The Spectrum of the Transfer Matrix in the C^{*}-Algebra of the Ising Model at High Temperatures

D. E. Evans ${ }^{1}$ and J. T. Lewis ${ }^{2}$
1 Mathematics Institute, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, England 2 School of Theoretical Physics, Dublin Institute for Advanced Studies, 10 Burlington Road, Dublin 4, Ireland

Abstract

We investigate the state on the Fermion algebra which gives rise to the thermodynamic limit of the Gibbs ensemble in the two-dimensional Ising model on a half lattice with nearest neighbour interaction. It is shown that the operator P_{∞}^{-}in the GNS space, which performs the essential functions of the renormalized transfer matrix, has a quasi-particle structure.

1. Introduction

In lattice models with an interaction potential of finite range, the free energy in a finite volume is determined by the largest eigenvalue of a matrix, known as the transfer matrix. One question which naturally arises is how to normalize the transfer matrix so that it becomes a well-defined operator in the thermodynamic limit. Such a renormalization is easy to make in the domain of Gibbs-state uniqueness (Minlos and Sinai [19]). The limit in this case is a stochastic operator which has a property of asymptotic multiplicativeness which suggests the conjecture that the spectrum of the operator has a quasi-particle structure: there is a grading of the Hilbert space on which the stochastic operator acts into subspaces corresponding to different sets of quasi-particle occupation numbers; these subspaces are invariant under the action of the stochastic operator; on these subspaces the stochastic operator has a simple structure and acts by multiplication. A general analysis of the spectral properties of a stochastic operator arising from a transfer matrix was undertaken by Minlos and Sinai [19] who contructed the single-particle subspace assuming a cluster-property of the transfer-matrix. The first proof of this cluster-property for the two-dimensional Ising model with nearest neighbour interactions was provided by Abdulla-Zade et al. [1]. Malyshev $[14,15]$ used cluster expansions to make improved estimates of matrix elements and which enabled him to work in arbitrary dimensions, Malyshev and Minlos $[17,18]$ used these estimates to prove that, for sufficiently small values of β, an operator with the cluster-property has invariant subspaces which are reminiscent of the n-particle subspaces of Fock space; the restriction of the operator to the
n-particle subspace has its spectrum in an interval $\left[c_{1} \beta^{n}, c_{2} \beta^{n}\right]$; these intervals do not overlap.

The analogy of the quasi-particle structure described above to the grading of Fock space suggests that another approach might be used in the case of the twodimensional Ising model. It is well-known that the Onsager-Kaufmann treatment [20, 7, 8] can be re-formulated in terms of the Fermion algebra (Schultz et al. [22]). In the thermodynamic limit the Gibbs state corresponding to periodic boundary conditions in the finite lattice induces a Fock state ω_{β} on the CAR algebra $A\left(l^{2}(\mathbb{Z})\right)$ for $0<\beta<\infty$, as was shown by Pirogov [21] and Lewis and Sisson [11, 12]. Because of the translation invariance of this state, all n-point functions are determined by its restriction $\bar{\omega}_{\beta}$ to the algebra $A\left(l^{2}\left(\mathbb{Z}^{+}\right)\right)$[regarded as a subalgebra of $\left.A\left(l^{2}(\mathbb{Z})\right)\right]$; the restricted state $\bar{\omega}_{\beta}$ is a non-Fock quasi-free state. It is primary for $\beta<\beta_{c}$ and nonprimary for $\beta>\beta_{c}$ (Lewis and Winnink [13]). The primary decomposition in the $\beta>\beta_{c}$ regime has been determined and the primary components ω_{+}and ω_{-}identified with the Gibbs states corresponding to \pm-boundary conditions (Kuik [9] and Kuik and Winnink [10]). It is conjectured that (at least in the $\beta<\beta_{c}$ regime) there is a grading of the GNS-space of the state $\bar{\omega}_{\beta}$ which corresponds to the quasi-particle structure discovered by Minlos and Sinai [19]. In this paper we begin the investigation of this conjecture by investigating the spectrum of the GNS-representation of the renormalized transfer-matrix. In order to do this we develop the theory of Wick-ordering relative to an arbitrary quasi-free state on the CAR algebra, analogous to to the well-known theory for the CCR algebra (see [6,23] for example). This is described in Sect. 2. In Sect. 3 we give details of the C^{*}-algebra formulation of the twodimensional Ising model (following Sisson [24] and Kuik [9]) and define the operator P_{∞}^{-}on the GNS-space which performs the essential functions of the renormalized transfer matrix. Our main result is proved in Sect. 4: for $\beta<\beta_{c}$ the spectrum of the restriction of P_{∞}^{-}to F_{β}^{n} is contained in the interval $\left[e^{-2 n\left(K_{1}^{*}+K_{2}\right)}\right.$, $\left.e^{-2 n\left(K_{1}^{*}-K_{2}\right)}\right]$; thus given $N>0$, there exists a β_{N} such that for all $\beta<\beta_{N}$ the spectra of $\left.P_{>0}^{-}\right|_{F_{\beta}^{n}}, n=0,1, \ldots, N$, and $P_{x}^{-} \mid\left(\underset{n=0}{\oplus} F_{\beta}^{n}\right)^{\perp}$ are disjoint. This used the detailed results of Onsager [20] for the two-dimensional Ising model and may be regarded as a sharpening of the results of Malyshev and Minlos [17, 18] for this special case. The results of Sect. 2 on Wick-ordering may be of independent interest.

2. Quasi-Free States on the Clifford Algebra and the Associated Grading

Let H be a real Hilbert space and $s(\cdot, \cdot)$ denoting the real inner product on H. Let $C(H)$ denote the C^{*}-Clifford algebra [2] generated by self adjoint operators $\{\Gamma(f): f \in H\}$ which satisfy the relations

$$
\Gamma(f) \Gamma(g)+\Gamma(g) \Gamma(f)=2 s(f, g) 1, \quad f, g \in H
$$

We often identify f with $\Gamma(f)$, and let $C_{0}(H)$ denote the dense $*$-subalgebra generated by H.

Given a state ω on $C(H)$, there exists an unique covariance operator C_{ω} on H such that

$$
\omega(f g)=s(f, g)+i s\left(C_{\omega} f, g\right), \quad f, g \in H
$$

and $\left\|C_{\omega}\right\| \leqq 1, C_{\omega}^{*}=-C_{\omega}$. Conversely, given such an operator, one can construct a so-called quasi-free state on $C(H)$, which is completely determined by its two point functions [2]. Here we give an alternative, constructive proof of this, adapted to our need for a grading of the GNS Hilbert space into n-particle spaces, for $n=0,1,2, \ldots$, .

Let A be a skew-adjoint contraction on H, and define a hermitian inner product $\langle\cdot, \cdot\rangle_{A}$ on H by

$$
\langle f, g\rangle_{A}=s(f, g)+i s(A f, g), \quad f, g \in H .
$$

If A is a complex structure, we let $\left(H^{A},\langle\cdot, \cdot\rangle_{A}\right)$ denote the complexification of $(H, s(\cdot, \cdot))$ via $(\alpha+i \beta) \phi=\alpha \phi,+\beta A \phi, \phi \in H, \alpha, \beta \in \mathbb{R}$.

For the skew contraction A, we define a grading $C_{0}(H)=\sum_{n=0}^{\infty} C_{A}^{(n)}(H)$ as follows: If $I=\left\{i_{1}<\ldots<i_{r}\right\}$ is a finite ordered set with cardinality $|I|=r$, we let \mathscr{D}_{I} denote the set of all subsets of I with the induced ordering. If $J, K \in \mathscr{D}_{I}$, $J=\left\{j_{1}, \ldots, j_{s}\right\}, K=\left\{k_{1}, \ldots, k_{l}\right\}$, with $I=I \cup K, J \cap K=\emptyset$, let $\varepsilon(J, K)$ denote the signature of the permutation $\left(\begin{array}{cc}i_{1}, \ldots, i_{r} \\ j_{1}, \ldots, j_{s} & k_{1}, \ldots, k_{l}\end{array}\right)$. If $a_{i j} \in \mathbb{C}$, for $i, j \in I$, with $|I|=2 n$ and even, let

$$
P f\left[a_{i j}\right]=\sum \varepsilon(J, K) a_{j_{1} k_{1}} a_{j_{2} k_{2}} \ldots a_{j_{n} k_{n}},
$$

where the summation is over all disjoint J, K in \mathscr{D}_{I} with

$$
J=\left\{j_{1}, \ldots, j_{n}\right\}, \quad K=\left\{k_{1}, \ldots, k_{n}\right\} \quad \text { and } \quad j_{m}<k_{m}, m=1, \ldots, n .
$$

with $\operatorname{Pf}\left[a_{i j}\right]=1$ if $I=\emptyset$. If $\left\{f_{i}: i \in I\right\} \subseteq H$, we let $f_{I}=f_{i_{1}} \ldots f_{i_{r}},(r=|I|), f_{\phi}=1$, and

$$
\begin{array}{lll}
\omega_{A}\left(f_{I}\right)=0, & \text { if }|I| \text { odd }, \\
\omega_{A}\left(f_{I}\right)=P f\left[\left\langle f_{i}, f_{j}\right\rangle_{A}: i, j \in I\right], & \text { if }|I| \text { even }
\end{array}
$$

so that $\omega_{A}(f g)=\langle f, g\rangle_{A}$. Then define the Wick ordered product by

$$
\begin{equation*}
: f_{I}:=: f_{I}:_{A}=\sum(-1)^{|K| / 2} \varepsilon(J, K) f_{J} \omega_{A}\left(f_{K}\right), \tag{2.1}
\end{equation*}
$$

where the summation is over all disjoint J, K in \mathscr{D}_{I}, with $J \cup K=I$ (cf. [3, 6, 23]). Then define $C_{A}^{(n)}$ to be the complex subspace of $C_{0}(H)$ generated by $\left\{: f_{1} \ldots f_{n}:_{A}: f_{i} \in H\right\}$.

