properties of a stochastic operator arising
from a transfer matrix was undertaken by Minlos and Sinai [19] who contructed
the single-particle subspace assuming a cluster-property of the transfer-matrix.
The first proof of this cluster-property for the two-dimensional Ising model with
nearest neighbour interactions was provided by Abdulla-Zade et al. [1]. Malyshev
[14, 15] used cluster expansions to make improved estimates of matrix elements
and which enabled him to work in arbitrary dimensions, Malyshev and Minlos
[17, 18] used these estimates to prove that, for sufficiently small values of β, an
operator with the cluster-property has invariant subspaces which are reminiscent
of the rc-particle subspaces of Fock space the restriction of the operator to the
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n-particle subspace has its spectrum in an interval [cίβ
n, c2β

n~\ these intervals do
not overlap.

The analogy of the quasi-particle structure described above to the grading of
Fock space suggests that another approach might be used in the case of the two-
dimensional Ising model. It is well-known that the Onsager-Kaufmann treatment
[20, 7, 8] can be re-formulated in terms of the Fermion algebra (Schultz et al.
[22]). In the thermodynamic limit the Gibbs state corresponding to periodic
boundary conditions in the finite lattice induces a Fock state ωβ on the CAR
algebra Λ(12(Z)) for 0< β< oo, as was shown by Pirogov [21] and Lewis and Sisson
[11, 12]. Because of the translation in variance of this state, all w-point functions
are determined by its restriction ώβ to the algebra A(12(E+)) [regarded as a
subalgebra of A(l2(Έ)y] the restricted state ώβ is a non-Fock quasi-free state. It is
primary for β<βc and nonprimary for β>βc (Lewis and Winnink [13]). The
primary decomposition in the β>βc regime has been determined and the primary
components ω+ and ω_ identified with the Gibbs states corresponding to
± -boundary conditions (Kuik [9] and Kuik and Winnink [10]). It is conjectured
that (at least in the β<βc regime) there is a grading of the GNS-space of the state
ώβ which corresponds to the quasi-particle structure discovered by Minlos and
Sinai [19]. In this paper we begin the investigation of this conjecture by
investigating the spectrum of the GNS-representation of the renormalized
transfer-matrix. In order to do this we develop the theory of Wick-ordering
relative to an arbitrary quasi-free state on the CAR algebra, analogous to to the
well-known theory for the CCR algebra (see [6, 23] for example). This is described
in Sect. 2. In Sect. 3 we give details of the C*-algebra formulation of the two-
dimensional Ising model (following Sisson [24] and Kuik [9]) and define the
operator P~ on the GNS-space which performs the essential functions of the
renormalized transfer matrix. Our main result is proved in Sect. 4: for β<βc the
spectrum of the restriction of P~ to Fn

β is contained in the interval [e~
2n(K*+K2)^

e-2n(κt-κ2)^ . t h u s g i v e n N>o ? there exists a βN such that for all β<βN the spectra
of P~|F/?«, n=Q, 1,..., JV, and P~|/ £ pλ1 are disjoint. This used the detailed results

l
of Onsager [20] for the two-dimensional Ising model and may be regarded as a
sharpening of the results of Malyshev and Minlos [17,18] for this special case. The
results of Sect. 2 on Wick-ordering may be of independent interest.

2. Quasi-Free States on the Clifford Algebra and the Associated Grading

Let H be a real Hubert space and s( , ) denoting the real inner product on H. Let
C(H) denote the C*-Clifford algebra [2] generated by self adjoint operators
{Γ(f)''feH} which satisfy the relations

Γ(f)Γ(g) + Γ(g)Γ(f) = 2s(f9 g)ί9 f9geH.

We often identify / with Γ(f), and let C0(H) denote the dense *-subalgebra
generated by H.

Given a state ω on C(H\ there exists an unique covariance operator Cω on H
such that

) = s(f9g) + is(Cωf9g)9 f,geH
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and || Cω\\ ̂  1, C* = — Cω. Conversely, given such an operator, one can construct a
so-called quasi-free state on C(H), which is completely determined by its two point
functions [2]. Here we give an alternative, constructive proof of this, adapted to
our need for a grading of the GNS Hubert space into rc-particle spaces, for
n = 0,l,2,...,.

