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Abstract. We develop a rigorous semiclassical expansion to compute the radius
of convergence of the Borel transform for the pressure in (φ4)2 field theory. This
result gives a partial justification for the Lipatov method of finding large order
perturbation theory asymptotics in quantum field theory.

1. Introduction

The Lipatov method is an interesting formal technique for finding the large order
behavior of the perturbation coefficients in certain divergent perturbation series.
The real power of this method is that it is applicable to the perturbation series
which occur in quantum field theory. The basic idea of the approach, initiated by
Lipatov [1] and extensively developed by Brezin et al. [2-4], is to use a path
integral representation for the kth perturbation coefficient in the perturbation series
and then to do a formal semiclassical expansion of the path integral as fc->oo.
Knowledge of the large order behavior of perturbation theory may be combined
with summability methods, such as Fade or Borel summation, to do numerical
calculations (see [5] and other articles in the same volume for more details). Of
particular interest for field theory are the calculations of critical exponents done
by Le Guillou and Zinn-Justin [6-8] based on the perturbation theory asymptotics
of [2]. Our result described in the abstract gives a partial justification, for (φ4)2

field theory, of these large order asymptotics and of the Lipatov method of deriving
them.

In order to state our result and describe its connection with the Lipatov method
calculations, consider a (φ4)2 field theory with partition function

in which V(φ) = j : φ\x): d2x, A = [ - T/2, Γ/2]2, and X = p (periodic), D
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(Dirichlet). The mean-zero Gaussian measure άμ\ has covariance

where <>> is the L2(A) inner product, Δx is the Laplacian with X = p, D boundary
conditions on A, and the Wick ordering in V(φ) is with respect to άμ\. The (φ4)2

pressure is then defined as

1
p(λ}= lim —-lnZ x (λ)

Ul->oo \A\

(p(X) is independent of the choice of boundary conditions for Zx(λ) [9]). The
pressure has a divergent perturbation series [10]

f>α)~ Σ M*, (L2)
Jc = 0

which is known to be Borel summable [11]. In particular, the Borel transform
B(f) has the representation

for t in a disk of non-zero radius R.
Next, we will need the functional S(φ) defined by

S(Φ) = i f C(V<«2(x) + <£2(x)] rf2* - In J </»4(x) d2x (1.4)
R2 R2

for 0 in the Sobolev space W1>2(IR2), which is the completion of C^(1R2) in the norm

I I Φ I I ι f 2 = ί C(VΦ)2W+Φ2(χ)]rf2

M2

We can now state our main result:

Theorem 1.1. Let R be the radius of convergence of the Borel transform defined
in (1.3). Then

a
-

1/k

= lim ^y = exp [ - infS(φ) + :
fc^oo

in which the infimum is over all φeW

Remark. It will be shown in Lemma 2.1 that S(φ) is bounded below and attains
its infimum.

In order to see how this result follows from a semiclassical expansion, we note
that Zx(λ) also has a divergent perturbation series

in which

~ ί, (1-5)
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where the Wick ordering in V(φ/^/k) has been scaled as in (1.14). The connection
between the two series will be shown by using

lnZx(λ) (1.6)

for X = p, D, which are the finite volume analogs of the perturbation coefficients
ak in (1.2).

Before stating the next results, we define the functionals

SX(Φ) = έ f x - In f φ\x) (1.7)

where Vx is the gradient obeying X = p, D boundary conditions.

Theorem 1.2. If X = p9 D, then

lim ($Vk(φ/<Jk)dμ*)Vk = €-'"*' (1.8)

Remarks. 1. The infϊmum in (1.8) is taken over
φGWlι2(A) for X = p. If we consider the norm

for X = D9 and over

then WQ'\Λ) is defined to be the completion of C$(Λ) in the above norm for X = D,
and Wl 2(Λ) is the completion of the periodic C1 functions in this norm for X = p.

2. Our proof of (1.8) could easily accommodate other choices of boundary
conditions. However, X = /?, D are the most useful choices for proving Theorem 1.1.

Corollary 1.3. Let X = p, D. Then

lim
k]

1/k

(1.9)

Remark. (1.9) will follow from (1.8) by showing that

kl kl

as fc-»oo. The e2 factor in (1.9) comes from Sterling's formula applied to the
[/c2/y(k!)2]1//c term in \b^(Λ)/kl\llk.