Lemma 2.1. With the above notation:

$$
\begin{gather*}
f_{I}=\sum_{\substack{J \cup K=I \\
J \cap K=\emptyset}} \varepsilon(J, K): f_{J}: \omega_{A}\left(f_{K}\right), \tag{2.2}\\
f: f_{I}:=: f f_{I}:+\sum_{s=1}^{r}(-1)^{s+1}: f_{i_{1}} \ldots{\hat{f_{s}}}_{i_{s}} \ldots f_{i_{r}}: \omega_{A}\left(f f_{i_{s}}\right), \tag{2.3}
\end{gather*}
$$

where ^over an element means that element is omitted.

$$
\begin{equation*}
: f_{i_{1}} \ldots f_{i_{r}}: \text { is an anti-symmetric function of }\left(i_{1}, \ldots, i_{r}\right) \tag{2.4}
\end{equation*}
$$

If B is also a skew contraction then

$$
\begin{equation*}
: f_{I}:_{B}=\sum_{\substack{J \cup K=I \\ J \cap K=\emptyset}} \varepsilon(J, K): f_{J}:_{A} P f\left[\left\langle f_{i}, f_{j}\right\rangle_{A}-\left\langle f_{i}, f_{j}\right\rangle_{B}: i, j \in K\right] . \tag{2.5}
\end{equation*}
$$

Proof. We first show (2.3). By the definition of Wick ordering we have

$$
\begin{aligned}
: f f_{I}:= & \sum_{\substack{J \cup K=I \\
J \cap K=\emptyset}}(-1)^{|K| / 2} \varepsilon(J, K) f f_{J} \omega_{A}\left(f_{K}\right) \\
& +\sum_{\substack{J \cup K=I \\
J \cap K=\emptyset}}(-1)^{||K|+1) / 2}(-1)^{|J|} \varepsilon(J, K) f_{j} \omega_{A}\left(f f_{K}\right) \\
= & f: f_{I}: \substack{ \\
\\
\\
+\sum_{\begin{subarray}{c}{J \cup K=I \\
J \cap K=\emptyset} }}(-1)^{(|K|+1) / 2}(-1)^{|J|} \varepsilon(J, K) f_{j} \omega_{A}\left(f f_{K}\right)} \\
{ }
\end{aligned}
$$

A Pfaffian expansion of $\omega_{A}\left(f f_{K}\right)$ now gives the result. Suppose (2.2) holds for $|I|=n$. Then inductively consider

$$
\begin{aligned}
f f_{I}= & \sum_{\substack{J \cup K=I \\
J \cap K=\emptyset}} \varepsilon(J, K) f: f_{J}: \omega_{A}\left(f_{K}\right) \\
= & \sum_{\substack{J \cup K=I \\
J \cap K=\emptyset}} \varepsilon(J, K): f f_{J}: \omega_{A}\left(f_{K}\right) \\
& +\sum_{t=1}^{s} \sum_{\substack{J \cup K=I \\
J \cap K=\emptyset}} \varepsilon(J, K)(-1)^{t+1}: f_{j_{1}} \cdots \hat{f}_{j_{t}} \ldots f_{j_{s}}: \omega_{A}\left(f f_{j_{t}}\right) \omega_{A}\left(f_{K}\right) \\
= & \sum_{\substack{J \cup K=I \\
J \cap K=\emptyset}} \varepsilon(J, K): f f_{J}: \omega_{A}\left(f_{K}\right) \\
& +\sum_{\substack{J 0 \\
J_{0} \cap K_{0}=I \\
K_{0}=\emptyset}} \varepsilon\left(J_{0}, K_{0}\right): f_{J_{0}}: \omega_{A}\left(f f_{K_{0}}\right)(-1)^{\left|J_{0}\right|}
\end{aligned}
$$

again by elementary Pfaffian considerations, which shows that (2.2) holds for $|I|=n+1$.

Assume inductively that : $f_{i_{1}} \ldots f_{i_{r}}$: is an anti-symmetric function of $\left(i_{1}, \ldots, i_{r}\right)$ if $r<n$. Then by (2.2), if $I=\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}, I_{0}=\left\{i_{3}, i_{4}, \ldots, i_{n}\right\}$, we have

$$
\begin{aligned}
f_{I}= & \sum_{\substack{J \cup K=I \\
J \cap K=\emptyset}} \varepsilon(J, K): f_{J}: \omega_{A}\left(f_{K}\right) \\
= & \sum_{\substack{J \cup K=I_{0} \\
J \cap K=\emptyset}} \varepsilon(J, K)\left\{: f_{i_{1}} f_{i_{2}} f_{J}: \omega_{A}\left(f_{K}\right)\right. \\
& +(-1)^{|J|}: f_{i_{1}} f_{J}: \omega_{A}\left(f_{i_{2}} f_{K}\right) \\
& +(-1)^{||J|+1)}: f_{i_{2}} f_{J}: \omega_{A}\left(f_{i_{1}} f_{K}\right) \\
& \left.+: f_{J}: \omega_{A}\left(f_{i_{1}} f_{i_{2}} f_{K}\right)\right\} .
\end{aligned}
$$

Hence by adding a similar expression for $f_{i_{2}} f_{i_{1}} f_{i_{3}} \ldots f_{i_{n}}$, and using the inductive hypothesis we get:

$$
\begin{aligned}
2 s\left(f_{i_{1}}, f_{i_{2}}\right) f_{I_{0}}= & : f_{i_{1}} f_{i_{2}} f_{I_{0}}:+: f_{i_{2}} f_{i_{1}} f_{I_{0}}: \\
& +2 s\left(f_{i_{1}}, f_{i_{2}}\right) \sum_{\substack{J \cup K=I_{0} \\
J \cap K=\theta}} \varepsilon(J, K): f_{J}: \omega_{A}\left(f_{K}\right) .
\end{aligned}
$$

Hence $: f_{i_{1}} f_{i_{2}} f_{I_{0}}:=-: f_{i_{2}} f_{i_{1}} f_{I_{0}}$, using (2.2) for I_{0}. In this manner, $: f_{i_{1}} \ldots f_{i_{n}}:$ is seen to be antisymmetric. Finally (2.5) follows from the definition of : $:_{B}$ and (2.2) for : $:_{A}$, and Pfaffian expansions.

Lemma 2.2. If $n \geqq 1$, then $\left(\left(f_{i}\right)_{i=1}^{n},\left(g_{i}\right)_{i=1}^{n}\right) \rightarrow \operatorname{det}\left[\left\langle f_{i}, g_{j}\right\rangle_{A}\right]$ is positive definite on $H^{n} \times H^{n}$.

Proof. We first show that $(f, g) \rightarrow\langle f, g\rangle_{A}$ is positive definite on $H \times H$. If A is a complex structure, then $\langle\cdot, \cdot\rangle_{A}$ is the complex inner product on the complexification H^{A} and is clearly positive definite. In general let $A=U|A|$ be the polar decomposition of A on H. Then on $H_{0}=\operatorname{Range}(|A|), U^{2}=-1, U^{*}=-U$, i.e. $U_{0}=\left.U\right|_{H_{0}}$ is a complex structure. Then

$$
\langle f, g\rangle_{A}=s((1-|A|) f, g)+\left[s\left(|A|^{1 / 2} f,|A|^{1 / 2} g\right)+i s\left(U|A|^{1 / 2} f,|A|^{1 / 2} g\right)\right] .
$$

The first term is a positive definite function of (f, g) because $\|A\| \leqq 1$, and the second is positive definite by considering the complex structure U_{0} on $\left(H_{0}, s_{\mid H_{0} \times H_{0}}\right)$. It merely remains to show that if $A_{i j} \in M_{n}(\mathbb{C})$ for $i, j=1, \ldots, m$ and [$A_{i j}$] is positive in $M_{m}\left(M_{n}(\mathbb{C})\right.$), then $\left[\operatorname{det}\left(A_{i j}\right)\right]$ is positive in $M_{m}(\mathbb{C})$, (for then consider $\left(f_{r}^{i}\right)_{r=1}^{n} \in H^{n}, \quad i=1, \ldots, m$ and $\left.A_{i j}=\left[\left\langle f_{r}^{i}, f_{s}^{j}\right\rangle_{A}\right]_{r, s=1}^{n}, \quad i, j=1, \ldots, m\right)$. Let $\left[A_{i j}\right]=\left[C_{i j}\right]^{2}$, where $\left[C_{i j}\right]$ is self adjoint in $M_{m}\left(M_{n}(\mathbb{C})\right)$. Then
$\operatorname{det}\left(A_{i j}\right)=A_{i j} \wedge \ldots \wedge A_{i j} \quad(n$-factors $) ;$ but

$$
\begin{aligned}
{\left[A_{i j} \otimes \ldots \otimes A_{i j}\right] } & =\sum_{r_{1}, \ldots, r_{n}=1}^{m}\left[C_{i r_{1}} C_{r_{1} j} \otimes C_{i r_{2}} C_{r_{2} j} \otimes \ldots \otimes C_{i r_{n}} C_{r_{n} j}\right] \\
& =\sum\left[\left(C_{i r_{1}} \otimes \ldots \otimes C_{i r_{n}}\right)\left(C_{r_{1} j} \otimes \ldots \otimes C_{r_{n} j}\right)\right] \\
& =\sum\left[\left(C_{r_{1} i} \otimes \ldots \otimes C_{r_{n}}\right)^{*}\left(C_{r_{1 j} j} \otimes \ldots \otimes C_{r_{n} j}\right)\right] \geqq 0 ;
\end{aligned}
$$

and so by cutting down to $\mathbb{C}^{n} \wedge \ldots \wedge \mathbb{C}^{n}$:

$$
\left[\operatorname{det} A_{i j}\right] \geqq 0
$$

Let $\left(C_{n}, F_{A}^{n}\right)$ denote the minimal Kolmogorov decomposition [4] of the positive definite kernel $\left(\left(f_{i}\right),\left(g_{i}\right)\right) \rightarrow \operatorname{det}\left[\left\langle f_{i}, g_{j}\right\rangle_{A}\right]$ on $H^{n} \times H^{n}$. Then $C_{n}\left(f_{1}, \ldots, f_{n}\right)$ is an antisymmetric function $\left(f_{1}, \ldots, f_{n}\right)$. Define $F_{A}=\bigoplus_{n=0}^{\infty} F_{A}^{n}$, where F_{A}^{0} is a one-dimensional Hilbert space spanned by a unit vector $\Omega=\Omega_{A}$. If $f \in H$, then elementary computations with determinants show that

$$
\begin{aligned}
\pi_{0}(f) C_{n}\left(f_{1}, \ldots, f_{n}\right)= & C_{n+1}\left(f, f_{1}, \ldots, f_{n}\right) \\
& +\sum_{i=1}^{n}(-1)^{i+1}\left\langle f, f_{i}\right\rangle_{A} C_{n-1}\left(f_{1}, \ldots, \hat{f}_{i}, \ldots, f_{n}\right)
\end{aligned}
$$

defines a bounded operator $\pi_{0}(f)$ on F_{A}. It is easy to check that $\pi_{0}(f)$ is selfadjoint, and $\pi_{0}(f) \pi_{0}(g)+\pi_{0}(g) \pi_{0}(f)=2 s(f, g), f, g \in H$. Hence there exists an unique representation $\pi=\pi_{A}$ of $C(H)$ on F_{A} such that $\pi(\Gamma(f))=\pi_{0}(f)$. Moreover

$$
\begin{equation*}
\pi\left(: f_{1}, \ldots, f_{n}:\right) \Omega=C_{n}\left(f_{1}, \ldots, f_{n}\right), \quad f_{i} \in H \tag{2.6}
\end{equation*}
$$

Assume, inductively, that this is so for $n-1$. Then

$$
\begin{equation*}
\pi\left(: f_{1} \ldots f_{n}:\right) \Omega=\pi\left(f_{1}\right) \pi\left(: f_{2} \ldots f_{n}:\right) \Omega-\sum_{i=2}^{n}(-1)^{i}\left\langle f_{1}, f_{i}\right\rangle \pi\left(: f_{2} \ldots \hat{f}_{i} \ldots f_{n}:\right) \Omega \tag{2.3}
\end{equation*}
$$

$$
\begin{aligned}
& =\pi\left(f_{1}\right) C_{n-1}\left(f_{2}, \ldots, f_{n}\right) \Omega-\sum_{i=2}^{n}(-1)^{i}\left\langle f_{1}, f_{i}\right\rangle_{A} C_{n-2}\left(f_{2}, \ldots, \hat{f}_{i}, \ldots, f_{n}\right) \\
& =C_{n}\left(f_{1}, \ldots, f_{n}\right) \text { by definition of } \pi\left(f_{1}\right) .
\end{aligned}
$$

Thus $\left(\pi_{A}, F_{A}, \Omega_{A}\right)$ is a cyclic representation of the Clifford algebra $C(H)$. Define a state ω_{A} on $C(H)$ by $\omega_{A}(x)=\left\langle\pi_{A}(x) \Omega_{A}, \Omega_{A}\right\rangle$, for $x \in C(H)$. Claim that

$$
\begin{array}{rlrl}
\omega_{A}\left(f_{1} f_{2} \ldots f_{n}\right) & =0, & n \text { odd, } \\
& =P f\left[\left\langle f_{i}, f_{j}\right\rangle_{A}\right], & n \text { neven, } \\
\omega_{A}\left(: f_{m} \ldots f_{1}:: g_{1} \ldots g_{n}:\right)=\operatorname{det}\left[\left\langle f_{i}, g_{j}\right\rangle_{A}\right] \delta_{n m} . \tag{2.8}
\end{array}
$$