Let A be a skew-adjoint contraction on H, and define a hermitian inner
product < , }A on H by

If A is a complex structure, we let (HA, < , }A) denote the complexification of

For the skew contraction A, we define a grading C0(H)= £ C{2\H) as
n = 0

follows: If / = {ix <... < ir} is a finite ordered set with cardinality |/| = r, we let 3)j
denote the set of all subsets of I with the induced ordering. If J,Ke@j,
J = {jv...Js}9 K = {k19...,kι}9 with J = JuK, JnK = θ, let ε(J9K) denote the

signature of the permutation I . u ''"'' r I. If atje C, for i, je /, with |/| = In

and even, let

PfL^iji = Σ ε (Λ K)ajιklaj2k2. ..ajnkn,

where the summation is over all disjoint J, K in ̂ 7 with

J = {Jv~Jn}> K = {kί9...9kn} and jm<km9m=ί9...9n.

with P/[^..] = 1 if / = 0. If {/.: f e /} Q H9 we let fx = fir. .fir, (r = |/|), fφ = 1, and

ω^(Λ) = 0, if |/| odd,

a>Λ(fi) = Pfl<ft,fj>Λ iJeΓ\, if Ul even,

so that ωA(fg) = </ ^>^. Then define the Wick ordered product by

Λ(fκ), (2.1)

where the summation is over all disjoint J, K in Θj, with JKJK = I (cf. [3, 6, 23]).
Then define C °̂ to be the complex subspace of C0(H) generated by
Uft-fn Λ-f^H}.

Lemma 2.1. With the above notation:

fr= Σ £{J,K):fj:wA{fK), (2.2)
JuK = I
JnK=0

/:/,: = ://,:+ Σ {-^ri'k-fi.-ftr-<oMt), (2-3)
s = l

where Λ over an element means that element is omitted.

:fiι"-fir'ιs a n anti-symmetric function of (i19..., ir). (2.4)
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// B is also a skew contraction then

•fi-B=jΣ_i<J'fO-fj'ΛPfί<fι>fj>A-<fl>fj>B'UjeK]. (2.5)

JnK=0

Proof. We first show (2.3). By the definition of Wick ordering we have

:///== t Σ (- ί)mMJ,K)ffjωA(fκ)
JnK=0

JnK=0

= f fi

JnK=0

A Pfaffian expansion of coΛ(ffκ) now gives the result. Suppose (2.2) holds for |/| = n.
Then inductively consider

ffi= jΣ <V>iQf fj <»A(fκ)

JnK=0

= Y ε(J, K): ff :ω (/ )

JnK=0

+ Σ Σ ε(J,K)(-iy+ί:fh...fJt...fj/.ωA(ffj)ωA(fκ)
ί = l JuK = I

JnK=0

= Σ ε(J,K):ffj:ωΛ(fκ)

JnK=0

+ y ε(J K )m f 'co (ff )(— l ) | J o 1

again by elementary Pfaffian considerations, which shows that (2.2) holds for

Assume inductively that :fir. .fir: is an anti-symmetric function of (iv ..., ir) if

r<n. Then by (2.2), if I={ivi2, ...,iπ}, / 0 = {i3>u»-"»U> w e n a v e

Λ = Σ *J>IQ fj' <»Λ(fκ)
JnK=0

= Σ <J>κ){ ftJt2fj <oA(fκ)
JnK=0
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Hence by adding a similar expression for f^f^f^-'-f^, and using the inductive
hypothesis we get:

Σ

Hence :fhfi2fIo : = - ' fi2fijlo:, using (2.2) for Jo. In this manner, '.fh - fin' is
seen to be antisymmetric. Finally (2.5) follows from the definition of : :B and (2.2)
for : :A, and Pfaffian expansions.

Lemma 2.2. // n ^ l , then ((/j)"=1, (^)"= 1)^det[</ / ?^.>^] is positive definite on
Hn x Hn.

Proof. We first show that (fg)-^>(fg}A is positive definite on HxH. If A is a
complex structure, then < , }A is the complex inner product on the com-
plexification HA and is clearly positive definite. In general let A = U\A\ be the polar
decomposition of A on H. Then on H o = Range (\A\), U2= — l, U*= — U, i.e.
JJO = U\Ho is a complex structure. Then

The first term is a positive definite function of (fg) because | | A | | ^ 1 , and the
second is positive definite by considering the complex structure Uo on
(HO,S\HQXHO). It merely remains to show that if A^eMJ^L) for i9j=l9...,m and
[,4 .̂] is positive in Mm(Mn((C)), then [det(^4fj )] is positive in Mm((£), (for then
consider φn

r=ιeH\ z = l,...,m and Λ 7 = [ < / ^ > j ; U i > Uj=U^m\ Let
[Aίj] = [Cij]

