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Abstract. We consider the limit ft-»0 for nonrelativistic quantum particles
moving in external Yang-Mills potentials. It is shown that the partition
function and the solutions of the equations of motion converge to their
corresponding classical counterparts.

1. Introduction

The equations governing the motion of a classical particle moving in an external
SU(2) Yang-Mills potential were first obtained by Wong [Wo] by taking the
formal limit h—>0 of the quantum mechanical equations of motion. Since then,
various aspects of these equations have been studied and used [BSSW, BCL, BW,
DC, Sch, S], as well as extended [GS, St] to arbitrary groups using the symplectic
structure of coadjoint orbits [Ki, Ko, Sou]. We will review this classical
formulation in Sect. 2 in a form suited for the applications we have in mind.

The principle of minimal coupling leads to a prescription of how to couple a
quantum mechanical particle with internal degrees of freedom, like isospin in the
SU(2) case, to an external Yang-Mills potential. In mathematical language,
minimal coupling amounts to the replacement of the ordinary Laplace operator by
the Laplace-Bochner operator obtained from the connection, whose Christoffel
symbols just form the given Yang-Mills vector potential. This Laplace-Bochner
operator thus describes the interaction with the "magnetic" part of the Yang-
Mills potential and is of interest in quantum field theory, because in its euclidean
formulation it describes the coupling of Higg's fields to Yang-Mills fields.

In addition the Hamiltonian may contain a scalar (with respect to space-time)
Yang-Mills potential, describing an "electric" interaction. We present this setup in
Sect. 3 together with some concepts from group theory needed in this context.

In the theory of quantum statistical spin systems it is well known that in order
to obtain the corresponding classical theory when &—>(), it is necessary to let the
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representation of the internal symmetry [i.e. the isospin, when the gauge group is
SU(2)] tend to infinity like ft" 1. Rescaling the Yang-Mills fields by ft will then give
a gauge-covariant formulation, which does not contain ft explicitly. Therefore
gauge covariance will also hold in the limit.

In Sect. 5, we will show that the quantum mechanical Gibbs partition function
tends to the corresponding classical partition function. In particular, as for the
electromagnetic [i.e. U(l)] case [CSS], the "magnetic" dependence drops out in
the limit, so classically there is also no para- or diamagnetism in the non-
commutative case. The "electric" part on the other hand we will control using
classical limit theorems on quantum spin observables in a form first obtained by
Gilmore [G] and then extended by Simon [Sil]. The method of proof also
employs the stochastic, noncommutative integral formulation for Yang-Mills
potentials to write the kernel of the semigroup of the Laplace-Bochner operator in
terms of the Brownian motion. We combine this with the concept of the Brownian
bridge, so our proof is an adaptation of the one given by Simon [Si2] for the ft->0
limit in the electromagnetic case.

Hepp's version [H] of the Ehrenfest formulation [E] of the ft->0 limit for the
equations of motion is powerful enough to be extended to the present situation.
This discussion will be given in Sect. 6. The new input again consists in using
coherent states on Lie groups as given by Gilmore and Simon and already referred
to (see also [Kl, Pe]). Note that in Hepp's discussion, the procedure of taking the
ft-»0 limit is compatible with the time evolution in the quantum mechanical and
classical case respectively. Technically, this was achieved by using suitable Weyl
transformations. In the present situation, we use suitable gauge transformations in
addition in order to control the behaviour in the internal symmetry space.

Finally, as in Hepp's discussion we obtain a description of the quantum
corrections to the classical equations of motion by linearizing the non-linear
Heisenberg equations of motion around the classical orbit. In particular this leads
to a description of quantum corrections to the classical motion in the internal
symmetry space. The necessary group theoretical structures are presented in
Sect. 4.