(2.7) follows from (2.2), and (2.8) is a consequence of (2.6), and $: f_{m} \ldots f_{1}: *=: f_{1} \ldots f_{m}$:

We summarise this by
Proposition 2.3. If A is a skew contraction on H, there exists an unique state ω_{A} on $C(H)$ such that

$$
\begin{array}{lr}
\omega_{A}\left(f_{1} \ldots f_{n}\right)=P f\left[\left\langle f_{i}, f_{j}\right\rangle_{A}\right] \quad \text { if } n \text { is even, } \\
\omega_{A}\left(f_{1} \ldots f_{n}\right)=0 & \text { if } n \text { is odd, } \\
\omega_{A}\left(: f_{m}, \ldots, f_{1}:: g_{1} \ldots g_{n}:\right)=\operatorname{det}\left[\left\langle f_{i}, f_{j}\right\rangle_{A}\right] \delta_{n m} .
\end{array}
$$

There is a grading $F_{A}=\bigoplus_{n=0}^{\infty} F_{A}^{n}$ of the GNS Hilbert space of ω_{A} such that the GNS vector Ω_{0} spans F_{A}^{0}, and if π_{A} is the GNS representation then $\left(f_{1}, \ldots, f_{n}\right)$ $\rightarrow \pi_{A}\left(: f_{1} \ldots f_{n}\right) \Omega_{A}$ is the minimal Kolmogorov decomposition of the positive definite kernel $\left(\left(f_{i}\right),\left(g_{i}\right)\right) \rightarrow\left[\operatorname{det}\left\langle f_{i}, g_{i}\right\rangle_{A}\right]$.

Remark 2.4. Note that the theory of quasi-free completely positive maps developed in $[3,5]$ can be transformed into the real setting, e.g. if T is a contraction between real Hilbert spaces H and K intertwining with skew contractions A and B, then there exists an unique unital completely positive map $C_{A}(T): C(H) \rightarrow C(K)$ such that

$$
C_{A}(T)\left(: f_{1} \ldots f_{n}:_{A}\right)=:\left(T f_{1}\right) \ldots\left(T f_{n}\right)_{B}, \quad f_{i} \in H .
$$

Moreover there exists an unique contraction $F_{A, B}(T)=\bigoplus_{n=0}^{\infty} F_{A, B}^{n}(T)$ from F_{A} into F_{B}, where $F_{A, B}^{n}(T): F_{A}^{n} \rightarrow F_{B}^{n}$ is given by

$$
F_{A, B}^{n}(T) \pi_{A}\left(: f_{1} \ldots f_{n}:_{A}\right) \Omega_{A}=\pi_{B}\left(:\left(T f_{1}\right) \ldots,\left(T f_{n}\right):_{B}\right) \Omega_{B}, \quad f_{i} \in H
$$

Remark 2.5. If A is a complex structure on H, let $a_{A}(f)=\frac{1}{2}[\Gamma(f)+i \Gamma(A f)], a_{A}^{*}(f)$ $=a_{A}(f)^{*}, f \in H$, denote the associated annihilation and creation operators. Then

$$
\pi_{A}\left(: f_{1} \ldots f_{n}:\right) \Omega_{A}=\pi_{A}\left(a_{A}^{*}\left(f_{1}\right) \ldots a_{A}^{*}\left(f_{n}\right)\right) \Omega_{A}
$$

so that F_{A}^{n} is the usual n-particle space. Moreover if T is a contraction commuting with A, then $F_{A}^{n}(T)=F_{A, A}^{n}(T)$ is the usual n-particle operator, and $F_{A}(T)=F_{A, A}(T)$ the usual second quantization.

3. The C^{*}-Algebra of the Ising Model

In order to establish our notation, we summarise here the C^{*}-formulation of the two dimensional Ising model with periodic boundary conditions. Full details may be found in $[24,11-13,9,10]$.

The two dimensional classical Ising model with nearest neighbour interactions can be reduced to a non-commutative one-dimensional system by means of the transfer matrix method. For a finite lattice

$$
\Lambda=\Lambda_{L N}=\left\{(i, j) \in \mathbb{Z}^{2}: 1 \leqq i \leqq L,-N \leqq j \leqq N\right\}
$$

$P(\Lambda)$ denotes the space $\{-1,+1\}^{\Lambda}$ of all configurations and the algebra of observables is $C(P(\Lambda))$, the space of all complex valued functions on $P(\Lambda)$. We will always impose periodic boundary conditions on our nearest neighbour Hamiltonians. The transfer matrix method takes us from observables in the commutative $C(P(\Lambda))$ and Gibbs states $\langle\cdot\rangle_{L N}$ on $C(P(\Lambda))$ to observables and certain states associated with a (non-commutative) Paulion algebra \mathscr{A}_{L} of $2^{L} \times 2^{L}$ complex matrices, or equivalently, a Clifford algebra $C\left(H_{L}\right)$ on a L-dimensional complex Hilbert space H_{L}. Thus if f is a local observable in $C\left(P\left(\Lambda_{L N_{0}}\right)\right)$, say, there exists an element a_{f} in $C\left(H_{L}\right)$ and a state $\varrho_{L N}$ on $C\left(H_{L}\right)$ such that $\langle f\rangle_{L N}=\varrho_{L N}\left(a_{f}\right)$ for all $N>N_{0}$. In fact, [identifying $C\left(H_{L}\right)$ with $M_{2 L}(\mathbb{C})$], $\varrho_{L N}$ is given by an operator $\left(V_{L}\right)^{2 N+1}$:

$$
\varrho_{L N}=\operatorname{tr}\left(\cdot V_{L}^{2 N+1}\right) / \operatorname{tr}\left(V_{L}^{2 N+1}\right)
$$

This reduction leads us to study the states $\varrho_{L N}$ on $C\left(H_{L}\right)$, and the thermodynamic limit ϱ on $C(H)$, if $H=\lim _{L} H_{L}$. The transfer matrix is the (normalised) limit of V_{L}, as $L \rightarrow \infty$. Our aim is to show the existence of this normalised limit in a suitable C^{*}-setting, and obtain some information on its spectrum for high temperatures. We now describe this set up in a little more detail.

First, in order to describe the Clifford algebra setting, let J be a fixed complex structure on a real infinite dimensional Hilbert space H, with inner product $s(\cdot, \cdot)$, Let $\left\{e_{n}: n=1,2, \ldots\right\}$ be a complete orthonormal basis for $\left(H^{J},\langle\cdot, \cdot\rangle_{J}\right)$ so that $\left\{e_{n}\right.$, $\left.J e_{n}: n=1, \ldots\right\}$ is a complete orthonormal basis for (H, s), and let E be the closed
subspace of (H, s) spanned by $\left\{e_{n}: n=1,2, \ldots\right\}$. Then $H=E \oplus J E$, and Λ the conjugation determined by J defined by $\Lambda \phi=\phi, \Lambda J \phi=-J \phi, \phi \in E$, satisfies $\Lambda^{2}=1$, $\Lambda J=-J \Lambda$ and $\tilde{P}=(1+\Lambda) / 2, \tilde{Q}=(1-\Lambda) / 2$ are the orthogonal projections on E, $J E$, respectively.

Let $H_{L} \subset H$ be the subspace spanned by $\left\{e_{n}, J e_{n}: n=1,2, \ldots, L\right\}$, and $s_{L}(\cdot, \cdot)$ (respectively, J_{L}, Λ_{L}, etc.) denote the restriction of $s(\cdot, \cdot)$ (respectively, J, Λ, etc.) to H_{L}.

The transformation of the classical theory to the Clifford algebras is done via Pauli algebras. Let \mathscr{A}_{L} be the Paulion algebra generated by $\left\{\sigma_{j}^{\alpha}: j=1, \ldots, L\right.$, $\alpha=x, y, z\}$ which obey mixed commutation relations $\left[\sigma_{j}^{\alpha}, \sigma_{k}^{\alpha^{\prime}}\right]_{-}=0, j \neq k, \sigma_{j}^{x} \sigma_{j}^{y}=i \sigma_{j}^{z}$ and cyc., $\left(\sigma_{j}^{\alpha}\right)^{2}=1$. Let \mathscr{H} be a two-dimensional Hilbert space with orthonormal basis $e(+)=\binom{1}{0}, e(-)=\binom{0}{1}$, and $\mathscr{H}_{L}=\underset{1}{\boxed{Q}} \mathscr{H}$. Let π_{L} be the representation of \mathscr{A}_{L} as bounded operators on \mathscr{H}_{L} by $\pi_{L}\left(\sigma_{i}^{\alpha}\right)=1 \otimes \ldots \otimes \sigma^{\alpha} \otimes \ldots \otimes 1, \alpha=x, y, z$ where σ^{x} $=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \sigma^{y}=\left(\begin{array}{rr}0 & -i \\ i & 0\end{array}\right)$.

The Jordan-Wigner transformation is a $*$-isomorphism $\eta_{L}: \mathscr{A}_{L} \rightarrow C\left(H_{L}\right)$ and is defined by

$$
\begin{gathered}
\eta\left(\sigma_{1}^{z}\right)=\Gamma\left(e_{1}\right) \\
\eta\left(\sigma_{1}^{y}\right)=-\Gamma\left(J e_{1}\right) \\
\eta\left(\sigma_{k}^{z}\right)=\prod_{n=1}^{k-1}\left[-i \Gamma\left(e_{n}\right) \Gamma\left(J e_{n}\right)\right] \Gamma\left(e_{k}\right), \quad k>1 \\
\eta\left(\sigma_{k}^{y}\right)=-\prod_{n=1}^{k-1}\left[-i \Gamma\left(e_{n}\right) \Gamma\left(J e_{n}\right)\right] \Gamma\left(J e_{k}\right), \quad k>1 .
\end{gathered}
$$

For each finite subset $\Theta \subset \mathbb{Z}^{2}$, let $U(\Theta)$ denote the C^{*}-algebra generated by $\left\{\sigma_{\theta}^{\alpha}: \theta \in \Theta, \alpha=x, y, z\right\}$ which obey $\left[\sigma_{\theta}^{\alpha}, \sigma_{\phi}^{\alpha^{\prime}}\right]_{-}=0, \theta \neq \phi, \sigma_{\theta}^{x} \sigma_{\theta}^{y}=i \sigma_{\theta}^{z}$ and cyc., $\left(\sigma_{\theta}^{\alpha}\right)^{2}=1$. Thus if $\Theta_{j}=\{(i, j): 1 \leqq i \leqq L\}, U\left(\Theta_{j}\right) \simeq \mathscr{A}_{L}$ for each j.

Taking $\Theta=\Lambda=\Lambda_{L N}$, the finite lattice described previously, the classical algebra $C(P(\Lambda))$ is isomorphic to the C^{*}-algebra generated by the third component Pauli matrices $\left\{\sigma_{\theta}^{z}: \theta \in \Lambda\right\} \subset U(\Lambda)$. Moreover, imposing nearest neighbour interactions, with periodic boundary conditions, the Hamiltonian of the finite system is the observable

$$
H_{L N}=-\sum_{i=1}^{L} \sum_{j=-N}^{N}\left[J_{2} \sigma_{(i, j)}^{z} \sigma_{(i+1, j)}^{z}+J_{1} \sigma_{(i, j)}^{z} \sigma_{(i, j+1)}^{z}\right]
$$

[where with abuse of notation, $\left(\sigma_{(L+1, j)}^{z}, \sigma_{(i, N+1)}^{z}\right)$ are identified with $\left(\sigma_{(1, j)}^{z}, \sigma_{(i,-N)}^{z}\right)$]. Here J_{1}, J_{2} are constants greater than zero.