2, where [C ι 7] is self adjoint in Mm(Mπ((C)). Then

det (AtJ) = Atj Λ ... Λ y40 (n-factors) but

m

= Σ ίcincnj®cir2cr2j®...®cirncrj
1

and so by cutting down to C" Λ ... Λ (C":

Let (Cπ, F^) denote the minimal Kolmogorov decomposition [4] of the positive
definite kernel ((/,),(fcίHdetlX/^XJ on HnxH". Then Cn(/1 ; ...,/„) is an anti-

00

symmetric function (/1? ...,/„). Define F ^ = φ FA9 where F^ is a one-dimensional

Hubert space spanned by a unit vector Ω = Ω^. If feH, then elementary
computations with determinants show that
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defines a bounded operator πo(/) on FA. It is easy to check that πo(/) is self-
adjoint, and πo(f)πo(g) + πo(g)πo(f) = 2s(fg\ fgeH. Hence there exists an unique
representation π = πA of C(H) on FA such that π(Γ(/)) = πo(/). Moreover

π(:/ 1 , . . . ,/ n :)Ω = Cn(/ 1,...,/n), fteH. (2.6)

Assume, inductively, that this is so for n— 1. Then

π(:/1.../n:)Ω=π(/1)π(:/2.../B:)Ω- £ (-l)ί</1^.>π(:/2...i;.../Π:)Ω
ΐ = 2

by (2.3)

i = 2

= Cn(ft,...,/„) by definition of π(/ x).

Thus (πA, FA, ΩA) is a cyclic representation of the Clifford algebra C{H). Define a
state ωA on C(iϊ) by ωA(x) = (πA(x)ΩA,ΩA), for xeC(H). Claim that

"Odd,

; > J , "even, < ' ;

Λ ^ > J ^ m (2.8)

(2.7) follows from (2.2), and (2.8) is a consequence of (2.6), and

• Jm -Jl ' = ' J\ "Jm' '

We summarise this by

Proposition 2.3. // A is a skew contraction on H, there exists an unique state ωA on
C(H) such that

ω

A(fi •••/„) = PfKU /}>J if n ίs e υ e n >

is α grading FA= 0 F ^ o/ ίΛe GNS Hubert space of ωA such that the GNS
n = 0

vector Ωo spans F% and if πA is the GNS representation then (fv ...,/„)
~*πA''f\_ '"fn:)^A is t n e minimal Kolmogorov decomposition of the positive definite
kernel ((^), (^))-[det</.,^>J.

Remark 2.4. Note that the theory of quasi-free completely positive maps de-
veloped in [3, 5] can be transformed into the real setting, e.g. if T is a contraction
between real Hubert spaces H and K intertwining with skew contractions A
and B, then there exists an unique unital completely positive map
CA(T): C{H)-+C(K) such that

CA(T)(:fί...fn:A)=:(Tfi)...(Tfn):B, ftsH.
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Moreover there exists an unique contraction FAB{T) = 0 Fn

A B(T) from FA

n = 0

into FB, where Fn

A B(T) :Fn

A->FB is given by

)ΩB, fteH.

Remark 2.5. If A is a complex structure on H, let aA{f) = \[_F{f) + iΓ{Af)\ a*A{f)
= aA(f)*9 f^Fί, denote the associated annihilation and creation operators. Then

πA(:/,.../„ :)ΩA = π>JC/i) a%fn))ΩA,

so that Fn

A is the usual rc-particle space. Moreover if T is a contraction commuting
with A, then Fn

A(T) = Fn

AA(T) is the usual n-particle operator, and FA(T) = FAA{T)
the usual second quantization.

3. The C*-Algebra of the Ising Model

In order to establish our notation, we summarise here the C*-formulation of the
two dimensional Ising model with periodic boundary conditions. Full details may
be found in [24, 11-13,9, 10].