Theorem 1.1 is an immediate consequence of Corollary 1.3 and the following
bracketing inequality.

Lemma 1.4. [12, Lemma 2] For all k and T,

Proof of Theorem LI. Combining Corollary 1.3 and Lemma 1.4 yields

(l]f

exp [ - MSD(φ) + 2] <; lim
/c-» oo fe!

(1.10)

(1.11)
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In Sect. 3, we will show that lim (infS x (φ)) = inf 'S(φ)9 and this will
U|-*oo

complete the proof of Theorem 1.1. Q
While the exact knowledge of the radius of convergence R for B(f) is of use in

the numerical calculations of [6-8], we feel that the real merit of Theorem 1.1
is as a partial justification for the formal but quite believable full asymptotic

formula fc + oo k2k

ak ~ abkkc—, (1.12)

which follows from the Lipatov method calculations of [2]. If (1.12) is true, then
we have computed b = R~1-e~2. We hope that the methods of this paper may
serve as a starting point for a proof of (1.12).

Our proof of Theorem 1.2 will be by a Laplace-type asymptotic expansion for
the functional integral in (1.8). The asymptotic expansion may be seen on an intuitive
level by dropping the Wick counterterms in V(φ\ so that formally we have

ί Vk(φ/^/k)dμX = $e-ks*(Φl^dφ,

where dφ is a non-existent measure. Therefore, (1.8) is equivalent to the formal
computation

lim ($e-
kSχ(Φl^k}dφ)1/k = e-ϊnίsχ(φ\ (1.13)

fc~> 00

which is clearly a Laplace expansion.
In a field theory which requires renormalization, the treatment of counterterms

in a Laplace expansion is an interesting question. For a general polynomial
interaction V(φ,λ) which includes counterterms, the calculations of [2] proceed
on the principle: amongst terms in V(φ9λ) which are of the same order in 1, those
which are lower order in φ will not contribute to the leading order asymptotics
(see the remark below). In particular, the calculation (1.13) will not be affected by
counterterms. While this is plausible for super renormalizable (φ4)d, theories (our
result proves it for d = 2), the fact that one must be careful is shown by two
interesting examples of Herbst and Simon [13]. They construct two anharmonic
oscillator-type hamiltonians of the form p2 + x2 — 1 + V(x9 λ\ where V is a
polynomial and p = — id/dx, which have ground state energies whose perturbation
coefficients ak = 0, for all k. However, if one follows the above principle and drops
lower order terms in x to a given order in λ from V(x, λ), the resulting hamiltonians
have groundstate energies with perturbation coefficients which grow like k\ (see
[13] for details).

Remark. While counterterms are not supposed to affect (1.13), the calculations of
[2, 7] show that there is a renormalization effect on the constant a in (1.12). That
is, the constant a is usually given by a determinant and counterterms will modify
this into a renormalized determinant (the detπ of [19, p. 107]).

Our method of dealing with the Wick counterterms in V(φ) will be to use the
lattice approximation to (φ4)2 [14,15], but with the lattice spacing δ depending on /c,

δ = 0(k~ε) for small ε. The interaction in V(φ/^/k) will then be of the form
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where φδ is a lattice field and cδ is the Wick constant. As is well known, cδ = 0(lnδ ~ 1),
so the new Wick constant cδ/k will obey

k \ k

We will be able to use this to show that only the (φδ/^/k)4 term in (1.14) contributes
to the Laplace expansion in (1.8).

The outline of the paper is as follows. In Sect. 2 we will derive upper and lower
bounds which will prove Theorem 1.2. Corollary 1.3 will then be proven in Sect. 3,
where we will also show that mfSx(φ)->infS(φ) as \Λ\-*vo9 which is needed in
the proof of Theorem 1.1.