Now any configuration $X=\left\{x_{i j}\right\}$, can be broken up as

$$
X=\left(\begin{array}{c}
y_{L}^{N}(X) \\
\vdots \\
y_{L}^{-N}(X)
\end{array}\right)
$$

if $y_{L}^{i}(x)=\left\{x_{1, i}, \ldots, x_{L, i}\right\} \in\{-1,+1\}^{L},-N \leqq i \leqq N$. We then have a decomposition

$$
H(X)=\sum_{j=-N}^{N} S\left(y_{L}^{j}\right)+\sum_{j=-N}^{N} I\left(y_{L}^{j+1}, y_{L}^{j}\right)
$$

in terms of the internal energies of the rows and the interaction energies between neighbouring rows if

$$
\begin{aligned}
& S\left(y_{L}^{j}\right)=-\sum_{i=1}^{L} J_{2} x_{i j} x_{i+1, j} \\
& I\left(y_{L}^{m}, y_{L}^{n}\right)=-\sum_{i=1}^{L} J_{1} x_{i m} x_{i n}
\end{aligned}
$$

identifying $x_{L+1, j}$ with $x_{1, j}$ and y_{L}^{N+1} with y_{L}^{-N} as usual.
The expectation value of any observable f is given by the Gibbs formula

$$
\langle f\rangle_{L N}^{P}=Z_{L N}^{-1} \sum_{X \in P(A)}\left\{f(X) \exp \left[-\beta H_{L N}(X)\right]\right\},
$$

where the partition function

$$
Z_{L N}=\sum_{X \in P(A)} \exp \left[-\beta H_{L N}(X)\right]
$$

and $\beta \geqq 0$ is the inverse temperature.
We now express this using the transfer matrix formalism. First, the partition function or free energy is given by

$$
\begin{aligned}
Z & =\sum_{X \in P(A)} \exp \left[-\beta H_{L N}(X)\right] \\
& =\sum T_{L}\left(y_{L}^{-N}, y_{L}^{-N+1}\right) T_{L}\left(y_{L}^{-N+1}, y_{L}^{-N+2}\right) \ldots T_{L}\left(y_{L}^{N-1}, y_{L}^{N}\right) T_{L}\left(y_{L}^{N}, y_{L}^{-N}\right) \\
& =\operatorname{tr} T_{L}^{2 N+1}
\end{aligned}
$$

if T, the transfer matrix is defined as the array

$$
T\left(y, y^{\prime}\right)=\exp -\beta\left\{\frac{1}{2}\left[S(y)+S\left(y^{\prime}\right)\right]+I\left(y, y^{\prime}\right)\right\}
$$

which is a $2^{L} \times 2^{L}$ matrix, if $y, y^{\prime} \in\{-1,+1\}^{L}$. Then T_{L} defines an element V_{L} in the Paulion algebra \mathscr{A}_{L} by

$$
\left\langle\pi\left(V_{L}\right) \bigotimes_{i=1}^{L} e\left(\alpha_{i}\right), \bigotimes_{j=1}^{L} e\left(\alpha_{j}^{\prime}\right)\right\rangle_{L}=T_{L}\left(y_{L}^{m}, y_{L}^{n}\right),
$$

where

$$
\begin{array}{llll}
\alpha_{i}= \pm & \text { if } & x_{i, m}= \pm 1 & y_{L}^{m}=\left\{x_{1, m}, \ldots, x_{L, m}\right\} \\
\alpha_{j}^{\prime}= \pm & \text { if } & x_{j, n}= \pm 1 & y_{L}^{n}=\left\{x_{1, n}, \ldots, x_{L, n}\right\}
\end{array}
$$

Then $Z=\operatorname{tr} \mathscr{H}_{L} \pi_{L}\left(V_{L}^{2 N+1}\right)$.
Similarly $\sum f(X) \exp [-\beta H(X)]$ can be computed for a local observable as follows. It will be enough to consider $f=\prod_{m=-N_{0}}^{N_{0}} f_{m} \in C\left(P\left(\Lambda_{L N_{0}}\right)\right.$), where each f_{m} is a
function of the $m^{\text {th }}$ row alone. Thus using the canonical basis

$$
\left\{\bigotimes_{i=1}^{L} e\left(\alpha_{i}\right): \alpha_{i} \in\{ \pm\}, i=1, \ldots, L\right\}
$$

for \mathscr{H}_{L}, each f_{m} determines a multiplication operator on \mathscr{H}_{L}, and hence an element \hat{f}_{m} in the Pauli algebra \mathscr{A}_{L}. Then for $N>N_{0}$:

$$
\begin{aligned}
\quad & \sum_{\left.X \in P\left(\Lambda_{L N}\right)\right)} f(X) \exp [-\beta H(X)] \\
= & \sum T_{L}\left(y_{L}^{-N}, y_{L}^{-N+1}\right) \ldots T_{L}\left(y_{L}^{-N_{0}+1}, y_{L}^{-N_{0}}\right) f_{-N_{0}}\left(y_{L}^{-N_{0}}\right) \\
& \cdot T_{L}\left(y_{L}^{-N_{0}}, y_{L}^{-N_{0}+1}\right) f_{-N_{0}+1}\left(y_{L}^{-N_{0}+1}\right) \ldots T_{L}\left(y_{L}^{N_{0}-1}, y_{L}^{N_{0}}\right) f_{N_{0}}\left(y_{L}^{N_{0}}\right) \\
\quad \cdot & T_{L}\left(y_{L}^{N_{0}}, y_{L}^{N_{0}+1}\right) \ldots T_{L}\left(y_{L}^{N-1}, y_{L}^{N}\right) T_{L}\left(y_{L}^{N}, y_{L}^{-N}\right) \\
= & \operatorname{tr} \mathscr{H}_{L}\left[\pi_{L}\left(V_{L}^{N-N_{0}} \hat{f}_{-N_{0}} V_{L} \hat{f}_{-N_{0}+1} \ldots \hat{f}_{N_{0}} V_{L}^{N-N_{0}+1}\right]\right. \\
= & \operatorname{tr} \mathscr{H}_{L} \pi_{L}\left(V_{L}^{2 N+1} a_{f}\right),
\end{aligned}
$$

if $a_{f}=V_{L}^{-N_{0}} \hat{f}_{-N_{0}} V_{L} \ldots \hat{f}_{N_{0}} V_{L}^{-N_{0}} \in \mathscr{A}_{L}$.
Define states $\varrho_{L N}$ on \mathscr{A}_{L} by

$$
\varrho_{L N}(a)=\operatorname{tr} \mathscr{H}_{L}\left[\pi_{L}(a)\left(V_{L}\right)^{2 N+1}\right] / \operatorname{tr} \mathscr{H}_{L} \pi_{L}\left(V_{L}\right)^{2 N+1}
$$

By linearity if f is a local observable, in $C\left(P\left(\Lambda_{L N_{0}}\right)\right)$ say, then there exists $a_{f} \in \mathscr{A}_{L}$ such that

$$
\langle f\rangle_{L N}=\varrho_{L N}\left(a_{f}\right) \quad \text { for all large enough } N .
$$

Now

$$
V_{L}=\left[2 \sinh \left(2 K_{1}\right)\right]^{L / 2}\left(V_{2, L}\right)^{1 / 2} V_{1, L}\left(V_{2, L}\right)^{1 / 2}
$$

where

$$
\begin{gathered}
V_{1, L}=\exp \left(K_{1}^{*} \sum_{i=1}^{L} \sigma_{i}^{x}\right) \\
V_{2, L}=\exp \left(K_{2} \sum_{i=1}^{L} \sigma_{i}^{z} \sigma_{i+1}^{z}\right), \quad \sigma_{L+1}^{z}=\sigma_{1}^{z}
\end{gathered}
$$

and

$$
\begin{equation*}
e^{-2 K_{1}}=\tanh K_{1}^{*} \quad K_{i}=\beta J_{i} . \tag{3.1}
\end{equation*}
$$

Let $U_{L}=\prod_{k=1}^{L}\left[-i \Gamma\left(e_{k}\right) \Gamma\left(J_{L} e_{k}\right)\right] \in C\left(H_{L}\right)$, which is a self adjoint unitary such that $U_{L} \Gamma(\phi)=-\Gamma(\phi) U_{L}, \phi \in H_{L}$, with spectral projections $\bar{P}_{L}=\left(1+U_{L}\right) / 2, \bar{Q}_{L}$ $=\left(1-U_{L}\right) / 2$. Define operators $W_{L}^{ \pm}$on H_{L} by

$$
\begin{gather*}
W_{L}^{ \pm} e_{j}=e_{j+1}, \quad W_{L}^{ \pm} J_{L} e_{j}=J_{L} e_{j+1}, \quad 1 \leqq j \leqq L-1 \tag{3.2}\\
W_{L}^{ \pm} e_{L}= \pm e_{1}, \quad W_{L}^{ \pm} J_{L} e_{L}= \pm J_{L} e_{1}
\end{gather*}
$$

Define

$$
\begin{equation*}
\eta\left(V_{2, L}^{ \pm}\right)=\exp \left\{-i K_{2} \sum_{k=1}^{L} \Gamma\left(J_{L} e_{k}\right) \Gamma\left(W_{L}^{ \pm} e_{k}\right)\right\} . \tag{3.3}
\end{equation*}
$$

Then $\eta\left(V_{L}\right)=\left(2 \sinh 2 K_{1}\right)^{L / 2}\left[\eta\left(V_{L}^{-}\right) \bar{P}_{L}+\eta\left(V_{L}^{+}\right) \bar{Q}_{L}\right]$, where

$$
\begin{equation*}
V_{L}^{ \pm}=\left(V_{2, L}^{ \pm}\right)^{1 / 2} V_{1, L}\left(V_{2, L}^{ \pm}\right)^{1 / 2} \tag{3.4}
\end{equation*}
$$

Define operators $\gamma_{L}^{ \pm}, \delta_{L}^{* \pm}, A_{L}^{ \pm}, \theta_{L}^{ \pm}, S_{L}^{ \pm}$on H_{L} by

$$
\begin{equation*}
\cosh \gamma_{L}^{ \pm}=\cosh 2 K_{1}^{*} \cosh 2 K_{2} 1-\sinh 2 K_{1}^{*} \sinh 2 K_{2}\left(W_{L}^{ \pm}+\left(W_{L}^{ \pm}\right)^{-1}\right) / 2 \tag{3.5}
\end{equation*}
$$

$\sinh \gamma_{L}^{ \pm} \cos \delta_{L}^{* \pm}=\cosh 2 K_{1}^{*} \sinh 2 K_{2} 1-\sinh 2 K_{1}^{*} \cosh 2 K_{2}\left(W_{L}^{ \pm}+\left(W_{L}^{ \pm}\right)^{-1}\right) / 2$, (3.6)

$$
\begin{gather*}
\sinh \gamma_{L}^{ \pm} \sin \delta_{L}^{* \pm}=\sinh 2 K_{1}^{*}\left[\left(W_{L}^{ \pm}-\left(W^{ \pm}\right)^{-1}\right) / 2\right]\left(-J_{L}\right) \tag{3.7}\\
A_{L}^{ \pm}=-J_{L} \exp \left[J_{L} \Lambda_{L} \delta_{L}^{* \pm}\right]\left[\left(W_{L}^{ \pm}\right)^{-1} \tilde{P}_{L}+W_{L}^{ \pm} \tilde{Q}_{L}\right] \\
=J_{L} \exp \left[2 J_{L} \Lambda_{L} \theta_{L}^{ \pm}\right]=S_{L}^{ \pm} J_{L}\left(S_{L}^{ \pm}\right)^{-1} \tag{3.8}\\
S_{L}^{ \pm}=\exp \left[-J_{L} \Lambda_{L} \theta_{L}^{ \pm}\right] \tag{3.9}
\end{gather*}
$$