The two dimensional classical Ising model with nearest neighbour interactions
can be reduced to a non-commutative one-dimensional system by means of the
transfer matrix method. For a finite lattice

P(A) denotes the space { —1,+1}"1 of all configurations and the algebra of
observables is C{P(A)\ the space of all complex valued functions on P(A). We will
always impose periodic boundary conditions on our nearest neighbour
Hamiltonians. The transfer matrix method takes us from observables in the
commutative C{P{A)) and Gibbs states < >LΛΓ on C(P(A)) to observables and
certain states associated with a (non-commutative) Paulion algebra siL of 2L x 2L

complex matrices, or equivalently, a Clifford algebra C(HL) on a L-dimensional
complex Hubert space HL. Thus if / is a local observable in C(P{ALNo)\ say, there
exists an element af in C(HL) and a state ρLN on C(HL) such that </>L N = QLN(af)
for all N> No. In fact, [identifying C(HL) with M 24C)],ρL i V is given by an operator
(VL)w+ί:

This reduction leads us to study the states ρLN on C(HL\ and the thermody-
namic limit ρ on C(H\ if H = lim HL. The transfer matrix is the (normalised) limit

L

of VL, as L-xx). Our aim is to show the existence of this normalised limit in a
suitable C*-setting, and obtain some information on its spectrum for high
temperatures. We now describe this set up in a little more detail.

First, in order to describe the Clifford algebra setting, let J be a fixed complex
structure on a real infinite dimensional Hubert space H, with inner product s( , •),
Let {en: n = 1,2,...} be a complete orthonormal basis for (HJ, < , >J) so that {en,
Jen: n= 1,...} is a complete orthonormal basis for (H,s\ and let E be the closed
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subspace of (H,s) spanned by {en :n = l,2,...}. Then H = E®JE, and A the
conjugation determined by J defined by Λφ = φ, ΛJφ = — Jφ, φeE, satisfies A2 = 1,
AJ=-JA and P = (l+Λ)/2, Q = (l-A)/2 are the orthogonal projections on E,
JE, respectively.

Let HLCH be the subspace spanned by {en, Jen:n = 1,2, ...,L}, and sL( , •)
(respectively, JL, AL, etc.) denote the restriction of s( , ) (respectively, J, A, etc.) to

The transformation of the classical theory to the Clifford algebras is done via
Pauli algebras. Let $ih be the Paulion algebra generated by {(ή:j=ί9..., L,
oc = x,y, z} which obey mixed commutation relations [σ", σ\ ] _ = 0, j φ /c, σjσ^ = ίσzj
and eye, (σp2 = l. Let J f be a two-dimensional Hubert space with orthonormal

/1\ /0\ L

basis e( + ) = , e( - ) = and J^fL = (X) J ^ Let π L be the representation of J3/L as
w \V i

bounded operators on J^L by πL(σ?) = l(x)...®σα®...® 1, a = x,y,z where σx

i t h position

(0 1\ .. /0 - i N

\i 0/ '
The Jordan-Wigner transformation is a ^-isomorphism ηL : £/L-+C(HL) and is

defined by

ι ί (σ ' 1 )=-Γ(Je 1 ) ,

Πt- iΓ(en)Γ(Jen)-]Γ(ek), k>ί,
n=ί

= - Π [-iΓ(en)Γ(Jen)-]Γ(Jek), k>ί.
n=l

For each finite subset ΘcZ2, let U(Θ) denote the C*-algebra generated by
{σ«:θeΘ,oc = x, y, z} which obey [σ«, σj] _ = 0, θ + φ, σx

θσ
y

θ = iσz

θ and eye, (σ«)2 = 1.
Thus if Θj = {(ί, 7): 1 ̂  ί ̂  L}, U(Θj) - j / L for each j .

Taking Θ = A — ylLN, the finite lattice described previously, the classical algebra
C(P(A)) is isomorphic to the C*-algebra generated by the third component Pauli
matrices {σz

θ :θeA}cU(A). Moreover, imposing nearest neighbour interactions,
with periodic boundary conditions, the Hamiltonian of the finite system is the
observable

L N

HLN=- Σ Σ [J2σ(i,j)σίi+l,j) + Jiσ(i,j)σ(i,j+l)]
ί=l j=~N

[where with abuse of notation, (σz

L+ίJ), σz

iiN+1}) are identified with (o\ijγ a\it -N))].
Here Jv J2 are constants greater than zero.

Now any configuration X = {xi3), can be broken up as
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iϊ yι

L(x) = {x1J, ...,xLί}e{ — l, + 1}L, — N^i^N. We then have a decomposition

H(x)= Σ %{)+ Σ ί(yί+\yi)
J=-N j=-N

in terms of the internal energies of the rows and the interaction energies between
neighbouring rows if

ί=l

Kym

L,fL)=- Σ ' Λ Λ » >

identifying xL+ί j with xXJ and y^+1 with y^N as usual.
The expectation value of any observable / is given by the Gibbs formula

<f>PLN = Z™ Σ
XeP(Λ)

where the partition function

ZLN= Σ
XeP(Λ)

and β ̂  0 is the inverse temperature.
We now express this using the transfer matrix formalism. First, the partition

function or free energy is given by

XeP(Λ)