2. Leading Order Asymptotics for b* (A)

We must first establish a number of definitions for the lattice approximation,
mostly following [9]. Let ΛΛ = ΛπLδ, where Lδ = {δn\n = (nl9 n2)eZ2} and δ is the
lattice spacing. The lattice measure άμx

Λδ, X = p,D, is defined as the mean-zero
Gaussian measure with covariance

where Δδ

x is the finite difference Laplacian with X = p,D boundary conditions.
Explicitly,

where Nx is the appropriate normalization and (q,qy= ]Γ δ2q2. It is
neΛδ

convenient to be able to define the lattice theory in terms of the continuum theory
by the identification qn = φ(fx

tδ)9 so that

dμ* = (GJL, = ί qnqm

(see [9, Sect. IX. 1] for /£,,). Next, let

neΛδ

= xin which φδ(n) = φ(fx

δ). The above Wick order will always correspond to the
measure dμ\ with which we are integrating Vδ(φ) (i.e., the Wick lattice constant
cδ(n) = (Gδ

x)nn). We will also need

and its continuum counterpart

Λ

(V0(φ) will only be used when φ is a function). Our last definition is

We begin with an elementary lemma.
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Lemma 2.1. The functional Sx(φ), Sx(q), for X = p, D, and S(φ) all attain their
infimums.

Remark. It will be useful to have functions φc, qc, and ηc for which

We are suppressing the dependence of φc and qc on the different boundary
conditions, as this will not be important for our purposes. The above functions
are not necessarily unique, as Sp(φ) and S(φ) are invariant under translations, and
Sδ

p(q) is invariant under translations mod δ.

Proof. The proof will be given for SD(φ) as the other cases are virtually identical.
By the Sobolev inequality [17]

I I φ II 4 ζ constί J [(VDφ)2(x) + <p(x)]rf2x
\ A.

(| |-| |4 is the L4(/l) norm), it follows that SD(φ) is bounded below. The Rellich-
Kondrachov Theorem [17] then shows that a weakly convergent sequence in
Wo'2(A) has a strongly convergent subsequence in L4(/l), so if {φn} is a minimizing
sequence for SD(φ) we have

SD(φc) ^ lίm infSD(0*) = inf SD(</>),

where φc is the function to which {φn} converges weakly and we have used
the weak lower semicontinuity of the W^'2(A) norm. This proves the lemma for

SD(Φ).
The only case which needs further comment is that of S(φ), since W1>2(R2) is

relatively compact in L4(A) only for A bounded. However, as in [16, Prop. 3.4]
we may use symmetric rearrangement to obtain a minimizing sequence for S(φ)
of symmetric monotone decreasing functions. By combining Lemma 1 of [19] and
Theorem 2.22 of [17], this sequence will be relatively compact in L4([R2) and the
proof proceeds as before. Q

As mentioned in the Introduction, we will prove Theorem 1.2 by using the
lattice approximation, but with the lattice spacing δ depending on k. The explicit
dependence we choose is

δ = T/(2[fcε] + 1),

where [•] is the greatest integer function and ε<%. The above choice of δ is
consistent with the number of lattice sites in A being an integer and with the usual
convention that the sides of A lie midway between lattice sites. Note that δ =
0(k~ε) as fc-*oo.

Proof of Theorem 1.2. Lower bound. We consider separately the cases of k odd
and even. For k even, the proof is quite simple and does not even require the
lattice approximation. Therefore, let k = 2/, with j a positive integer. We will obtain



Large Order Asymptotics 185

the lower bound by translating to the minimum of Sx(φ) and then using Jensen's

inequality. If we translate φ -> φ + -^/kφc, then

(2.1)

where AX=—AX + 1. Since the term inside the square brackets in (2.1) is
non-negative, we may apply Jensen's inequality to obtain

^ [J
(2.2)

Combining (2.1) and (2.2) yields

(J V\φ

= e-(^<φc'Aχφc>V0(φc)\:i + 0(l//c)]1/2

(2.3)

and this is the lower bound for k = 2j.
In order to obtain the lower bound for k odd, it will be necessary to use the

lattice approximation with our k dependent choice of <5. We will start with a lemma
for which we define the set

A = {φ\\V(φ/Jϊc) - VΛ(φ/Jk)\ < k-'}.

In the following, C will be used to denote various k independent constants.

Lemma 2.2. Let δ = T/(2[/cε] + 1), 0 < ε < \, and choose 0<β<εθ. Then

(i) μX{

where η = (εθ — β)/2 and θ is defined in (2.5).