Then

$$
\begin{equation*}
\eta\left(V_{L}^{ \pm}\right) \Gamma(x) \eta\left(V_{L}^{ \pm}\right)^{-1}=\Gamma\left(\cosh \gamma_{L}^{ \pm} x\right)+i \Gamma\left(\sinh \gamma_{L}^{ \pm} A_{L}^{ \pm} x\right) ; \quad x \in H_{L} . \tag{3.10}
\end{equation*}
$$

On the complexification $H_{L}^{J_{L}}$, the spectra of $W_{L}^{ \pm}$are:

$$
\begin{gathered}
\sigma\left(W_{L}^{+}\right)=\left\{\exp \left(i \omega_{k, L}^{+}\right) \in \mathbb{C}: \omega_{k, L}^{+}=2 k \pi / L, k=1, \ldots, L\right\}, \\
\sigma\left(W_{L}^{-}\right)=\left\{\exp i \omega_{k, L}^{-} \in \mathbb{C}: \omega_{k, L}^{-}=(2 k+1) \pi / L, k=1, \ldots, L\right\},
\end{gathered}
$$

and

$$
\begin{equation*}
W_{L}^{ \pm} g_{k, L}^{ \pm}=e^{i \omega_{\bar{k}, L}^{ \pm}} g_{k, L}^{ \pm} \tag{3.11}
\end{equation*}
$$

if

$$
\begin{equation*}
g_{k, L}^{ \pm}=L^{-1 / 2} \sum_{n=1}^{L} e^{-J_{L} \omega_{k}^{ \pm}, L^{n}} e_{n}, \tag{3.12}
\end{equation*}
$$

so that $\left\{g_{k, L}^{ \pm}, J_{L} g_{k, L}^{ \pm}\right\}_{k=1}^{L}$ are orthonormal bases for H_{L}.
If we let $a_{J_{L}}^{*}(\cdot)$ denote the creation operators of the complex structure J_{L}, as in Remark 2.5, and $\Omega_{L}=\bigotimes_{k=1}^{L} e$, where $e=[e(+)+e(-)] / \sqrt{2}$, then $\pi \eta^{-1} a_{J_{L}}(f) \Omega_{L}=0$, $f \in H_{L}$, and so $\left(\pi \eta^{-1}, \mathscr{H}_{L}, \Omega_{L}\right)$ can be identified with the GNS decomposition of $\omega_{J_{L}}$. Moreover

$$
\begin{equation*}
\pi \eta^{-1}\left(\bar{P}_{L}\right) \Omega_{L}=\Omega_{L}, \quad \pi \eta^{-1}\left(\bar{Q}_{L}\right) \Omega_{L}=0 \tag{3.13}
\end{equation*}
$$

The Bogoliubov automorphisms $\alpha\left(S_{L}^{ \pm}\right): a_{J_{L}}(f) \rightarrow a_{A_{L}^{ \pm}}\left(S_{L}^{ \pm} f\right)$ are implemented by

$$
S_{L}^{ \pm}=\exp \left\{i \sum_{0 \leqq \omega_{k}^{ \pm} \leqq \pi} \theta\left(\omega_{k, L}^{ \pm}\right)\left[a_{J_{L}}^{*}\left(g_{k, L}^{ \pm}\right) a_{J_{L}}^{*}\left(\Lambda_{L} g_{k, L}^{ \pm}\right)-a_{J_{L}}\left(g_{k, L}^{ \pm}\right) a_{J_{L}}\left(\Lambda_{L} g_{k, L}^{ \pm}\right)\right]\right\}
$$

where

$$
\begin{gather*}
\cosh \gamma(\omega)=2 \cosh 2 K_{1}^{*} \cosh 2 K_{2}-\sinh 2 K_{1}^{*} \sinh 2 K_{2} \cos \omega \tag{3.14}\\
\sinh \gamma(\omega) \cos \delta^{*}(\omega)=\cosh 2 K_{1}^{*} \sinh 2 K_{2}-\sinh 2 K_{1}^{*} \cosh 2 K_{2} \cos \omega \tag{3.15}\\
\sinh \gamma(\omega) \sin \delta^{*}(\omega)=\sinh 2 K_{1}^{*} \sin \omega \tag{3.16}\\
2 \theta(\omega)=\delta^{*}(\omega)+\omega-\pi \tag{3.17}
\end{gather*}
$$

For $\beta<\beta_{c}$ (i.e. $K_{2}<K_{1}^{*}$), the principal eigenvalue of $\pi_{L}\left(V_{L}\right)$ is asymptotically non-degenerate and its eigenvector is $\psi_{L}^{-}=\pi_{L} \eta^{-1}\left(S_{L}^{-}\right) \Omega_{L}$. Thus

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \varrho_{L N}(\cdot) & =\left\langle\pi_{L} \eta^{-1}(\cdot) \psi_{L}^{-}, \psi_{L}^{-}\right\rangle \\
& =\omega_{J_{L}} \circ \alpha S_{L}^{-} \circ \eta^{-1} \\
& =\omega_{A_{\bar{L}}} \circ \eta^{-1}, \quad \text { by (3.7), [12, Theorem 1]. }
\end{aligned}
$$

Then for a local observable f,

$$
\langle f\rangle_{\infty}=\lim _{L \rightarrow \infty} \lim _{N \rightarrow \infty}\langle f\rangle_{L N}=\lim _{L \rightarrow \infty} \omega_{A_{\bar{L}}}\left(\eta^{-1}\left(a_{f}\right)\right)
$$

The weak $\lim _{L \rightarrow \infty} A_{L}^{ \pm}$exists and can be described as follows. Let L_{2} be the real Hilbert space of complex-valued square integrable functions on $[0,2 \pi]$ with inner product $\check{s}(f, g)=\operatorname{re} \frac{1}{2 \pi} \int_{0}^{2 \pi} f \bar{g}$, and complexification $(i f)(x)=i f(x)$. Then L_{2}^{i} is the complexification with inner product $\langle\cdot, \cdot\rangle$ say. If $\chi_{n}(p)=e^{i n p}, p \in[0,2 \pi]$, then $\left\{\chi_{n}: n \in \mathbb{Z}\right\}$ (respectively $\left\{\chi_{n}, i \chi_{n}: n \in \mathbb{Z}\right\}$) is a complete orthonormal basis for L_{2}^{i} (respectively L_{2}). Define $L_{2,+}^{i}$ (respectively $L_{2,+}$) to be the closed linear span of $\left\{\chi_{n}: n=1,2, \ldots\right\}$ (respectively $\left\{\chi_{n}, i \chi_{n}: n=1,2, \ldots\right\}$) in L_{2}^{i} (respectively L_{2}). Then $F\left(e_{n}\right)=\chi_{n}$ defines a unitary operator F of (H, S) onto ($\left.L_{2,+}, s\right)$ and $\left(H^{J}, s\right)$ onto $\left(L_{2,+}^{i},(\cdot, \cdot)\right)$. If A is a bounded linear operator on H or H^{J}, let $\check{A}=F A F^{-1}$.

If $\phi \in L_{\mathbb{C}}^{\infty}[0,2 \pi]$, let $M(\phi)$ denote the corresponding multiplication operator on $L_{2}\left(\right.$ or $\left.L_{2}^{i}\right)$. If E denotes the orthogonal projection of L_{2} on $L_{2,+}\left(\right.$ or L_{2}^{i} on $L_{2,+}^{i}$), and $\phi \in L_{\mathbb{C}}^{\infty}[0,2 \pi]$ let $T_{\phi}=T(\phi)$ denote the Toeplitz operator which is the restriction of $E M(\phi)$ to $L_{2,+}$ (or $L_{2,+}^{i}$, respectively). Let $t(p)=\exp (2 i \theta(p)), p \in[0,2 \pi]$. Then $A=w k \lim A_{L}^{ \pm}$, where

$$
\begin{equation*}
\check{A}=\check{J} T_{t^{-1}} \check{\tilde{p}}+\check{J} T_{t} \check{\tilde{Q}} \tag{3.18}
\end{equation*}
$$

The phase transition manifests itself by a jump in the mod-2 index of $A[24,12$, 13, 9]. For $\beta<\beta_{c}$ (i.e. $K_{2}<K_{1}^{*}$), index $A=0$ and ω_{A} is primary, and for $\beta>\beta_{c}$ (i.e. $K_{2}>K_{1}^{*}$), index $A=1$ and ω_{A} is non-primary.

4. The Spectrum of the Transfer Matrix in the Thermodynamic Limit at High Temperature

Let $C_{00}(H)$ denote the *-sub-algebra of $C(H)$ generated by $\bigcup_{L} H_{L}$, so that $C_{00}(H)$ $=\bigcup_{L} C\left(H_{L}\right)$. Suppressing the representation of $C\left(H_{L}\right)$ on \mathscr{H}_{L}^{L}, we can write

$$
\omega_{A_{\bar{L}}}=\left\langle(\cdot) \Omega_{L}, \Omega_{L}\right\rangle
$$

and similarly we let $C(H)$ act on F_{A}, the GNS Hilbert space of ω_{A}, and write

$$
\omega_{A}=\langle(\cdot) \Omega, \Omega\rangle, \quad \text { where } \quad \Omega=\Omega_{A} .
$$

Proposition 4.1. There exists self adjoint contractions $P_{\infty}, P_{\infty}^{-}$on F_{A} such that

$$
\begin{align*}
& \lim _{L \rightarrow \infty}\left\langle\frac{n\left(V_{L}\right)}{\lambda_{L}} x \Omega_{L}, y \Omega_{L}\right\rangle=\left\langle P_{\infty} x \Omega, y \Omega\right\rangle \tag{4.1}\\
& \lim _{L \rightarrow \infty}\left\langle\frac{n\left(V_{L}^{-}\right)}{\lambda_{L}} x \Omega_{L}, y \Omega_{L}\right\rangle=\left\langle P_{\infty}^{-} x \Omega, y \Omega\right\rangle \tag{4.2}
\end{align*}
$$

for all $x, y \in C_{00}(H)$, and where λ_{L} denotes the maximum eigenvalue of V_{L}. Proof. Ω_{L} is the eigenvector of $\eta\left(V_{L}\right)$ with eigenvalue λ_{L} (Sect. 3) so that

$$
\left\langle\eta\left(V_{L}\right) x \Omega_{L}, y \Omega_{L}\right\rangle / \lambda_{L}=\left\langle\eta\left(V_{L}\right) x \eta\left(V_{L}\right)^{-1} \Omega_{L}, y \Omega_{L}\right\rangle .
$$