2. The Classical Theory

In this section we give a brief review of the classical theory of a particle moving in
an external Yang-Mills potential as described by the Wong equations [Wo]. Let G
be a compact Lie group with a discrete center ( = semisimple), ^ its (real) Lie
algebra and g* the real dual of .̂ By duality the adjoint representation Ad( ) of G
on # induces a representation Ad*( ) of G on ^*, called the coadjoint repre-
sentation, by Ad' foHAcKfif1)*. (2.1)

Orbits of Ad*( ) are called coadjoint orbits. By definition they are of the form

(2.2)

for a fixed /0 in ̂ *, i.e. Γ is the orbit through /0. We define the normalized measure
μr on Γ as the pullback of the normalized Haar measure μ on G :

(2.3)
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Γ is a symplectic manifold, the symplectic structure being given as follows (see e.g.
[Ki, Ko, Sou]). The cotangent space 7J*(Γ) at leΓ is naturally associated to a
quotient space of (#*}*=# by

£]) = 0 for all be^}, (2.4)

with [ , ] denoting the commutator in ̂ . If {α} {a'} (a, α'e^) are any two elements in
this space, then the skew symmetric quadratic form on 7J*(Γ),

ωI({a},{α'}) = /([*,<]), (2.5)

is well defined, nondegenerate and closed.
Let Aμ(x9 1) (μ = 0, . . ., v, xeflΓ, ίelR) be ^-valued functions on Rv x R, which for

simplicity we assume to be in C™. In the phase space T*IRV x Γ = IR2v x Γ (Γ a fixed
coadjoint orbit) with points in it denoted by (x,p,/) = (x1,... Jxv 5 p l 5...,pv, /)
consider the time dependent Hamiltonian

H(x, p, /, ί) = -1- Σ (p . + /U/x, ί))2 + /(/t0(x, ί)) + K(x) , (2.6)
zm 7 =1

where V(x) is a real valued C°° function, whose further properties will be specified
below. With the symplectic structure on T*IRV x Γ, this Hamiltonian gives the
following Hamiltonian equations

PJ= ~ (Pk + KAk(x, W(δsAk(x, ί)) - l(djA0(x, ί)) ~ δ.F ,

/(α) - ί(U/x, ί), α]) (p^ + l(Aj(x9 ί))) + /( W0(x, ί), *]) , (2.8)

(flβ^) and we have adopted the Einstein summation convention. Equations (2.7)
and (2.8) are often referred to as the first and second Wong equations, respectively.

Let now g(x, t) be a C°° G-valued function on 1RV x 1R and consider the
transformation on T*IRV x Γ given as

(x, p, I) H> (x, p - l(g(x, t)3g- \x, t)\ Ad* g(x, ί)/) , (2.9)

and the gauge transformation

Aμ^^Aμ (μ = 0,...,v), (2.10)
with

^Aμ(X,t) = Adg(x,t)Aμ(x,t) + g(x,t)δtίg-1(x,t), (d0 = 8t). (2.11)

As usual we view g(x9 t)dμg~1(x, t) as an element of the Lie algebra [since
dμg~1(x,t)εTg-ί(x>t}G, and g(x,t) induces a map of Tg-ί(x>t}G onto TeG=^~\. With
this notational convention we also have

, t)dμ Adg- Hx, ί) = adfe(x, t)dμg~ ^x, ί)) . (2.12)

It is an easy exercise to see that the equations of motion (2.7) are gauge covariant
in the sense that their form is preserved under the simultaneous transformations
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(2.9) and (2.10). Of course this follows also from the invariance of both the
symplectic structure and the Hamiltonian under such transformations.

The Eqs. (2.7) in particular lead to the Lorentz equations in the form

mxj = l(Fk{x, t))xk + /(F0/x, ί)) - djV, (2.13)

with

Aτ-\. (2.14)

Since the coefficients in the first order Eqs. (2.7) and (2.8) are smooth, to any initial
condition (ξ, π, λ\ there is T> 0 and a smooth solution (ξ\ π\ λ1} of these equations
for |ί| < T with initial data (ξ, π, λ). For the applications we have in mind it will be
convenient to express this local solution in a different form. For this purpose we
replace Eqs. (2.7) and (2.8) by the following equations on IR2v x G s ( x 9 p 9 g ) (λeΓ
fixed) :

p.=

-λ(Adg-ldjA0(x9t))-djV(x)9 (2.7)

1 - ̂  Ak(x, t)(pk + λ(Adg~ lAk(x, t))) + AΌ(x9 t) . (2.8')

If (<^/)eΓ*RvxG(|ί|<Γ) is a solution of Eqs. (2.T) and (2.8') with initial
conditions (ξ, π, e\ then (<f , π\ λl = Ad*yU) is a solution of (2.7) and (2.8) with initial
conditions (ξ, π, λ). It is possible to formulate a converse statement which, however,
we shall not need.