Proof of Lemma 2.2. The proof of part (i) is based on the Nelson semiboundedness
argument [14, sect. V.2]. From the definition of the set A, we see that

μϊ{φ\φeA~}=μ*{φ\\V(φ)-Vδ(φ)\^k2-'}

^C?k-(2-Vpp2pk-Eep, (2.4)

where we have used hypercontractivity [14, Theorem 1.22] in the third line and
the standard estimate [15, sect. 9.5]

(2.5)

with θ < 1 in the last line (|| \\p is the Lp(dμx

Λ] norm). The choice

turns the final inequality of (2.4) into the claimed estimate of part (i).
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For part (ii), Schwartz inequality and hypercontractivity yield

and the estimate of part (i) completes the proof.
Part (ii) of the lemma gives us

ί

= e'm<Φ^χΦe>^χA^φ)V\φ/^+φ^e-^k<^^c>dμ^
ki + n) (2.6)

where we have translated, φ-^>φ + kφc, in the second line of (2.6) and

XA<(Φ)

If φεA*, then

φc) ̂  V δ ( φ / ^ k + φc) - k-fi,
and so

since k is odd. Combining this with (2.6) yields

yjίφ/Jk + φf)- /r"]*
ckί'η). (2.7)

Remark. Since φδ(n) = φ(f%δ), the summand in Vg(φ/^/k + φc) is

<ΦCJ^>
Next, we define the set

so that (2.7) may be written as

J V\φlJ~k)dμx

Λ Z

e-^<Mc>dμX-$χAl^(φ)tk-e-Vδ(φ/^k +
.e-^<Φ,AχΦ<>dμx

Λ}, (2.8)

and we are omitting the 0(e~ck1*") term from (2.7) for the remainder of the proof. We
may now use our previous Jensen's inequality argument to obtain

χφC>dμXΛ
(2.9)

and we will show at the end of the proof of the lower bound that

μX{φ\φeA'nB} = 1 - O(e~ckl'\ (2.10)
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By straightforward estimates such as (2.10) and

= e-(i/2)k~\φ,Axφ
cy _ O(e~ckl/4)

= l~0(l/k\

we may simplify the last line of (2.9) so that

*> dμ*

)T-k (2.11)

The second term in (2.8) may be estimated by using

to obtain

for φeA* njB~ '. This yields

t / / l n ^

k~t + 0\\ΊΓV V κ

ik), (2.12)
since

ί XA^B~(Φ)e~^<φ'Ax

Combining (2.8), (2.11), and (2.12) gives us

J V\φ/^k)dμx

Λ ^ e-^<fc ^^Vk

0ιδ(φ%l - 0(k-^k{l - 0(e~Ckl'Λ) -

and so

0(/c^)] (2.13)

By the remark following (2.7),

neΛό

and so (2.13) will yield the correct lower bound as it easily follows from
[9, sect. IX. 1] that F0>(3(φcH V0(ΦC) as /c-> oo (or <5->0).

It remains to prove (2.10). This will follow from Lemma 2.2(i) and from

=0(e-w\ (2.14)

Since V0 >δ(φc] -> V0(φc) as k -> oo, assume that A; is large enough so that k~β < V0 δ(φc).
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This yields

μx

Λ{φ\φeB~} = μx

Λ{φ\

Φc)\
$ \V0 ό(φc) -

by the same argument as in the proof of Lemma 2.2(i), but now using

ί l^o δ(Φ°} - Vδ(Φ/ft+Φc}\2dμx

Λ ύ C/c-1

instead of (2.5).

Upper Bound. We will again use our k dependent choice of δ for the upper bound.
First, we combine

with the estimate

- II vδ(φ/Jk)\\k\ ^ I I V(φ/Jk) - vd(φ/jk}\\k

= 0(60)

>) (2.15)
to obtain

(J V\φljk)dv$
1'*ί(l\ Vi(φ/^k)\kdμX)1<k+ 0(k-*»). (2.16)

We have used hypercontractivity in the second line of (2.15) and (2.5) in the fourth
line. The same argument may again be applied to find that

I I I vδ(Φ/^k)\\k- i i v0 jίφ/Jk) y

where the fact that Vδ(φ) - F0 tδ(φ) is only quadratic in φ has been used in the
hypercontractive estimate. From (2.17), we obtain

k

Now by using qn = φ(f£δ) and the definition of άμ\b, we may write

= $eklnV »μΛ,ό

(2.19)
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and by scaling q -> ^fkq, we obtain

(2.20)

where n = (2[/cε] + I)2 = O(/c2ε). If we assume k ̂  1, then

and this yields

*^ J e'k^sχ(

) J e- sfrq) dqNx . (2.2 1 )