= Σ r L ( y Γ ^ Γ " + 1 ) r ^ ^

T

if 7; the transfer matrix is defined as the array

T(y, / ) = exp -β{&S(y) + S(/

which is a 2L x 2L matrix, if 3;, / e {-1, + 1}L. Then TL defines an element VL in the
Paulion algebra jtfL by

(π(VL) ( g ^(α,), g ) e(α;.)^ = TL(^, yy,

where

α f = ± if X i t m = ± l yL = {^l,m- ^L,m}

α ; = ± if ^ , « = ± 1 j l = {xiiΛ>. .^L,π}

Then Z = trJfLπL(FL

2 i V + 1).

Similarly V/(X)exp[ —jSiί(X)] can be computed for a local observable as
No

follows. It will be enough to consider / = fj fme C(P(ΛLNo)\ where each fm is a
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function of the mth row alone. Thus using the canonical basis

i = l

for ^ , each fm determines a multiplication operator on j ^ L , and hence an element
fm in the Pauli algebra J / L . Then for N>N0:

XeP(ΛLN))

=Σ τL(yίN, y~L

N+')• • • τL(yίNo+\ y£N°) f-NMN°)

τL{yl°~ι, yN

L

o)fNo(yNL0)

if af=V^f_NaVL...fNoVI;
N'>s^L.

Define states ρLN on $0L by

ρLN(a) = trJί?L[πL(a) (VL)2N+ 1

By linearity if / is a local observable, in C(P{ΛLNo)) say, then there exists
afestfL such that

<DLN = QLN(a

f)
 f o r a 1 1 l a r S e enough N.

Now

FL = [2sinh(2K 1 )] L / 2 (F 2 > L ) 1 / 2 F 1 > L (F 2 > L ) 1 / 2 ,

where

2 Σ σ ? σ ' + l j ' σ l + l = ( T ί '

and

β" 2 K l=tanhX* K^βJi. (3.1)

L

Let [7L= f ] [ — iΓ(ek)Γ(JLek)]eC(HL\ which is a self adjoint unitary such that
fe=l

ULΓ(φ)= -Γ(φ)UL, φeHL, with spectral projections P I ι = (l + C7L)/2, g L

= (1 — UL)/2. Define operators W^ on HL by

(3.2)

Define

"L) = exp j - iK2 Σ nJLek)Γ{W£ek)\. (3.3)
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Then η(VL) = (2smh2KJL'2[η(V-)PL + η(VL

+)QLl where

: U ( V 2

± J 1 / 2 . (3.4)

Define operators y^, δ^, A^9 θ^, S^ on HL by

coshy* = cosh 2X* cosh 2X2l-sinh2iC*sinh2K2(Wi± +(WL

±)~1)/2, (3.5)

sinhyf cosδt* -cosh2X? sinh 2K 21 -s inh 2K* cosh2K2(WL

± +(W^)~1)/2, (3.6)

sinhyf sin*?** =sinh2K*[(^ L

± -(W*)" 1 )/?] ( - J L ) , (3.7)

1 , (3.8)

(3.9)

Then

^ ( 7 / ^ ( ^ ( 7 ^ ) - ' = Γ(coshy£x) + iΓ(sinhy ±X±x) xe HL. (3.10)

On the complexification if^, the spectra of W^ are:

ϊ ) π / L , k = 1,...,!},

and

W±n±

if

(3.12)

so that {^L? JLgk,L)k= i a r e orthonormal bases for # L .
If we let a*L( ) denote the creation operators of the complex structure JL, as in

Remark 2.5, and ΩL= (g) e9 where e = [β( + ) + e(-)]/j/2 J then πη'1aJi{f)ΩL = 0,
k 1

/e// L , and so (πη'1, JtL, ΩL) can be identified with the GNS decomposition of ω J χ /

Moreover

πη-\PL)ΩL = ΩL, πη~\QL)ΩL = 0. (3.13)

The Bogoliubov automorphisms a(βγ) '• aJl{f)-^aA±(S^ f) are implemented by

{

where

cosh y(ω) = 2 cosh 2X* cosh 2K2 — sinh 2K J sinh 2X2 cos ω, (3.14)

* sinh 2X2 — sinh 2K^ cosh2X2 cosω, (3.15)

ω) = sinh21C*sinω? (3.16)

2θ(ω) = δ*(ω) + ω-π. (3.17)
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For β<βc (i.e. K2<K\\ the principal eigenvalue of nL(VL) is asymptotically
non-degenerate and its eigenvector is ψ^ =πLη~1(S^)ΩL. Thus

= ωA£oη-\ by (3.7), [12, Theorem 1].