3. The Quantum Theory

In this section, we give the quantum mechanical formulation for nonrelativistic
particles moving in an external Yang-Mills potential. For simplicity, we will
restrict attention to the case where the Aμ are time independent, although it is
possible to extend our discussion to the general case.

Let π be an irreducible, unitary representation of G with (complex) Hubert
space hπ. We will also use the symbol π to denote the resulting representation of
the Lie-algebra ^ as well as its complexification ^c. By 34?π = L2(lR.v,dvx,hπ)
^L2(1RV, dvx}®hπ, we denote the Hubert space of all square integrable functions
on IRV with values in hπ. For given Aμ, consider the operator

on J#*π. This will be the operator we will consider in the context of taking the
classical limit of the Gibbs quantum partition function

Zp,v,n = (dimΛJ- ' Trace^ exp - βH^. (3.2)
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To guarantee that Zβ π h is finite for all β, we will assume that

$Qxp-βV(x)dvx<oo (3.3)

for all β>0. Then the Golden-Thomson-Symanzik inequality [Go, Tl, T2, Sy]
and the Kato-Simon inequality [Ka, Si3] for Yang-Mills potentials [HSU] easily
combine to give the classical bound in the form

-βί~ + V(x)}dvxdvp. (3.4)
\2m I

To discuss the ft->0 limit for the equations of motion, we start by inserting h
symmetrically into the quantum mechanical p and q observables by defining
(see [H])

1 "•""Λ ' 1 / ° -" -1 '' 'hll2x))+V(h1/2x). (3.5)

Note that Hl

n h and H2

 h are related by the unitary scale transformation

Indeed, we have

For a time independent G-valued function g( ) on 1RV, set

(π(g( ))ψ)(x) = π(g(x))ψ(x) (3.8)

for ψejjfπ. As before, let 9('}Aμ be given by (2.11). Note the ^-independence of this
prescription.

If we write out explicitly the Aμ dependence of the Hamiltonians, we have
gauge covariance in the form

In particular, the (equal) spectra of Hl

π>h(Aμ( )) are gauge invariant and thus also
the particular function Zβ π>f t. We note that a similar property pertains to the
resulting scattering matrix [CKS] for a large class of Aμ and Vs.

4. Coherent States and Classical Limits on Lie Groups

In order to perform the classical limit, we will let the representation vary with h.
This section contains the relevant group theoretical properties needed, some of
which appear to be new. They will be applied in Sect. 5 and 6.

First choose a Cartan subalgebra c of #. Let /0 be a fixed fundamental weight
(see e.g. [Sil] for a brief exposition of this and related concepts we shall use). For
each natural number n, let πn be the irreducible, unitary representation of G with
maximal weight nl0 and (normalized) weight vector t/yo in the representation space
hn = hπn of dimension dn. ιpnfo may be chosen to be the vector ψfQ (x)... (x) ψ}o (n factors) in
the tt-fold tensor product of /i t, where ψιQ is the weight vector of maximal weight /0.
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n

Then hn is the subspace obtained by applying (Xjπ^g) (gεG) to ψnfQ. With this
n

identification, πn is the restriction of (X)π1 to hn. The relation [G, Sil]

<Ψnΐ0\
 exPπ» \Ψnϊ0> = <ΨlQ\ expπ^α) \ΨιQyn , fle G (4.1)

will be crucial in our discussion.
Since every element of ̂ c may be mapped into cc, the complexifϊcation of c, by

some Ad#, we have

\\nn(a)\\^nc\\a\\9 αe^c (4.2)

with a fixed norm on ̂ c.
By /0, we will also denote the element of ^* with the properties

(4.3)

where -1 denotes the orthogonal complement with respect to the Killing form.
Equivalently /0( ) is given as [Sil]

ίo(*) = <VίJ *i(a) Iv>f0> , βe^c . (4.4)

