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Abstract. Using the methods of Hitchin, the moduli space of SU(2) monopoles
of charge two is computed.

A. Introduction and Notation

The purpose of this paper is to compute the moduli space of SU(2) monopoles of
charge two; we find it to be ίR3 x T(P2(ίR))/±, where Γ(P2([R))/± is the manifold
obtained from the tangent bundle of P2(IR) by identifying all tangent vectors v

with their inverses — v.
The first SU(2) monopoles of charge two were produced by Ward [8]; they

possess an axis of symmetry and correspond in the moduli space to (IR3 x the
zero section of T(P2(IR))). Later, Ward produced a more general solution [9], but

was only able to assert non-singularity in the case of solutions sufficiently close
to the axisymmetric ones. It is to be noted that the more general statement of

non-singularity needed here follows from the recent work of Nahm [7] and Hitchin

[4]
We start by giving a brief summary of the theory; this will also serve the

purpose of fixing notation. Details can be found in [3] and [4].
Let P be a principal SU(2)-bundle over IR3, Pg its associated su(2)-bundle, φ a

section of P9,V a connection on P, with F its associated curvature. The couple

(V, Φ) is an SU(2) monopole if the following conditions are satisfied:
1) *ρ = VΦ, where * is the Hodge star operator on 2-forms over [R3. (Bogomolny

equations; see [1])
2) J |F|2<oo (finite action) and |Φ| = 1 - k/2r + O(r~2) as r->oo (boundary

conditions). The su(2) norm is given by — tr(x2)/2: this is chosen to conform with
Hitchin [3]. The k in k/2r is an integer, and is called the charge of the monopole.

Monopoles are susceptible to treatment via complex geometry. To do this, one
uses the space T of oriented lines in IR3; T has a holomorphic structure determined
by the cross product in IR3, and T ̂  T^P^C)), the holomorphic tangent bundle
of P^C). T has a natural real structure τ, with no fixed points, given by reversal
of orientation of the lines. Also, fixing a point p, one obtains a section sp: P^C) -» T,



196 J. Hurtubise

given by all the lines through p; these sections are τ-invariant, and so are called
real. Finally, let x be an inhomogeneous coordinate on P^Q ΐw, z)-+wd/dx\x=z

gives local coordinates on T, in which τ(w, z) = ( — w/z2- — I/I).
Let E be the rank 2 complex vector bundle associated to the principal bundle

P; associating to each oriented line x the space of sections 5 over x such that
(VM — iΦ)s = 0 along x, u a positive unit vector, determines a bundle £ on T. If
(V, Φ) is a solution to the Bogomolny equations, E has a natural holomorphic
structure. Let L be the holomorphic line bundle on T defined by the transition
function exp( - w/z) from {z ̂  oo } to {z =/= 0} let 0(n) be the lift to f of the bundle
0(n) on Pi(C); set L(ri) = L®@(ri); then, if (V,Φ) also satisfy the boundary
conditions, E can be written in two ways as a holomorphic extension:

0-»L(-/c)-+£->L*(/c)-»0,

0-»L*(- &)->£-» L(fc)-»0.

These are permuted by the real structure. Let S be the curve over which L( — k\
L*(— k) coincide; S is a curve in the linear system \(D(2k)\, and is called the spectral
curve of the monopole. One has:

Theorem 1 [3, 4]. i) S is compact.
ii) S is preserved by τ.
iii) L2 is holomorphically trivial on S.
iv) As τ*L2 = L*2, the natural pairing of sections of L2 on S: <s, s'> = τ*s(s') is

v) H°(S, L\k - 2)) = 0 /or ί e (0, 2).
Note that i) implies that S is of the form

0 = wk 4- «1(z)wfc~ 1 H ---- + αfc(z), with at polynomial, of degree 21. iv) is equivalent
to asking that L(k — 1) have a real structure on S. v) is akin to the instantion
vanishing theorem, and is the condition that ensures non-singularity.