We claim that $\lim _{L \rightarrow \infty}\left\langle\eta\left(V_{L}\right) x \eta\left(V_{L}^{-1}\right) \Omega_{L}, y \Omega_{L}\right\rangle$ exists for all x, y in $C_{00}(H)$. Now

$$
\begin{equation*}
\eta\left(V_{L}\right)=\left(2 \sinh 2 K_{1}\right)^{L / 2}\left[\eta\left(V_{L}^{+}\right) \bar{Q}_{L}+\eta\left(V_{L}^{-}\right) \bar{P}_{L}\right] \tag{3.4}
\end{equation*}
$$

and $\bar{P}_{L} \Gamma(\phi)=\Gamma(\phi) \bar{Q}_{L}$ for all ϕ in H_{L}.
Let $x=\Gamma\left(\phi_{1}\right) \ldots \Gamma\left(\phi_{m}\right), y=\Gamma\left(\psi_{n}\right) \ldots \Gamma\left(\psi_{1}\right)$, where $\phi_{i}, \psi_{j} \in H_{L_{0}}$, and $L_{0}<\infty$. Then

$$
\begin{aligned}
& \left\langle\eta\left(V_{L}\right) x \eta\left(V_{L}^{-1}\right) \Omega_{L}, y \Omega_{L}\right\rangle \\
& =\left\langle\left(\eta\left(V_{L}^{+}\right) \bar{Q}_{L}+\eta\left(V_{L}^{-}\right) \bar{P}_{L}\right) x \eta\left(V_{L}^{-}\right)^{-1} \Omega_{L}, y \Omega_{L}\right\rangle \quad \text { by (3.13) } \\
& = \begin{cases}\left\langle\eta\left(V_{L}^{-}\right) \bar{P}_{L} x \eta\left(V_{L}^{-}\right)^{-1} \Omega_{L}, y \Omega_{L}\right\rangle & \text { if } m \text { even } \\
\left\langle\eta\left(V_{L}^{+}\right) \bar{Q}_{L} x \eta\left(V_{L}^{-}\right)^{-1} \Omega_{L}, y \Omega_{L}\right\rangle & \text { if } m \text { odd }\end{cases} \\
& = \begin{cases}\left\langle\eta\left(V_{L}^{-}\right) x\left(V_{L}^{-}\right)^{-1} \Omega_{L}, y \Omega_{L}\right\rangle & \text { if } m \text { and } n \text { even } \\
\left\langle\eta\left(V_{L}^{+}\right) x\left(V_{L}^{-}\right)^{-1} \Omega_{L}, y \Omega_{L}\right\rangle & \text { if } m \text { and } n \text { odd } \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

Case (i). m and n even.
Then

$$
\begin{aligned}
& \left\langle V_{L}^{-} \phi_{1} \ldots \phi_{n}\left(V_{L}^{-}\right)^{-1} \Omega_{L}, \psi_{s} \ldots \psi_{1} \Omega_{L}\right\rangle \\
& \quad=\left\langle\prod_{j=1}^{m}\left[\cosh \gamma_{L}^{-} \phi_{j}+i A_{L}^{-} \sinh \gamma_{L}^{-} \phi_{j}\right] \Omega_{L}, \psi_{n} \ldots \psi_{1} \Omega_{L}\right\rangle
\end{aligned}
$$

by (3.10). Expanding this as a Pfaffian (2.7), one has a finite sum of products where each factor is one of the following three kinds:

$$
\begin{gather*}
\omega_{A_{\bar{L}}}\left(\psi_{j} \psi_{k}\right), \text { which converges to } \omega_{A}\left(\psi_{j} \psi_{k}\right) \text { as } L \rightarrow \infty, \tag{4.2a}\\
\omega_{A_{\bar{L}}}\left(\psi_{j} \cosh \gamma_{L}^{-} \phi_{k}\right)=s\left(\psi_{j}, \cosh \gamma_{L}^{-} \phi_{k}\right)+i s\left(A_{\bar{L}}^{-} \psi_{j}, \cosh \gamma_{L}^{-} \phi_{k}\right) . \tag{4.2b}
\end{gather*}
$$

Proceeding as in [9], take $\psi_{j}=e_{r}, \phi_{k}=e_{s}$, where $e_{r}=\frac{1}{L^{1 / 2}} \sum_{l=1}^{L} e^{J_{L} \omega_{l}, L} g_{l, L}^{-}$, and
using $A_{L}^{-}=J_{L}\left\{\cos 2 \theta_{L}^{-}+J_{L} \Lambda_{L} \sin 2 \theta_{L}^{-}\right\}$, we have:

$$
\begin{aligned}
& s\left(A_{L}^{-} e_{r}, \cosh \gamma_{L}^{-} e_{s}\right) \\
&= \frac{1}{L} \sum_{l, t} s\left(\left(J_{L} \cos 2 \theta_{L}^{-}-\sin 2 \theta_{L}^{-}\right) e^{J \omega_{l, L}^{-} r} g_{l, L}^{-}, \cosh \left(\gamma_{L}^{-}\right) e^{J \omega_{t, L}^{-}} g_{t, L}^{-}\right) \\
&= \frac{1}{L} \sum_{l, t} s\left(\cosh \left(\gamma_{L}^{-}\right)\left[J_{L} \cos 2 \theta_{L}^{-}-\sin 2 \theta_{L}^{-}\right] e^{J\left(\omega_{1, L}^{-} r-\omega_{t, L s}^{-} s\right)} g_{1, L}^{-}, g_{t, L}^{-}\right) \\
&= \frac{1}{L} \sum_{l, t} s\left(\operatorname { c o s h } \gamma _ { L } ^ { - } [J _ { L } \operatorname { c o s } 2 \theta _ { L } ^ { - } - \operatorname { s i n } 2 \theta _ { L } ^ { - }] \left[\cos \left(\omega_{l, L}^{-} r-\omega_{t, L}^{-} s\right)\right.\right. \\
&\left.\left.-J \sin \left(\omega_{l, L}^{-} r-\omega_{t, L}^{-} s\right)\right] g_{1, L}^{-}, g_{l, L}^{-}\right) \\
&=-\frac{1}{L} \sum_{l, t} \cosh \gamma\left(\omega_{l, L}^{-}\right)\left[\sin 2 \theta\left(\omega_{l, L}^{-}\right) \cos \left(\omega_{l, L}^{-} r-\omega_{t, L}^{-} s\right)\right. \\
&\left.-\cos 2 \theta\left(\omega_{l, L}^{-}\right) \sin \left(\omega_{l, L}^{-} r-\omega_{t, L}^{-} s\right)\right] \delta_{l, t} \\
&=-\frac{1}{L} \sum^{\cosh \gamma\left(\omega_{l, L}^{-}\right)\left[\sin \left(2 \theta\left(\omega_{l, L}^{-}\right)+\omega_{l, L}^{-}(r-s)\right]\right.} \\
& \rightarrow \frac{-1}{2 \pi} \int_{0}^{2 \pi} \cosh \gamma(\omega) \sin [2 \theta(\omega)+\omega(r-s)] d \omega,
\end{aligned}
$$

a Riemann integral as $L \rightarrow \infty$.
In this way one sees as in [9] for the computation of $w k$ limit A_{L}^{-}that

$$
s\left(A_{L}^{-} \phi, \cosh \gamma_{L}^{-} \psi\right) \rightarrow s(B \phi, \psi) \text { as } L \rightarrow \infty, \text { for } \phi, \psi \in H_{L_{0}}
$$

 where $\check{C}=T(\cosh \gamma)$

$$
\begin{equation*}
\omega_{A_{\bar{L}}}\left(\psi_{j} A_{L}^{-} \sinh \gamma_{L}^{-} \phi_{k}\right) \tag{4.2c}
\end{equation*}
$$

This is similar to the previous case.

$$
\begin{align*}
& {\left[\omega_{A_{\bar{L}}}\left(\Gamma\left(\cosh \gamma_{L}^{-} \phi_{j}\right) i \Gamma\left(A_{L}^{-} \sinh \gamma_{L}^{-} \phi_{k}\right)\right)+\omega_{A_{\bar{L}}}\left(i \Gamma\left(A_{L}^{-} \sinh \gamma_{L}^{-} \phi_{j}\right) \Gamma\left(\cosh \gamma_{L}^{-} \phi_{k}\right)\right)\right]=0,} \\
& \quad\left[\omega_{A_{\bar{L}}} \Gamma\left(\cosh \gamma_{\bar{L}}^{-} \phi_{j}\right) \Gamma\left(\cosh \gamma_{L}^{-} \phi_{k}\right)+\omega_{A_{\bar{L}}}\left(i \Gamma\left(A_{L}^{-} \sinh \gamma_{L}^{-} \phi_{j}\right) i \Gamma\left(A_{L}^{-} \sinh \gamma_{L}^{-} \phi_{k}\right)\right)\right] \tag{4.2d}
\end{align*}
$$

and so is the same as case (4.2a).
Hence case (i) is established.
Case (ii) m and n odd.
We compute

$$
\left\langle V_{L}^{+} x\left(V_{L}^{-}\right)^{-1} \Omega_{L}, y \Omega_{L}\right\rangle=\left\langle V_{L}^{+}\left(V_{L}^{-}\right)^{-1}\left[V_{L}^{-} x\left(V_{L}^{-}\right)^{-1}\right] \Omega_{L}, y \Omega_{L}\right\rangle,
$$

where

$$
V_{L}^{+}\left(V_{L}^{-}\right)^{-1}=\left(V_{2, L}^{+}\right)^{1 / 2} V_{1, L}\left(V_{2, L}^{+}\right)^{1 / 2}\left(V_{2, L}^{-}\right)^{-1 / 2} V_{1, L}^{-1}\left(V_{2, L}^{-}\right)^{-1 / 2} .
$$

Now

$$
\begin{gathered}
\eta\left(V_{2, L}^{ \pm}\right)=\prod_{k=1}^{L} \exp -i K_{2}\left[\Gamma\left(J_{L} e_{k}\right) \Gamma\left(W_{L}^{ \pm} e_{k}\right)\right] \\
\eta\left[\left(V_{2, L}^{+}\right)^{1 / 2}\left(V_{2, L}^{-}\right)^{-1 / 2}\right]=\exp -i K_{2}\left[\Gamma\left(J_{L} e_{L}\right) \Gamma\left(e_{1}\right)\right]
\end{gathered}
$$

and $\eta\left(V_{1, L}\right)=\prod_{k=1}^{L} \exp -i K_{1}^{*}\left[\Gamma\left(e_{k}\right) \Gamma\left(J_{L} e_{k}\right)\right]$. Now if ϕ, ψ are orthogonal unit vectors, $\alpha \in \mathbb{C}$, then $\operatorname{Ad}(\exp \alpha \Gamma(\phi) \Gamma(\psi)) \Gamma(f)=\Gamma(g)$, if

$$
\begin{equation*}
g=f+\sin 2 \alpha[s(\psi, f) \phi-s(\phi, f) \psi]-(1-\cos 2 \alpha)[s(\psi, f) \psi+s(\phi, f) \phi] . \tag{4.3}
\end{equation*}
$$

Hence

$$
\operatorname{Ad}\left[\exp -i K_{1}^{*} \Gamma\left(e_{1}\right) \Gamma\left(J_{L} e_{1}\right)\right]\left(\Gamma\left(e_{1}\right)\right)=\cosh \left(2 K_{1}^{*}\right) \Gamma\left(e_{1}\right)+i \sinh \left(2 K_{1}^{*}\right) \Gamma\left(J_{L} e_{1}\right),
$$

and

$$
\operatorname{Ad}\left[\exp -i K_{1}^{*} \Gamma\left(e_{L}\right) \Gamma\left(J_{L} e_{L}\right)\right]\left(\Gamma\left(J_{L} e_{L}\right)\right)=\cosh 2 K_{1}^{*} \Gamma\left(J_{L} e_{L}\right)-i \sinh 2 K_{1}^{*} \Gamma\left(e_{L}\right) .
$$