Then for a local observable /,

</>«,= lim lim </>LΛr= lim ωA(η-\af)).
L-+O0 N-*oo L-+co

The weak lim Af; exists and can be described as follows. Let L2 be the real
L-»oo

Hubert space of complex-valued square integrable functions on [0,2π] with inner
1 2 π

product s(f,g) = ΐQ—- [ Jg9 and complexification (if) (x) = if(x). Then Iλ is the
2π 0

complexification with inner product <•,•> say. If χn(p) = einp, pe[0,2π], then
{χn:neΈ} (respectively {χn, iχn:neZ}) is a complete orthonormal basis for L2

(respectively L2). Define Ώ2 + (respectively L2 + ) to be the closed linear span of
{χn:n=l92,...} (respectively {χn, iχn:n = l929...}) in L\ (respectively L2). Then
F(en) = Xn defines a unitary operator F of (if,S) onto (L2t+,s) and (HJ,s) onto
(L2>+, (',-)). If A is a bounded linear operator on H or H\ let A = FAF~1.

If 0 e L c [0,2π], let M(φ) denote the corresponding multiplication operator on
L2 (or U2). If £ denotes the orthogonal projection of L2 on L2 + (or U2 on L'2 + ) ,
and 0eL£[O,2π] let Tφ = T(φ) denote the Toeplitz operator which is the
restriction oϊEM(φ) to L 2 + (or L2 + , respectively). Let t(p)=exp(2iθ(p)),pe [0,2π].
Then A = wklim^4f, where

λ = JTt-<p + JTtQ. (3.18)

The phase transition manifests itself by a jump in the mod-2 index of A [24,12,
13, 9]. For β<βc (i.e. K2<K*\ index 4̂ = 0 and ωA is primary, and for β>βc (i.e.
K2 > K^), index A = l and ω^ is non-primary.

4. The Spectrum of the Transfer Matrix
in the Thermodynamic Limit at High Temperature

Let C00(H) denote the *-sub-algebra of C(H) generated by \JHL9 so that C00(H)

= (J C(HL). Suppressing the representation of C(HL) on J^L, we can write

and similarly we let C(H) act on FA, the GNS Hilbert space of ωA, and write

ω i l = <( )Ω,Ω>, where Ω = Ω^.
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Proposition 4.1. There exists self adjoint contractions P^, P~ on FA such that

lim ("ψ^xΩ^yΩS =<P00xί2,3;O>, (4.1)

lim / ^ i x Ω L , j,ΩL\ = <P^xΩ, yΩ} (4.2)
\ A /L->oo

for all x,yeC00(H\ and where λL denotes the maximum eigenvalue of VL.

Proof ΩL is the eigenvector of η(VL) with eigenvalue λL (Sect. 3) so that

<η(VL)xΩL, yΩL)/λL = <η(VL)xη(VLΓ ιΩL, yΩL}.

We claim that lim {η(VL)xη(V^ ^ L , yΩL} exists for all x9 y in C00(H). Now

η(VL) = (2 sinh2X1)
L / 2[f?(FL

+)βL + η{V~)P J (3.4)

and PLΓ(φ) = Γ(φ)QL for all 0 in tfL.
Let x = Γ(φί)...Γ(φm), y = Γ(ψn)...Γ(Ψl\ where 0., ̂ eifL o, and L 0 < o o . Then

"1«L9yfiL> by (3.13)

y if m even

) if m odd

L )X( VLΓ1 ΩL, yΩL> if ™ and n even

if ^ and w odd

otherwise.

Case (i). m and n even.
Then

by (3.10). Expanding this as a Pfaffian (2.7), one has a finite sum of products where
each factor is one of the following three kinds:

ωA-(ψjΨk)> which converges to ωA(ψjψk) as L-»oo, (4.2a)

ωA - (ψj cosh yl φk) = s(ψp coshy^ φk) + is(A^ ψj9 coshy^ φk). (4.2b)