Furthermore, from a curve S satisfying the spectral curve conditions i) to v),
it is possible to recreate an E, and hence a monopole, and so one can parametrise
the monopoles of a given charge by the space of corresponding spectral curves.

B. The Case of Charge Two

In the case of charge two, the curves S are in the linear system |0(4)|; they are
either smooth and elliptic, or pairs of sections P^C)-* T (curves in |0(2)|); the
reason is that if S has singular points (if it does not, it is elliptic), the real structure
forces them to come in pairs. As (section n S) = 4 points, a section through two
singular points of S and another point (such sections exist) is then a component
of S, which must then be the union of two sections of \(9(2)\.

1. Reduction and Symmetries

The Euclidean group on [R3 acts on the space of divisors |0(4)|. We start by factoring
out this action, on the subspace W = R8 of real compact curves.
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The general compact, real curve of |0(4)| is of the form

0 = w'2 -f (c'10 + r\z' - c'10z'2)w'

+ (^20 + c'21z' + r'2z'2 - c'21z'3 + c'20z'4), (1)

with cί.eC, r t'etR, and w', z' our standard coordinates on T.
a) One first factors out the translation action, by choosing an origin in [R3;

one does this by eliminating the w-term. One gets:

0 = w"2 + (c"20 + c"21z" + r"22z"2 - c"2lz"3 + c"20z"4). (2)

Call the subspace of these centred divisors Wc.
b) Now, one factors out the remaining SO(3) action: the z"-term above has four

roots α, 6, — 1/ά, 1/&; rotate so that one of these is sent to zero (another goes
to infinity); then rotate around the axis in [R3 corresponding to the points {0, 00} in
P^C) = { w" = 0), so that one gets the reduced form (which is well defined)

w2 = r xz
3 - r2z

2 - ΓjZ, r elR, rί *>0. (3)

Call the space [0,oo)xlR of such reduced divisors Wred'9 one therefore has the
projection map P: W - ̂ red, factoring as P = PcoQ, with Q: W - Wc,

The isotropy group of this reduced form is Z2 x Z2 when r1 > 0 and S1 x Z2

when rί=0 (axisymmetric case); the Z2 factors correspond in (R3 to the rotations by
π that permute the roots 0, oo, a, — I/a oίrίz

3 — r2z
2 — rvz in IP^C) ̂  S2.

In passing, note that any symmetry of the spectral curve determines a symmetry
of the monopole: therefore,

Proposition 2. The symmetry subgroup (of the group of proper Euclidean motions]
of a monopole of charge two is:

a) Z2 x Z2 in the non axisymmetric case, and corresponds to rotations by π
around 3 orthogonal axes intersecting at a point.

b) S1 x Z2 in the axisymmetric case, and corresponds to rotations about a point
mapping an axis through that point to itself.

2. Link with the Standard From of an Elliptic Curve

Consider a curve S: w2 = r xz
3 — r2z

2 — r±z corresponding to (r l5 r2) in H/red. If
Γ j = 0, S is the union of two sections; if r1 > 0, the curve is non-singular, elliptic.
Setting
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we obtain the normal form of an elliptic curve:

w2 = 4z3 - g2z - 03, with

02 = 12/c2

2 + 4, 03 = 8/c2

3 + 4/c2,

2703

2=(02-4)(02 + 2)2, /c2 = 303/(202 + 4). (4)

Then S is the embedding in T via the Weierstrass p-function and its derivative
(w = p', z = p) of (C modulo a lattice j&f). As S is real, jz? is rhombic or rectangular;
as the real structure has no fixed points, & is rectangular, with positive real and
positive imaginary generators lr, /.. (For a detailed treatment, see [2].)