The integral in the last line of (2.21) may be estimated as

= 0(ln2(/c)),

where the last line follows from (Gd

x}nn = O(lnk) by our choice of δ.
Combining together (2.19)-(2.21) gives us the upper bound

ί V^δ(φl^/k)dμx

Λ ^ Ce-^ΛC'-ofp-'iπ/cH, (2.22)

in which we have used k"/2 = exp[0(/c2ε lnfc)] and ε < .̂ Therefore we obtain from
(2.16), (2.18), and (2.22)

lim ( j V\φljk) dμ*)1'* ζ exp Γ - lim Ss

x(<f) 1 . (2.23)
fc^oo [_ /e-»oo J

We will show at the end of this section that Sδ

x(qc) -> Sx(φc) as /c-»oo (or c)->0).
This will yield the desired upper bound

lim (J V\φ/jk}dμx

Aγik ^ e~sχ(φc\ (2.24)
/c->oo

which finishes the proof of Theorem 1.2. Q
The next lemma supplies the step from (2.23) to the upper bound (2.24).

Lemma 2.3. Asδ-*0, Sδ

x(qc)-+Sx(φc) for X = p,D.

Proof. If we let φc

δ(n) = φc(nδ) for nεΛδ, then Sό

x(φc

δ) ^ Sό

x(qc). The minimizing
function φ° is smooth [18-20], so Sδ

x(φc

δ)-+Sx(φc) as (5->0, since this is just saying
that the Reimann sums converge. Therefore,

]imSδ

x(qc)^Sx(φc). (2.25)
<5->0

Now qc is a critical point of Sx(q), so it will obey the equation

( - 4 + l)qc = 4(4C)3/ Σ δ V/ (2.26)
«e/ίό

Taking the inner product of (2.26) with qc yields

4. (2.27)

It is useful to think of qc as a piecewise constant continuum function qc(x)
defined by qc(x) = qc

n when x is in the square of side δ centered at the lattice point
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δn. It follows from this definition that δ2^ \qc

n\
p = J d2x\qc(x)\p, and so the

n Λ

continuum identification along with (2.27) shows that there exists φ9 ΨeL2(A) for
which a subsequence qc -* φ and (—Aδ

x + 1)1; V -> ψ both weakly in L2(A) as δ -»0.
Next, we consider

-Ψ\\2

The norm convergence of (G^)1/2 (see for example [22, Lemma 3.9 and Appendix
B] ) and the compactness of G^/2 imply that for a subsequence cf -> G^/2 Ψ strongly
in L2(Λ). This shows that ψ = (- Δx + lγ'2φ and so qc-*φ in L2 with
||(- Δx + l)1/2(/>||2 finite (i.e. φ belongs to the appropriate Sobolev space, as defined
in Remark 1 following Theorem 1.2). We also have L4 convergence of qc-*φ since
we may show that H ^ H ^ is uniformly bounded as ($-»0. This is a consequence
of (2.26), as

|| fll oo =4 sup 4

• 4

^4 sup
xeΛ

ΊkΊI

1/4 (2-28)

where we have used ||G^(x, )(^c)3|lι ^ l|G^(x, )l l4l l(^ c ) 3 | l4/3 The G^ term in the
last line of (2.28) is bounded [15, Proposition 9.5.7], and ||<f ||4+»0, since Sδ

x(qc)
is bounded. The same argument also shows that \\φ\\^ is finite. Therefore, the L4

convergence and (2.25) easily prove that for a subsequence

However, given an arbitrary subsequence of {Sδ

x(qc)}> the above argument and
(2.25) will allow us to extract a sub-subsequence for which (2.29) holds and so the
original sequence is Cauchy. Q

3. Leading Order Asymptotics for α£ (A)

The purpose of this section is to prove Corollary 1.3 by showing that the large
order behavior of a$(Λ) follows from that of b*(Λ).