1 L

Proceeding as in [9], take Ψj = er, φk = es, where er= —JJJ ^ ejLCUhLrg[L, and
using Aϊ =JL{cos2θ^ + JLALsin2θl), we have: ι=1
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s(Λ~er,coshγ~es)

y e J ω 7 ' "gΓ,L, cosh(y-)eJω- -sg;L)
L ι,t

= I Σ *osh(y-) ULcos2β£ - s i n 2 0 - ] ^ ^ ^ " ^ ^ - L 9 g
L ι,t

= T Σ s(coshy~ [ J L cos20" - sin 2Θ~] [cos {ω^Lr-ω;Ls)
^ ι,t

- Σ c o s h ^ ( ω / 7 L ) [sin2θ(ω I7L)cos(ω /"Lr-ω f"Ls)
L ι,t

-cos20(ω~ L ) s i n ( ω , 7 L r - ω ^

^ ΓtI) +ωΓtL(r-s)]

_ 1 2π

-•—— J cosh y(ω) sin [2θ(ω) + ω(r — s)]Jω,
2π o

a Riemann integral as L-+co.
In this way one sees as in [9] for the computation of wk limit Λ^ that

s(A~[φ9coshyϊψ)^s(Bφ,ψ) as L->oo, for φ,ψeHLo,

where B = JT(cosh(y)ί" X)P + JΓ(cosh(γ)ί)β. Similarly s(ψ, coshy^φ)^s(Cψ, φ\
where C=T(coshy)

ω ^ z ( ^ z : sinhy" φk). (4.2c)

This is similar to the previous case.

y-φj)ίΓ{Λ- sinhy'0k)) + ωAϊ(iΓ{Al sinhy"φ7.)Γ(coshy"0fc))] = 0,

(4.2d)
sinhyL φj)iΓ(AL sinhyL 0fc))]

= ωAL(φjφk), (4.2e)

and so is the same as case (4.2a).
Hence case (i) is established.

Case (ii) m and n odd.
We compute

where

Now

L H Π exp-iX2[Γ(J
fe=l

1 / 2 ( ^ 2 ; L ) " 1 / 2 ] = e x p - i
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L

and η^ L) = Π exp — iK^[Γ(ek)Γ(JLek)~]. Now if φ9 ψ are orthogonal unit vectors,

αe<C, then Ad(exp<xΓ(φ)Γ(ψ))Γ(f) = Γ(g), if

g = f + sin2α[s(ψ, f)φ - s(φ, f)ψ\ - (1 - cos 2α) [ φ , /)ψ + 5(0, /)0] . (4.3)
Hence

Ad[exp - iK*Γ{ei)Γ{JLeJ\ (ΓieJ) =

and

Ad[exp - iK*Γ{eL)Γ{JLeJ] (Γ(JLeL)) = cosh2K* Γ(JLeL) - ί sinh2K*Γ(eL).

Thus

= exp - ίK2 {[Γ(cosh2K*JLeL - i sinh2K*eJ\ [Γ(cosh2^*^!

+ isinh2K*JLe 1)]}.

Similarly,

Ad [exp

1) for L>2,

fL = cosh2K*JLeL — i sinh2K*(coshK2eL — i sinhK2JLeL_ x ) ,

θι=cosh2K*e1+isinh2K*(coshK2JLe1+ismhK2e2).

L- 1 / jζ \ϊ

Π ( e x P - -γnJLek)Γ(WL

+ek)^

Ί7i)]exp +

= exp [ - i ̂  Γ(JLeL)Γ(ei)] exp[ - iK2Γ{fL)Γ{ΘJ]

Now | | / L | | 2 = | | θ 1 | | 2 = α2 say, which is independent of L, and if/, g are orthogonal
unit vectors in H, then expαΓ(/)Γ(gf) = cosα + sinαΓ(/)Γ(gr). Thus

• (cosh(K2α
2) + sinh(K2α

2)α- 2Γ{fL)Γ{θ1))

• (cosh(K2/2) - i Smh(K2/2)Γ(JLeL)Γ(ei))

= [cosh K2 - i s inhX 2 r(J L e L )r( e i ) ]

•[cosh(ί:2fl
2)-isinh(lC2fl

2)fl-2Γ(flfJΓ(α1)], (4.4)
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where

gL = coshlK^ (coshK2JLeL — i ύrάιK2e1)

eL — i sinhK2JLeL_ x ) ,

+ ίsinh2K^ (cosh K2JLe1 + ίsinhK2e2)

Hence

~ XΩL, yΩL) =

• Π [Γ(coshy " φj) + iΓ(A£ sinhy " φj)ΩL,

Using the Pfaffian expansion, we see that we must consider the limits in the
previous expressions (4.2a)-(4.2e), where φ and or ψ are replaced by one of

s(AL er, coshyL eL) = — Σ cosh γ(ωlt L) [sin(20(ω/f L) - ωu L(r - L)~]

= ~γ Σcoshy(ω/TL) [ s in^ω^J-ω^r] using (3.11)

γ In

-> f coshy(ω) sin [2θ(ω) — ωr]dω.
2π 0

The details are left to the reader.