If we consider the modular function I(g2,03) = 2703

 2/02

 3 of the lattice, we get /
as a function of fc2

2; this is a diffeomorphism for fc2

2 ̂  0, with k2 = 0 giving 7 = 0
(square lattice); furthermore, for / ̂  0, there are, up to scale, two rectangular lattices
with real and imaginary generators giving the same /, one horizontal (lr > /f), one
vertical (li>lr); the ratio ljlr is smoothly parametrised by /1/2, and so by k2.
Therefore, if I(rl, r2) = modulus of S, H(rί, r2) = /j//r(S), there are smooth diffeomor-
phisms /, H: U -> IR such that

I ( r l 9 r 2 ) = /((r,/^)2), H(rl9r2) = Bfa/rJ.

3. Spectral Curve Conditions on S in Wred

a) r^O.
Consider again S: w2 = rAz 3 — r2z

2 — r1z. One has:

Proposition 3.

i) L2 is trivial on the curve So4k1ethe lattice £έ'.
ii) H°(S,Ώ) = 0, ίe(0,2), for S a curve with L2 trivial^>4k1 is a real generator of

the lattice &.
iii) When 4kλ is a real generator of <=£?, <•,•> is negative definite.

Proof i) L2 is trivial on S iff there are holomorphic functions /1? /2 on Sn {z ̂  oo},
Sn {z ̂  0} respectively with /2 = exp(— 2w/z)/! on the overlap. Taking dlog, this
is equivalent to

dlog (/2) = d(- 2w/z) + dlog (/,), (5)

where d( — 2w/z) is a one-form on S with double poles and no residues at z = 0,

z =oo ; pulling back to C/JS?, d(-2w/z)= - 2k1d(p'/(p +/c2)); letting w be the
standard coordinate on C,ί/(-2w/z) = (-4^c1/M2+O(l))rfw near 0. In turn,
dlog (/J, must be of the form (4k1/u2 +O(l))du; as this is its only pole on S,

dlog (/i) = (4/c^ + c) dii, eeC.

Moreover, dlog^) has periods 2nniyneZ; for any feJS?,

4/c^(/) + c/=f °J (4/ctp + c) du = 2πin(f), n(l)eZ. (6)
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However, one has the Legendre relation, for /r, /. [2] :

2πi. (7)

Comparing (6) and (7) gives

^-^ = 4*!, (8)

and so 4fe1eJ5f .
Conversely, if 4kίe&9 one has (8) for some n(/Γ), nί/J; one can choose c so that

(6) holds for lr (7) then implies that (6) holds also for /., hence for all /; integrating and
taking the exponential gives a section.

ii) As for i), the condition that H°(S, Ll) = 0 is just that 2tk^ JSf; as 4k1e£>,
4k l must be a generator.

iii) < - , - > is negative definite o f ί ( x ) f 2 ( τ ( x ) ) = r,r<Q, re(R. If Γ is a path on S

from x to τ(x), this is equivalent to asking that J (4k x p -f c)dw = 2πra, rc odd. (This
Γ + t(Γ)

property is independent of the Γ chosen). The real structure on C/J^7 must be a lattice
preserving map of the form u-^aΰ + b, with |α| = l,b a half-period ([2]); τ acts
continuously on a family of real elliptic curves in Γ; considering the rectangular
lattices in the family gives a = ± 1 considering the square lattice of the family
(k2 = 0) and the action of τ on f gives that p(w) real, p'(w) imaginary positive
=>p'(τ(w)) imaginary positive, which, referring to [2], yields a = - 1, fe = (ίr -f y/2.
Taking Γ as the segment [0, (ίr + ί.)/2] then gives /. ̂  Γ + τ(Γ); if 4k 1 is a real
generator of the lattice, (8) gives «(/.) = — 1, and so

J (4klp + c)du= - 2πi.
Γ + τ(Γ)

b) r 1 =0.

Proposition 4. T/?e cwrt β S:w2 = — (πz/2)2 is ί/i^ on/j curve with r1=0 in Wred

satisfying the spectral curve conditions.