Thus

$$
\begin{aligned}
& \eta\left(V_{1, L}\left(V_{2, L}^{+}\right)^{1 / 2}\left(V_{2, L}^{-}\right)^{-1 / 2} V_{1, L}^{-1}\right) \\
& \quad=\exp -i K_{2}\left\{[\Gamma (\operatorname { c o s h } 2 K _ { 1 } ^ { * } J _ { L } e _ { L } - i \operatorname { s i n h } 2 K _ { 1 } ^ { * } e _ { L })] \left[\Gamma \left(\cosh 2 K_{1}^{*} e_{1}\right.\right.\right. \\
& \left.\left.\left.+i \sinh 2 K_{1}^{*} J_{L} e_{1}\right)\right]\right\} .
\end{aligned}
$$

Similarly,

$$
\begin{gathered}
\operatorname{Ad}\left[\exp \left(\frac{-i K_{2}}{2} \Gamma\left(J_{L} e_{1}\right) \Gamma\left(e_{2}\right)\right) \exp \left(\frac{-i K_{2}}{2} \Gamma\left(J_{L} e_{L-1}\right) \Gamma\left(e_{L}\right)\right)\right] \\
\left\{\eta\left[V_{1, L}\left(V_{2, L}^{+}\right)^{1 / 2}\left(V_{2 L}^{-}\right)^{-1 / 2} V_{1, L}^{-1}\right]\right\}=\exp -i K_{2} \Gamma\left(f_{L}\right) \Gamma\left(\theta_{1}\right) \text { for } L>2,
\end{gathered}
$$

if

$$
\begin{gathered}
f_{L}=\cosh 2 K_{1}^{*} J_{L} e_{L}-i \sinh 2 K_{1}^{*}\left(\cosh K_{2} e_{L}-i \sinh K_{2} J_{L} e_{L-1}\right), \\
\theta_{1}=\cosh 2 K_{1}^{*} e_{1}+i \sinh 2 K_{1}^{*}\left(\cosh K_{2} J_{L} e_{1}+i \sinh K_{2} e_{2}\right) .
\end{gathered}
$$

Hence

$$
\begin{gathered}
\eta\left(V_{L}^{+}\left(V_{L}^{-}\right)^{-1}\right)=\exp -\frac{i K_{2}}{2} \Gamma\left(J_{L} e_{L}\right) \Gamma\left(W_{L}^{+} e_{L}\right), \\
\operatorname{Ad}\left\{\prod_{k=1}^{L-1}\left(\exp -\frac{i K_{2}}{2} \Gamma\left(J_{L} e_{k}\right) \Gamma\left(W_{L}^{+} e_{k}\right)\right)\right\} \\
\cdot\left[\eta\left(V_{1, L}\left(V_{2, L}^{+}\right)^{1 / 2}\left(V_{2, L}^{-}\right)^{-1 / 2} V_{1, L}^{-1}\right)\right] \exp +\frac{i K_{2}}{2} \Gamma\left(J_{L} e_{L}\right) \Gamma\left(W_{L}^{-} e_{L}\right) \\
= \\
\exp \left[-i \frac{K_{2}}{2} \Gamma\left(J_{L} e_{L}\right) \Gamma\left(e_{1}\right)\right] \exp \left[-i K_{2} \Gamma\left(f_{L}\right) \Gamma\left(\theta_{1}\right)\right] \\
\cdot \exp \left[\frac{-i K_{2}}{2} \Gamma\left(J_{L} e_{L}\right) \Gamma\left(e_{1}\right)\right] .
\end{gathered}
$$

Now $\left\|f_{L}\right\|^{2}=\left\|\theta_{1}\right\|^{2}=a^{2}$ say, which is independent of L, and if f, g are orthogonal unit vectors in H, then $\exp \alpha \Gamma(f) \Gamma(g)=\cos \alpha+\sin \alpha \Gamma(f) \Gamma(g)$. Thus

$$
\begin{align*}
\eta\left(V_{L}^{+}\left(V_{L}^{-}\right)^{-1}\right)= & \left(\operatorname { c o s h } \left(K_{2} / 2-i \sinh \left(K_{2} / 2\right) \Gamma\left(J_{L} e_{L}\right) \Gamma\left(e_{1}\right)\right.\right. \\
& \cdot\left(\cosh \left(K_{2} a^{2}\right)+\sinh \left(K_{2} a^{2}\right) a^{-2} \Gamma\left(f_{L}\right) \Gamma\left(\theta_{1}\right)\right) \\
& \cdot\left(\cosh \left(K_{2} / 2\right)-i \sinh \left(K_{2} / 2\right) \Gamma\left(J_{L} e_{L}\right) \Gamma\left(e_{1}\right)\right) \\
= & {\left[\cosh K_{2}-i \sinh K_{2} \Gamma\left(J_{L} e_{L}\right) \Gamma\left(e_{1}\right)\right] } \\
& \cdot\left[\cosh \left(K_{2} a^{2}\right)-i \sinh \left(K_{2} a^{2}\right) a^{-2} \Gamma\left(g_{L}\right) \Gamma\left(\alpha_{1}\right)\right], \tag{4.4}
\end{align*}
$$

where

$$
\begin{aligned}
g_{L}= & \cosh 2 K_{1}^{*}\left(\cosh K_{2} J_{L} e_{L}-i \sinh K_{2} e_{1}\right) \\
& -i \sinh 2 K_{1}^{*}\left(\cosh K_{2} e_{L}-i \sinh K_{2} J_{L} e_{L-1}\right), \\
\alpha_{1}= & \cosh 2 K_{1}^{*}\left(\cosh K_{2} e_{1}+i \sinh K_{2} J_{L} e_{L}\right) \\
& +i \sinh 2 K_{1}^{*}\left(\cosh K_{2} J_{L} e_{1}+i \sinh K_{2} e_{2}\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left\langle V_{L}^{+} x\left(V_{L}^{-}\right)^{-1} \Omega_{L}, y \Omega_{L}\right\rangle= & \left\langle(\operatorname { c o s h } K _ { 2 } - i \operatorname { s i n h } K _ { 2 } \Gamma (J _ { L } e _ { L }) \Gamma (e _ { 1 })) \left(\cosh \left(K_{2} a^{2}\right)\right.\right. \\
& \left.-i \sinh \left(K_{2} a^{2}\right) a^{-2} \Gamma\left(g_{L}\right) \Gamma\left(\alpha_{1}\right)\right] \\
& \cdot \prod\left[\Gamma\left(\cosh \gamma_{L}^{-} \phi_{j}\right)+i \Gamma\left(A_{L}^{-} \sinh \gamma_{L}^{-} \phi_{j}\right) \Omega_{L}, \prod \Gamma\left(\psi_{k}\right) \Omega_{L}\right\rangle .
\end{aligned}
$$

Using the Pfaffian expansion, we see that we must consider the limits in the previous expressions (4.2a)-(4.2e), where ϕ and or ψ are replaced by one of $e_{L}, J_{L} e_{L}, J_{L} e_{L-1}$: e.g.

$$
\begin{aligned}
s\left(A_{L}^{-} e_{r}, \cosh \gamma_{L}^{-} e_{L}\right)= & \frac{1}{L} \sum_{l} \cosh \gamma\left(\omega_{l, L}^{-}\right)\left[\sin \left(2 \theta\left(\omega_{l, L}^{-}\right)-\omega_{l, L}^{-}(r-L)\right]\right. \\
= & \frac{-1}{L} \sum_{l} \cosh \gamma\left(\omega_{l, L}^{-}\right)\left[\sin \left(2 \theta\left(\omega_{l, L}^{-}\right)-\omega_{l, L}^{-} r\right] \quad\right. \text { using (3.11) } \\
& \rightarrow-\frac{1}{2 \pi} \int_{0}^{2 \pi} \cosh \gamma(\omega) \sin [2 \theta(\omega)-\omega r] d \omega
\end{aligned}
$$

The details are left to the reader.
We have thus established that $\lim _{L \rightarrow \infty}\left\langle\frac{\eta\left(V_{L}\right)}{\lambda_{L}} x \Omega_{L}, y \Omega_{L}\right\rangle$ exists for all $x, y \in C_{00}(H)$. But $\left\|V_{L}\right\| \leqq \lambda_{L}$, hence

$$
\begin{aligned}
\left.\lim _{L \rightarrow \infty}\left\langle\frac{\eta\left(V_{L}\right)}{\lambda_{L}} x \Omega_{L}, y \Omega_{L}\right\rangle \right\rvert\, & \leqq \lim _{L \rightarrow \infty}\left\|x \Omega_{L}\right\|\left\|y \Omega_{L}\right\| \\
& =\lim _{L \rightarrow \infty} \omega_{A_{\bar{L}}}\left(x^{*} x\right)^{1 / 2} \omega_{A_{\bar{L}}}\left(y^{*} y\right)^{1 / 2} \\
& =\omega_{A}\left(x^{*} x\right)^{1 / 2} \omega_{A}\left(y^{*} y\right)^{1 / 2} \quad \text { as } \quad A=w k-\lim A_{L}^{-} \\
& =\|x \Omega\|\|y \Omega\|
\end{aligned}
$$

Since Ω is cyclic $C_{00}(H)$, it follows from the Riesz representation theorem that there exists a self adjoint contraction P_{∞} on F_{A} such that (4.1) holds. The remainder is now clear.

With the grading of Sect. 2 we can now show:

Theorem 4.2.

$$
\begin{gather*}
P_{\infty}^{-} F_{A}^{n} \cong F_{A}^{n} \quad \text { for all } \quad n \geqq 1, \tag{4.5}\\
P_{\infty} F_{A}^{n} \cong F_{A}^{n} \quad \text { for } \quad n \text { even }, \tag{4.6}
\end{gather*}
$$

and

$$
\begin{equation*}
P_{\infty} F_{A}^{n} \subseteq F_{A}^{n-4} \oplus F_{A}^{n-2} \oplus F_{A}^{n} \oplus F_{A}^{n+2} \oplus F_{A}^{n+4}, \quad \text { for } \quad n \text { odd } \tag{4.7}
\end{equation*}
$$

with $F_{A}^{n}=0$ if $n<0$.