Note that ί0 is either zero or purely imaginary on ̂ . We let /0 = — iίQ and define Γ
to be the coadjoint orbit through ί0 in ^c, such that Γ=—if is the coadjoint orbit
through /0. In the beautiful results of classical limits for quantum spin systems
[FL, Li, Sil], the main observation is to use the representations in the com-
bination n~1πn( ) when letting n tend to infinity. We will also employ this
procedure. Moreover, by our definition of the quantum mechanical Hamiltonians,
we are thus led to the following relation between h and n:

nh = l. (4.5)

As a consequence, in our applications the representations will always show up in
the form hπn( ) with a fixed but arbitrary πr Note that in abelian case, hπn( )
is independent of n, if Relation (4.5) is satisfied and equals π^ ) (up to an
isomorphism).

To describe the n-κx) limit, we introduce coherent vectors in the form
emphasized by Gilmore [G] and applied by Simon [Sil]. Let Pn(e) be the
projection onto the space spanned by the vector \pnιQ and for any ge G, consider the
one-dimensional projections

Pn(9) = ̂ (β)Pn(eK(9Γ1 (4.6)

If we let / = Ad*#/0, then Pn(g) depends on /only, so we may set Pn(ί) = Pn(g) and
the following completeness relation holds [Sil] :

rfJWMO=V (4.7)
The states defined by these projections are called coherent states. The first part of
the following lemma is due to Gilmore [G].
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Lemma 4.1. For any ae^c, leΓ

(-\
QhnPn(ί)eπn(n) = el(a} .

Moreover, there is a constant c, depending on Γ only, such that

Jim tΐacQhnPn)enn = el(a} . (4.8)

(4.9)

Proof. It suffices to prove the bound (4.9), so using estimate (4.2) and Schwarz
inequality, we estimate the left hand side as (ϊ= Ad*gί0)

Ί

ds

-10 (Aάg~ . (4.10)

Now for

nϊo= Σ Ψi0® ®πi(b)ψϊo®...
7=1

(4.11)

where in the/h summand π^b) acts on the/h factor. Inserting this into estimate
(4.10) allows us to rewrite this estimate as

^

(4.12)

where we have used Relation (4.4). This proves Lemma 4.1.
When we combine this lemma with the completeness Relation (4.6), we obtain

the following lemma, the first part of which is due to Simon [Sil] :

Lemma 4.2. For any ae^c and ίεf

lim — trace^e n^»} = JV(fl)dμf(/).

Moreover, there is a constant c, depending on /0 only such that

k"

(4. 1 3)

(4.14)

The preceding lemmas show how πn -I approaches l(a) in the coherent state

labelled by I The next results, which seem to be new, describe the fluctuations of
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π - J around l(d) in the coherent state labelled by I. For this purpose, we introduce

the quantity

ΦB>)=-in1/2(πBQ-/(α)), (4.15)

and the bilinear forms

<α,&>/=-traceΛlP1(δ(π1(α)-ί(fl))(π1(&)-/(6)) (4.16)

on <?c and labelled by /.
We have the following covariance property :

. (4.17)

Choose δ = δ(Γ) such that

K(a)-/(a)||g3||fl|| (4.18)

for all IE f. Thus

l^ay^δ2 \\a\\2. (4.19)

Also set

trace JPB(0-) = « »« f Z . (4.20)

Lemma 4.3. For any αe^c, ίef

lim «expiΦΛ z(fl)>X z = exp-£<α,α>z. (4.21)
n-»oo ' '

Moreover

/ 2(^|a||)3

e

d 2ll f lll2 (4.22)

for all n^4(δ \\a\\)2.