We have thus established that lim ( L xΩL,yΩΛ exists for all x,yeC00(H).

But || Vj\ SλL, hence

\
S lim | | χβ L | | \\yΩL\\lim

L->oo \ λL
L->oo

= lim ωA (x*x)ll2ωA4y*y)1

L,—* 00

as A =

Since Ω is cyclic C00(H\ it follows from the Riesz representation theorem that
there exists a self adjoint contraction P^ on FA such that (4.1) holds. The
remainder is now clear.

With the grading of Sect. 2 we can now show:

Theorem 4.2.

PlKiFA for all nZl, (4.5)

PCOK^FA far n even, (4.6)
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and

PooFn

AQFn

A-
4®Fn

A-
2®Fn

A®Fn

A

+2®Fn

A

+\ for n odd, (4.7)

with Fn

A = 0 if n<0.

Proof Now

η(VL-)a*AL(f)η(V-y l=a*AL(e~^f) [by (3.10)] . (4.8)

Let φv ...,φm, ψv ...,ψneHLo, L0<co.
Then

<P*'Φi-Φm'ΆΩ, Ψn-Ψi' AΩ>
= lim(η(Vϊ):φ1...φm:AΩL9:ψn...y)ί:AΩLy/λL

L->oo

= lim Σs(J,K)ε(J',K')ωAL(ψ(J')η(V-)Φ(J))ωA(Φ(K))ωΛ(ψ(K'))/λL
L->oo

= lim ^(J,K)ε(J',K')ωAt(ψ(J')η(VL-)Φ(J))ωAL(φ(K))oJAL(ψ(K'))/λL
L->oo

= \imΣ(η{V[):φi...φm.AML,:ψn...ψι:AML)lλL
L->oo

= lim (η{V-)a*L{φί)..M*L(φJΩL,a*AL(ψn)...a*-(ψi)ΩL)lλL by Remark 2.5
L->oo

= lim <.a*AL(e-Kφ1)...a*AL(e-^φm)ΩL,a*AL(ψn)...a*ΛL(ψ1)ΩLy by (4.8)

= 0 if rnφn.

Thus P^i 7 ^ £ i7^. Then by similarly considering

and using (4.4) and (2.3), one gets (4.7). The theorem then follows.
We now concentrate on P~, noting that P~|Fπ = p ς J F ^ if n is even.

Theorem 4.3. For β<βc,

σ(P^ IF^) £ [exp - 2rc(K* + X2), exp - 2n{Kχ - K2)] .

Then given JV>0, ί/z^rβ exists βN such that for all β<βN, σ(P~| F n) ? n = 0,...,N, and

σ P
ι = 0

disjoint.

Proof From (3.5) we have on HJ

L

L:

cosh 2K* cosh 2K2 - sinh 2X* sinh 2K2 ^ cosh (y ~) ̂  cosh 2K* cosh 2K2

i.e.

cosh 2(K* - K2) ^ cosh7^ ^ cosh2(X* + K 2 ) .

Hence for β<β?9 2(K*-K2)^y-^2(K* + K2) on H ^ . S~ :(H J-, < , >jJ
-+(HΛL, < , >^_) is isometric and commutes with yL, hence

on
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Thus

e-2n(KΪ+K2)<pn ίβ- γz.\ < e~ 2n(K% + K2)

Let x=Yjλf:f:A,bQ a. finite linear combination of Wick ordered products where

λfe<C, /=&.../» and feH^ L0<π. Let xL=Σλf'f'ΛL-
Then

| = lim| |x L ί2 L | | .
L->oo

From the proof of Theorem 4.2:

(P^xΩ,xΩ) = lim (Fn

AL(
L->oo

Hence exp [ - 2n{K* + K2J] g P " \ n £ exp [ -
For σ(P~|Fn) to be disjoint from σ(P~|FΠ + 1) it is sufficient that (2n+ 1)K2

i.e. β<^βc. The theorem follows.

Remark 4.4.

so that

e-2(κϊ±κ2) = j —_____j e± — 2 = mp) a s

1 + e

Thus Theorem 4.3 could be regarded as a strengthening of [14-18] where spectra
in disjoint intervals of the type [cίβ

n,c2β
n~] were obtained.
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