Proof: The curves in Wred with L2 trivial, ri = 0 are given by r2 = [(2n — l)π/2]2,
neN; see [3]. The condition /f°(5, I?) = 0 gives, by the same type of argument,
n = 1. Finally, for « = 1, we can take /^z) = 1, /2(z) = — 1, and so <•,•> is negative
definite.

We now fit Propositions 3 and 4 together, and obtain:

Proposition 5. i) The set C of spectral curves in Wreά is a smooth curve intersecting
rl=Q transversely at r2 = π2/4.

ii) In a neighbourhood of this point, C can be described by f ( r l 9 r2) = 0, with f
a smooth function, even in r l 5 with df/dr2 =/= 0.

Proof. For rί > 0, we show that C is the graph in polar coordinates (r, θ) of a
smooth function r = g(θ). On r1 > 0, C is the set of elliptic curves with 4k1 generating
<£. Now for a curve in C, H(r2/r1), 02(r2/rι) are smooth functions of θ; however,

for a fixed J£9 g2(m^) = m~4g2(£> ), and so the real generator 4k 1 of f̂ is a smooth
well defined function of r1/r2, for j£? corresponding to a curve in C; but 4^2 = r1;

and so C is as claimed.
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Consider now how C behaves as r2/rί -> + oo; from (4),

~6 G3(/c2)

where G2, G3 are g2,g3 of our lattice, normalised so that the real generator is 1. This
yields

9 G3(k2)

8(G2(fc2)

oo:/c2-»oo implies G3(/c2)-»8π6/27, G2(/c2) -» 4π4/3 [5]. Also, /c2->oo means #2

the scale of the lattice (which is vertical, for k2 > 0) tends to zero, and so

rhm =— ,
/c2-+oo 4

i.e., the curve C tends to the axisymmetric case. Also, expanding in series [5], one
has

n>2

where σk(n) = Σ &, and G2(s), G3(s), 1 - I(s) are computed for the lattice
d\n

generated by (1, 5), Im (5) > 0, and q = exp (2πίs). Inverting near q = Q, one can write
G2, G3 as G2(l - /), G3(l - /); but at 1 - / = 0, / is a smooth function of (rjr^2,
and so, near (rl9 r2) = (0, π2/4), C is defined by F(r l9r2) = 0, with

which proves ii).

Note. One can show that r2 -> — oo, r1 ->0 as k2 -> — oo. One uses the case A:2 ->
+ oo, plus the fact that ± k2 determine identical lattices, but with one horizontal,
one vertical. The spectral curve thus tends to the union of two well separated real
sections; as these are the spectral curves of monopoles of charge one, one sees that
this limiting case conforms with Taubes' construction of n-monopoles by "glueing"
well separated monopoles of charge 1 [6].

4. P~\C\ C a Curve in WrQά

We have computed the curve C of spectral curves (rl9 r2) in Wred satisfying our
general conditions for determining a bundle E that generates a monopole. The
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space M of all such curves is just P~ 1(C), where P\W -> Wred was our map defined
in 1). We now prove a smoothness criterion for P"1^).

Proposition 6. Lei C be a smooth curve in VFred, intersecting {0} x R transversally
in a discrete set, with (0, 0) φ C. P~1(Q is smooth iff the following condition (*)
holds: (*) for each point p in Cn{0} x R, the curve can be expressed locally as
/(rι»r2) = 0> with fa smooth function, even in rί9 with df/dr2 ± 0 at p.