Proof. By Relation (4.1)

>-1/2α)»M)", (4.23)

so we introduce the quantity

G(s) = tracehlP1(ί)es~1(πι(α)~f(β)). (4.24)

Now

2s2 ' l

with

oo / 5k i i i i \ 3 < 5 \ \ C 4 \ \
ι0 \\Cl\\ \ — —

|G (s)|^ 2^ (fe!)~ (s~ ^ l l α l l ) =6"( e s » (4.26)
k = 3 \ S I
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from which the first part of the lemma easily follows. From now on, we will assume

5 ̂  Max(l, 2δ || α ||). (4.27)

But then

//$ II /ϊll \ 2

(4.28)

(4.29)

In particular

To prove (4.22), it is obviously sufficient to show

<22-
2NI2

But

d (G(sf) = 12s In G(s) + ~ ̂  G(s)} (G(s))s

ds G(s) ds

Using (4.26) and the estimate (4.29), we easily obtain

G(s) ds

Furthermore, the estimate

gives

Hence

with

The estimate

leads to

for

for

~

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)
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with

|25G3(s)|g;i6 , t (439)
s2

Collecting terms yields (4.31), concluding the proof of the lemma.

Remark. We note the close similarity of the first part of Lemma 4.3 and its proof
to the content and one of the proofs respectively of the central limit theorem in
probability theory (see e.g. [Si2]).

We want to give some further insight into the properties of Φn l for n large.
First <, )j, as given by (4.1) is positive semidefinite on ̂ , so let ̂  =^/ker<, }z. We
claim that ̂  may be identified with 7JΓ, the tangent space to Γ at /. To see this,
consider the surjective map ιl :^->7^F given as

ιl(a) = l°ada. (4.40)

We have to show that

ker<,> / = kerι /. (4.41)

By (4.17) it suffices to restrict attention to the case / = /0. Now if a is in kerz,o, then

<t/?(t)| π^b) |φ(ί)> - <φίo| π^b) |tpίo> (4.42)

for all t with

as follows by differentiating the left hand side of (4.42) with respect to t. But
Relation (4.42) is only possible if \ψ(φ is a multiple expίz of |t/^o> [Sil], so in
particular π1(a)\ψϊoy = z\ψ-lo). By the definition of /0(0), this gives αeker<,> ί o,
showing ker ιlo £ ker < , >/0.

As for the converse, assume now αeker< , >/o. By the Schwarz inequality, this
means that

In particular, this yields

for all fee^, showing ker<,> / o£kenZ o, proving our claim.
By construction < , >z induces a positive definite scalar product on ̂ , which

we continue to denote by the same symbol. Also let #f be the real dual of ̂ . #f is,
of course, linearly isomorphic to 7J*Γ, the cotangent space to Γ at /. Let < , yι also
denote the scalar product on ^* obtained by a duality transformation from <( , )z

on .̂ Let dτ (τe^f) denote the Lebesgue measure on #f and consider the
probability measure

dft(τ) = JV- 1exp-i<τ,τ> Idτ, (4.43)

N being the appropriate normalization factor. Now let ae^. Then by our previous
discussion la = l°ada is an element of ̂  = 7JΓ. Furthermore, let (α)e^f be the
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image of αe^ under the homomorphism given by (2.4). With this notation
established, consider the selfadjoint operators Φ,(α) on L2(^f9dρt)9 indexed by ae^
and defined as

(eίφl(a}f)(τ) = e-
ίτ(la}f(τ + f {a}) (4.44)

for /eL2^*,^). Since {a}(la,)=—l([a,a''])9 we have the Heisenberg com-
mutation relations

or in infinitesimal form

[Φj(α), Φz(α')] = — i/([α, α']). (4.46)

Of course, we also have

Φz(α + α') = Φz(α) + Φ,(α'), Φz(ία) - ίΦz(α). (4.47)

Because of these relations, we view these operators as quantizing the symplectic
structure discussed in Sect. 1. Let furthermore C'^z denote the expectation of an
operator in L2(#f9 dρz) with respect to the state given by the wavefunction, which is
identically equal to one on #f.

Then by (4.44) _1
^K«)^ = jV-ije-^«)£ 2< τ ' τ > 'd τ > (4>48)

To evaluate this integral, let /*e^z* be such that τ(/α) = <τ, ί*>z and therefore
</* 5 /*) z = (/α5/Λ> z Then, by standard calculations on Gaussian integrals, we
obtain i 4|: ^ i

««"'<">», = «>'2 < l α > ' β > 1 =e~*<a'a>1. (4.49)