Proof of Corollary 1.3. The proof is very similar to that of [16, Lemma 2.2], to
which we will refer for details. We will drop the X and Λ notation from a$(Λ) and
b$(Λ), since this dependence will play no part in the proof. To begin with, we may
use (1.6) and the Taylor series for ln(l +χ) to obtain

"* =Rϊm?l ™ 5 ( / C ? m ) ? ^'^
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in which

B(k,m)= X Π bkt
kι+...+km = ki=l

Our goal is to show that \ak\
1/k ~ \bk\

1/k as k-+ao. If we left

( — l)k

b* = — f I V(φ) I dμ,
kl

then ak may be written as

ak = ~τbkn+(b*/bk) Y ̂  (b*ΓlB(k,m] . (3.2)
K, \ A\ K\ -̂̂  M| v / C / I

The proof of [16, Lemma 2.2] then yields

Σ ~~^ (b*TlB(k, m)=- 0(l/yc). (3.3)
m = 2 W

We have multiplied and divided by b% in (3.2) as it is important for the proof of
(3.3) that the functional integral in the denominator of B(k,m)/b% is an Lk(dμ)
norm (see (2.8)-(2.10) of [16]). We also note that as in [16, Lemma 2.2] we may
show that |fe*| is log convex in fc, and since \bk\ ̂  \b%\ this will suffice for adopting
the proof of [16, Lemma 2.2] to showing (3.3). Briefly, the log convexity of \b%\
shows that

for 2 <^ g k - 2, and so

7=1

This bound and

k-m + l

B(k,m)= Σ bnB(k-n,m-ΐ)
n=l

then yields an inductive proof that

The remainder of the proof involves showing that

which together with (3.4) yields (3.3).
In order to complete the proof of Corollary 1.3, we may use (3.2) and (3.3) to

obtain

κr= *L
\Λ\

ilk

(3.5)
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Since bfjbk is positive, dropping the 0(1 /k) term gives us

^_\Λ\

l / fc

(3.6)

Applying the inequality (1 -x)1//c^(l -x1//c)1//c for O ^ x ^ l (to (3.5) yields the
lower bound

KΓ*^
Ml

l//c
£]1//£, (3.7)

where we note that (3.2) and (3.3) show that 0 <; (b%/bk)O(\/k) <; 1. The upper and
lower bounds of Sect. 2 then yield

lim(W* = l,
fc-»oo

and so
lim [1 - (b*/bk)

1/k [00/fc)]1'*]1'* = 1. (3.8)
fc-> oo

While it should certainly be true that (b%/bk)~ 1 as fe-> oo, we find it difficult to
show this with the bounds of Sect. 2 for fc odd. This is why we have used (3.7).

It is worth nothing that the stronger upper bound

v -,-* = |yl| ~κ

follows from the Feynman graph representation for ak and fofc (see for example [15,
sect. 8.1-8.3]), in which (— l)kbk/\A\ is the sum of all graphs with k vertices, 4 lines
attached to each vertex, and no line beginning and ending at the same vertex. The
graphical representation for (— l)kak is identical, but with the additional restriction
that all graphs are connected and this yields the inequality.

We may now combine (3.6), (3.7), and (3.8) to obtain \ak\
1/k ~\bk\

1/k as /c->oo.
This may be used with Theorem 1.2 and the remark following the statement of
Corollary 1.3 to prove (1.9). Q

The final step in the proof of Theorem 1.1 is to apply the following lemma to
(1.11).

Lemma 3.1. Let X = p,D Then lim (inf Sx(φ)) = infS(φ).

Proof. We know from Lemma 2.1 that there are functions φc and ηc for which
Sχ(φc) = mfSx(φ) and S(ηc) = mfS(φ) (we are suppressing the dependence of φc

on the boundary conditions). The proof will be given for X = D, since the periodic
case is similar. If we define

then the smoothness of φc [18-20] implies that VDφc(x) = Vφc(x), xeΛ, and so
φce Wl \R2) with S(φ) = SD(φc). Since S(φc) ^ S(ηc), this yields

lim SD(φc)^S(ηc). (3.9)
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Now it follows from [19] that we may take ηc to be a positive, spherically symmetric,
monotone decreasing function which decays exponentially at infinity. Next, define
ήc = pΛη

c, where pΛ is a C™ function with support contained in A which is identically
one in the smaller box [- T/2+ 1, T/2 - I]2, and ρΛ(x)^ 1 for all x. We have
that ήce W1

0'
2(A) and that S(ήc) = SD(ήc) ^ SD(φc). This implies that

lim SD(φ*)£S(η*)9 (3.10)
Ul-xx)

since S(ήc)-+S(ηc) as |/t|-»oo follows easily from the uniform fall off of ηc (see
Lemma 1 of [19]). This proves the lemma for X = D and it is not hard to show
that lim (i*ϊSp(φ)-infSD(φ)) = Q. Π

-
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