Proof. <=): As P factors as Pcog, and Q is just the factoring out of the
translation action, it suffices to show PC~1(C) smooth. Away from {0} x [R in PFred,
Pc is a submersion; the only points of C for which we have to check smoothness
are those in {0} x (R. Let (r l5r2) = (0,x)eC; (c20,c21,r2) = (0,0,x) is in P~\C}\
we show that P~1(C) is smooth at this point; because of the group action, this is
sufficient.

i) Pc restricted to W{ = {(0,c21,r2)eVFc} is just (0,c21,r2)->(|c21|,r2), and so at
(0,0,*), P^CQn W. is smooth iff (*) holds.

ii) P~l(Q smooth iff P ^CJn W. smooth at (0,0,x): In a neighbourhood of
(0,0,x), x =/= 0, Wc ̂  S2([/) x /, where S'2(ί7) is the symmetric square of a neigh-
bourhood U of zero in C, and / is an interval in IR; one has an unordered pair of
roots, α, b defining the intersection z = a9b, — 1/ά, — 1/5 of the divisor with w = 0,
and an SO(3)-invariant scale factor r along (0,0,3;), yε R in ^c *

e scale factor can be
taken as y. Similarly, Wt ^ U x /.

Let Sym: U x 17 x I-*S2(U) x / be the natural projection; we consider
(PcoSym)~1(Q. Define Tβ(z): l/-> P^C) by z->(z - α)/(αz + 1); note that if a and
b are two points in (7, there is a real constant c such that Tα(b) = exp(2πz'c)Tb(α).
Let F(α,r): (7 x I -> R denote an axially symmetric (i.e., F(α,r) = F(cα,r), for |c| = 1)
smooth function defining P~ΐ(C)nWi at (0,0,x), with dF/dr^O at (0,0,x). We
define the smooth composition

this defines (PcoSym)-1(C) locally, and F(a,b,r) = F(b,a,r) 9 F then factors to a
smooth function on S2(U) x / defining P^(C) locally, with aF/δr^O at (0,0,x).
=>): l^red embeds in Wc naturally; at (0,x)eC, d/dr2 is transversal to C in Wred,
by hypothesis; but d/dr2 is also transversal to the group action at (0,0,x) and so
d/dr2 is transversal to P ~ l(C) in Wc the two-plane containing Wred thus intersects
P^HQ transversally, and so the condition (*) is realised.

5. The moduli space

Let M be P-1(C); M^ moduli space of monopoles of charge two.

Theorem 7. i) M is a 1 -dimensional manifold, smoothly embedded in W = !R8.
ii) M is diffeomorphic to [R3 x T(P2(R))/ ± , where T(P2(R))/ ± is the tangent

bundle of the real projective plane, with the vectors v, —v identified for all v.

Proof, i) is a consequence of Propositions 5 and 6.
ϋ) P " *(Q = ̂ 3 x T(P2(R))/ ± iff P- :(C) s 7XP2(R))/ ± .
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Wc is a 5 dimensional irreducible representation of SO(3), and Wτed is the quotient
space. Think of Wc as the space of symmetric, tracefree real 3 x 3 matrices, and
of Wred as the space of diagonalised matrices in WC9 with decreasing values along
the diagonal; let (0,α) in Wreά correspond to the diagonal matrices with eigenvalues

a/^/69 0/^/A — ̂ α/y/o^. C is diffeomorphic to the curve of unit vectors in Wτeά

minus the point (0,— 1): see the proof of Proposition 6. The inverse image of
(0, — 1) is the set of matrices of norm 1 in Wc with two equal, negative eigenvalues.
This is just P2 W>as sucrι a matrix is determined by its positive eigenspace. P~ 1(C) is
therefore S4 - P2(K); to see that this is Γ(P2(R))/ ±, note that an element of P ~ \C)
corresponds to a matrix which is determined by three orthogonal eigenspaces, with
eigenvalues ai ^a2

 > α3, Σat = 0, Σat

2 = 1. The eigenspace corresponding to α3

determines a point x in P2(K); the eigenspace corresponding to α2, when a2>al9

determines a direction in the tangent space Tx of x; (1 — (a2/aί))/(l -h 2(a2/aί)) can
then determine a norm thus the matrix corresponds to a couple v9 — v in the tangent
bundle; the case a2 = a1 corresponds to the zero section of the tangent bundle.
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