Therefore, the first part of Lemma 4.3 takes the more suggestive form

lira «exp ίΦn /(α)»B, = «expiΦ,(α)»,. (4.50)
n-»co

The relationship between Φn > z and Φt goes even further. Note that

[ΦΛ>),ΦΛ>')]= -17^-Cα,^]), (4.51)

which formally tends to (4.46) as rc-»oo. In fact, by extending Φz(α) to ae^c in the
obvious way, we have

Lemma 4.4. For any a19...9ake#c9

// k \ // k \\
lim ({ Π ^n.ι(aκ)\ ={U eiΦl(a«Λ. (4.52)

n-^oo V V κ = l //n,l \κ= 1 //I

In fact, there is δ1=δί(Γ) such that

>n,l \κ=1 III ~

provided n^ίδ1 ^ ||aκ|| I .
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Proof. We want to rewrite the expressions involved such that Lemma 4.3 may be
applied. Now the right hand side of Relation (4.52) equals

χ = \e * = ' %e*°<?**"Q'e\ (4.54)

To rewrite the left hand side in a comparable form, we will use the Baker-
Campbell-Hausdorff formula as follows: Given the group G, there i sO<ε 0 <l,α>l
and a map b:^cx^c-^^c with the following properties: For all α,α' with
\\a\\ + \\d\\ <ε0

expα expα' = exp(α + a' -f \[α, d~\ + b(a, α')) (4.55)

with

||b(α, α')|| ^α2 ||α|| | | β ' | l ( l l f l l l + l l f l Ί I ) (4.56)

By modifying α if necessary, we may also assume that

for all α,α'e^c. Next, define aκ and bκ (1 ̂ κ^fc) inductively as a1 =a19 b1 =0 and

expn" 1/2ακ -expn~ 1/2ακ" l expn~ 1/2ακ, (4.58)

(4.59),
^ ρ < ρ ' ^ κ - l

such that we have the alternative relation

w

6* = ̂ -!^-^" Σ K^,']. (4.60)
Q = κ Q<θ' = k

Note that this definition makes sense for all large n and fixed aί,...,ak. We want to
estimate ak and bk, so we proceed by induction :

|α κ | | . (4.61)

Now let n be so large that

Then an easy induction argument shows that
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and

lift" || ̂ r

585

(4.64)

Now we write

r=((Πe χp«U*κ)
\ κ = l

Let

Then by Lemma 4.3, (4.62), and (4.64)

δ'
ρ = l

[αβ,αβ,]M. (4.65)

(4.66)

(4.67)

if we choose α so large that α Ξ > | | / | | and ((3')2^4<52 + α| |/ | | for all /eΓ. Again,
Relations (4.62) and (4.64) give

(4.68)
Q=l

Also by (4.60), (4.62), (4.63), and (4.64)

/ k k

<«*,«*>,-( Σ « β » Σ «,
ρ = l ρ = l / /

* \ / / k \2

Q=l

Therefore, we obtain

ρ = i

Jt \2

y, I I α

(4.69)

(4.70)

Combining (4.67) and (4.70) proves the lemma once we choose

(4.71)

In an analogous fashion, we obtain uniform bounds in the following form

Lemma 4.5. There is δ2 = δ2(Γ) such that for any av ...,αfce^c

Π exp;Φn>κ) gexpδ^ Σ Kll ,

provided

(4.72)

(4.73)
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Proof. We slightly modify the arguments of the proof of Lemma 4.4. Replace
condition (4.62) by the condition

4?Γ1/2α Σ K H S ε 0 < l . (4.74)
e=ι

Then (4.63) still holds, proving the lemma with ^^Maxlδf,— . The next
V ε o/

two lemmas allow us to prove convergence rates and bounds of the moments
in a form we will need in Sect. 6.

Lemma 4.6. There is C1 =CX(Γ) such that for all a0,aί, ...,ake^c

>)κ_π+ι<^ //;[

H α o l P ; (4>75)

\κ= 1 I

provided ^(C^l + ||α0||)
2)2.

Proof. The proof follows from an application of Cauchy's theorem. Indeed,
consider

exPί*»fιUκ^)exPίΦ»,zK) Π
Ί n,l

Π expiΦfoβj)). (4-76)
= kι + l //ϊ

Then, the left hand side of (4.75) is the absolute value of

(4.77)ΓT -i — \(Sn-S)(z
Λ ι \ dzj 1"""

and hence bounded by

Π -) sup \(S"-S)(Zl,...,Zk)\. (4.78)
'<=! rκl M = rκ

Since we may assume ακφO, we take rϊc = (k||α ϊc | |)~1. Hence, estimate (4.75) follows
from Lemma 4.4. q.e.d.