Proof. Now

$$
\begin{equation*}
\eta\left(V_{L}^{-}\right) a_{A_{\bar{L}}}^{*}(f) \eta\left(V_{L}^{-}\right)^{-1}=a_{A_{\bar{L}}}^{*}\left(e^{-v_{\bar{L}}} f\right) \quad[\operatorname{by}(3.10)] \tag{4.8}
\end{equation*}
$$

Let $\phi_{1}, \ldots, \phi_{m}, \psi_{1}, \ldots, \psi_{n} \in H_{L_{0}}, L_{0}<\infty$.
Then

$$
\begin{aligned}
& \left\langle P_{\infty}^{-}: \phi_{1} \ldots \phi_{m}:{ }_{A} \Omega,: \psi_{n} \ldots \psi_{1}:_{A} \Omega\right\rangle \\
& \quad=\lim _{L \rightarrow \infty}\left\langle\eta\left(V_{L}^{-}\right): \phi_{1} \ldots \phi_{m}:_{A} \Omega_{L},: \psi_{n} \ldots \psi_{1}:{ }_{A} \Omega_{L}\right\rangle / \lambda_{L} \\
& \quad=\lim _{L \rightarrow \infty} \sum \varepsilon(J, K) \varepsilon\left(J^{\prime}, K^{\prime}\right) \omega_{A_{\bar{L}}}\left(\psi\left(J^{\prime}\right) \eta\left(V_{L}^{-}\right) \phi(J)\right) \omega_{A}(\phi(K)) \omega_{A}\left(\psi\left(K^{\prime}\right)\right) / \lambda_{L} \\
& \quad=\lim _{L \rightarrow \infty} \sum \varepsilon(J, K) \varepsilon\left(J^{\prime}, K^{\prime}\right) \omega_{A \bar{L}}\left(\psi\left(J^{\prime}\right) \eta\left(V_{L}^{-}\right) \phi(J)\right) \omega_{A E}(\phi(K)) \omega_{A_{\bar{L}}}\left(\psi\left(K^{\prime}\right)\right) / \lambda_{L} \\
& \quad=\lim _{L \rightarrow \infty} \sum\left\langle\eta\left(V_{L}^{-}\right): \phi_{1} \ldots \phi_{m}:_{A_{\bar{L}}} \Omega_{L},: \psi_{n} \ldots \psi_{\left.1_{1}:_{A_{\bar{L}}} \Omega_{L}\right\rangle / \lambda_{L}}=\lim _{L \rightarrow \infty}\left\langle\eta\left(V_{L}^{-}\right) a_{A_{\bar{L}}}^{*}\left(\phi_{1}\right) \ldots a_{A_{\bar{L}}}^{*}\left(\phi_{m}\right) \Omega_{L}, a_{A_{\bar{L}}}^{*}\left(\psi_{n}\right) \ldots a_{A_{\bar{L}}}^{*}\left(\psi_{1}\right) \Omega_{L}\right\rangle / \lambda_{L} \quad \text { by Remark } 2.5\right. \\
& =\lim _{L \rightarrow \infty}\left\langle a_{A_{\bar{L}}}^{*}\left(e^{-\gamma_{\bar{L}}} \phi_{1}\right) \ldots a_{A_{\bar{L}}}^{*}\left(e^{-\gamma_{\bar{L}}} \phi_{m}\right) \Omega_{L}, a_{A_{\bar{L}}}^{*}\left(\psi_{n}\right) \ldots a_{A_{\bar{L}}}^{*}\left(\psi_{1}\right) \Omega_{L}\right\rangle \quad \text { by }(4.8) \\
& =0 \quad \text { if } \quad m \neq n .
\end{aligned}
$$

Thus $P_{\infty}^{-} F_{A}^{n} \cong F_{A}^{n}$. Then by similarly considering

$$
\lim _{L \rightarrow \infty}\left\langle\eta\left(V_{L}^{+}\left(V_{L}^{-}\right)^{-1}\right) \eta\left(V_{L}^{-}\right): \phi_{1} \ldots \phi_{m}:_{A_{\bar{L}}} \Omega_{L},: \psi_{n} \ldots \psi_{1}:_{A_{\bar{L}}} \Omega_{L}\right\rangle / \lambda_{L}
$$

and using (4.4) and (2.3), one gets (4.7). The theorem then follows.
We now concentrate on P_{∞}^{-}, noting that $\left.P_{\infty}^{-}\right|_{F_{A}^{n}}=\left.P_{\infty}\right|_{F_{A}^{n}}$ if n is even.
Theorem 4.3. For $\beta<\beta_{c}$,

$$
\sigma\left(\left.P_{\infty}^{-}\right|_{F_{A}^{r}}\right) \cong\left[\exp -2 n\left(K_{1}^{*}+K_{2}\right), \exp -2 n\left(K_{1}^{*}-K_{2}\right)\right] .
$$

Then given $N>0$, there exists β_{N} such that for all $\beta<\beta_{N}, \sigma\left(\left.P_{\infty}^{-}\right|_{F_{A}^{n}} ^{n}, n=0, \ldots, N\right.$, and $\sigma\left(P_{\infty}^{-}\left(\left(_{n=0}^{N} F_{A}^{n}\right)^{\perp}\right)\right.$ are disjoint.

Proof. From (3.5) we have on $H_{L}^{J_{L}}$:

$$
\begin{aligned}
\cosh 2 K_{1}^{*} \cosh 2 K_{2}-\sinh 2 K_{1}^{*} \sinh 2 K_{2} \leqq & \cosh \left(\gamma_{L}^{-}\right) \leqq \cosh 2 K_{1}^{*} \cosh 2 K_{2} \\
& +\sinh 2 K_{1}^{*} \sinh 2 K_{2}
\end{aligned}
$$

i.e.

$$
\cosh 2\left(K_{1}^{*}-K_{2}\right) \leqq \cosh \gamma_{L}^{-} \leqq \cosh 2\left(K_{1}^{*}+K_{2}\right) .
$$

Hence for $\beta<\beta_{c}, 2\left(K_{1}^{*}-K_{2}\right) \leqq \gamma_{L}^{-} \leqq 2\left(K_{1}^{*}+K_{2}\right)$ on $H_{L}^{J_{L}}$. $S_{L}^{-}:\left(H^{J_{L}},\langle\cdot, \cdot\rangle_{J_{L}}\right)$ $\rightarrow\left(H^{A_{\bar{L}}},\langle\cdot, \cdot\rangle_{A_{\bar{L}}}\right)$ is isometric and commutes with γ_{L}^{-}, hence

$$
2\left(K_{1}^{*}-K_{2}\right) \leqq \gamma_{L}^{-} \leqq 2\left(K_{1}^{*}+K_{2}\right) \text { on } H_{L}^{A \bar{L}}
$$

Thus

$$
e^{-2 n\left(K_{1}^{*}+K_{2}\right)} \leqq F_{A_{\bar{L}}}^{n}\left(e^{-\gamma \bar{L}}\right) \leqq e^{-2 n\left(K_{1}^{*}+K_{2}\right)}
$$

Let $x=\sum_{f} \lambda_{f}: f:_{A}$, be a finite linear combination of Wick ordered products where $\lambda_{f} \in \mathbb{C}, f=f_{1} \ldots f_{n}$ and $f_{i} \in H_{L_{0}}, L_{0}<\infty$. Let $x_{L}=\sum \lambda_{f}: f:_{A_{\bar{L}}}$.

Then

$$
\|x \Omega\|=\lim _{L \rightarrow \infty}\left\|x_{L} \Omega_{L}\right\|
$$

From the proof of Theorem 4.2:

$$
\left\langle P_{\infty}^{-} x \Omega, x \Omega\right\rangle=\lim _{L \rightarrow \infty}\left\langle F_{A \bar{L}}^{n}\left(e^{-\gamma \bar{L}}\right) x_{L} \Omega_{L}, x_{L} \Omega_{L}\right\rangle .
$$

Hence $\exp \left[-2 n\left(K_{1}^{*}+K_{2}\right)\right] \leqq\left. P_{\infty}^{-}\right|_{F_{A}^{n}} \leqq \exp \left[-2 n\left(K_{1}^{*}-K_{2}\right)\right]$.
For $\sigma\left(\left.P_{\infty}^{-}\right|_{F_{d}^{n}}\right)$ to be disjoint from $\sigma\left(\left.P_{\infty}^{-}\right|_{F^{n+1}}\right)$ it is sufficient that $(2 n+1) K_{2}<K_{1}^{*}$, i.e. $\beta \ll \beta_{c}$. The theorem follows.

Remark 4.4.

$$
K_{1}^{*}=\tanh ^{-1}\left(e^{-2 K_{1}}\right)=\frac{1}{2} \log \left(\frac{1+e^{-2 K_{1}}}{1-e^{-2 K_{1}}}\right),
$$

so that

$$
e^{-2\left(K_{1}^{*} \pm K_{2}\right)}=\left(\frac{1-e^{-2 K_{1}}}{1+e^{-2 K_{1}}}\right) e^{ \pm 2 K_{2}}=O(\beta) \quad \text { as } \quad \beta \rightarrow 0
$$

Thus Theorem 4.3 could be regarded as a strengthening of [14-18] where spectra in disjoint intervals of the type $\left[c_{1} \beta^{n}, c_{2} \beta^{n}\right]$ were obtained.

Acknowledgement. The first named author would like to thank the Dublin Institute for Advanced Studies for their warm hospitality and support during visits when this work was carried out.

References

1. Abdulla-Zade, F.H., Minlos, R.A., Pogosian, S.K.: Cluster estimates for Gibbs random fields. Adv. in probability. In : Multi component random systems. Dobrushin, R.L., Sinai, Ya.G. (eds.), Vol. 6, pp. 1-36, 1980
2. Balsev, E., Manuceau, J., Verbeure, A.: Representations of anticommutation relations and Bogoliubov transformations. Commun. Math. Phys. 8, 315-326 (1968)
3. Evans, D.E.: Completely positive quasi-free maps on the CAR algebra. Commun. Math. Phys. 70, 53-68 (1979)
4. Evans, D.E., Lewis, J.T.: Dilations of irreversible evolutions in algebraic quantum theory. Dubl. Inst. Adv. Stud. Ser. A 24, 1977
5. Fannes, M., Rocca, F.: A class of dissipative evolutions with applications in thermodynamics of Fermion systems. J. Math. Phys. 21, 221-226 (1980)
6. Glimm, J., Jaffe, A.: Quantum physics. Berlin, Heidelberg, New York: Springer 1981
7. Kaufman, B. : Crystal statistics. II. Phys. Rev. 76, 1232-1243 (1949)
8. Kaufman, B., Onsager, L.: Crystal statistics. III. Phys. Rev. 76, 1244-1252 (1949)
9. Kuik, R.: Doctoraals dissertation. Gröningen 1981
10. Kuik, R., Winnink, M. : In preparation
11. Lewis, J.T., Sisson, P.N.M. : A Fermi-algebra for the Ising model on an infinite lattice. Phys. Lett. 50 A, 197-198 (1974)
12. Lewis, J.T., Sisson, P.N.M. : A C^{*}-algebra of the two-dimensional Ising model. Commun. Math. Phys, 44, 279-292 (1975)
13. Lewis, J.T., Winnink, M.: The Ising-model phase transition and the index of states on the Clifford algebra. Colloquia Mathematica Societatis János Bolyai 27, Random fields. Esztergom, Hungary 1979
14. Malyshev, V.A.: One-particle states and scattering theory for Markov processes. Proceedings of the Pushchino Conference 1976. In: Lecture Notes in Mathematics. Dobrushin, R.L. et al. (ed.), Vol. 653, pp. 173-193. Berlin, Heidelberg, New York: Springer 1978
15. Malyshev, V.A.: Complete cluster expansions for weakly coupled Gibbs random fields. Adv. in probability. In: Multi component random systems. Dobrushin, R.L., Sinai, Ya.G. (eds.), Vol. 6, pp. 505-530, 1980
16. Malyshev, V.A.: Cluster expansions in lattice models of statistical physics and the quantum theory of fields. Russ. Math. Surv. 35, 21-62 (1980)
17. Malyshev, V.A., Minlos, R.A.: Invariant subspaces of clustering operators. J. Stat. Phys. 21, 231-242 (1979)
18. Malyshev, V.A., Minlos, R.A.: Invariant subspaces of clustering operators. II. Commun. Math. Phys. 82, 211-226 (1981)
19. Minlos, R.A., Sinai, Ya.G.: Spectra of stochastic operators arising in lattice models of a gas. Teor. Mat. Fiz. 2, 230 (1970)
20. Onsager, L. : Crystal statistics. I. Phys. Rev. 65, 117-149 (1944)
21. Pirogov, S.: States associated with the two-dimensional Ising model. Theor. Math. Phys. 11 (3), 614-617 (1972)
22. Schultz, T.D., Mattis, D.C., Lieb, E.: Two-dimensional Ising model as a soluble problem of many Fermions. Rev. Mod. Phys. 36, 856-871 (1964)
23. Simon, B.: The $P(\phi)_{2}$ Euclidean (quantum) field theory. Princeton: Princeton University Press 1974
24. Sisson, P.N.M. : Ph.D. Dublin University 1974

Communicated by H. Araki
Received September 20, 1982; in revised form May 16, 1983