The expectations of monomials of order k in the Φl with respect to <^ ^ show
the typical kk/2 behaviour of operators satisfying Heisenberg group commutation
relations or of Gaussian random variables. In order to obtain the convergence
factor n~1/8 in (4.75), we had to pay a price, namely a kk behaviour only. However,
the next lemma shows that we may obtain bounds on expectations of monomials of
the Φn l of the desired form which are uniform in n.
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Lemma 4.7. There is C2 = C2(Γ) such that uniformly for all n, all a19..., ake^c and

ki k \\

Π Φnt z(ακ) exp iΦΠf K) Π φ

n, K)))
« = 1 κ = Λι + l //«, /

^(C2(l + i|α0||
2)fc)ί/2eC2M2 fl Kll (4.79)

K = 1

Proo/ As in the proof of Lemma 4.6, we bound the left hand side of (4.79) by

Jr;1) sup \S"(Zl,...,zn)\.

Now choose rκ = (]/k\\aκ\\)~~ l. By Lemma 4.5, the bound (4.79) now follows for all

n^δ2(]/k + ||α0||)
2. On the other hand, since expz'ΦMj(α0) is unitary for α0e^ and

l|Φn>κ)ll ^C\\aκ\\nll2(C = Cf(Γ)l for all n^δ2

2(}/k+ ||α0||)
2, the left hand side of

(4.79) is bounded by

Π (C || aκ || n
1/2) g (C'δ2

2(l + || α0 1| )2k)k/2 . (4.80)
κ= 1

This proves Lemma 4.7.
We conclude this section with a trivial remark which, however, will be useful

for our discussion of the quantum fluctuations around classical orbits, to be given
in Sect. 6. We note that Φ{(a) and ΦAd*gl(Adga) satisfy the same commutation
relations and have the same expectations. In fact, it is not difficult to construct a
unitary equivalence given by a unitary operator Ad~0

^f.dQ^L^^dρ^, (4.81)

such that

Ad~ ̂ (a)(Ad~ gΓ l = ΦAd.gl(Mga) . (4.82)

5. Classical Limits for Partition Functions

We define the classical partition function to be

(5.1)

We recall that by our assumptions the Yang-Mills potentials are CJ. Also we
assume the condition (3.3) on the scalar potential V to be satisfied. Therefore these
assumptions imply that ZCβ Γ is finite. The aim of this section is to prove

Theorem 5.1. With the above assumptions, the scaled quantum statistical partition
function converges to the classical partition function

l imft v Z A π m J l = Z£Γ. (5.2)
ft— >• 0

nft= 1
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Proof. By performing the /^-integration in the defining relation (5.1), it easily
suffices to show

ί->0 n π" ]R v xΓ

} βh2 (5-3)
where t = and

m

v HR \ β
--V (5.4)

We now give a representation of the kernel of exp — tH(t) in terms of the Brownian
motion. Let ω be a Brownian path from x to y in time ί. To simplify the
presentation, we now assume that G (and its complexification Gc) is a matrix
group. Let gt(ω)eGc be the solution of Ito's stochastic differential equation [Po]

0 v= 1 L j= 1

ί. (5.5)

Then the kernel of exp — tH(t) may be represented by

- - } V(ω(s))ds
o

(5.6)

where dP'x y(ω) is the conditional Wiener measure. In order to estimate πn(gt(ώ)) for
the interesting case x =y, we rewrite gt(ώ) with the help of the Brownian bridge α( •)
(see e.g. [Si2]).

gt = 1 + ' f { 1/t Σ
0 I y = l

7 = 1

If we iterate this once and use the abbreviations

, (5.8)

υs = βV(x+\/ta(s)),

and the relation t = n~2βm~1, we obtain

1 I / v \ i ] }
J - Σ fajisfy J - -ώα0 J +0(n~2) , (5.9)
0 n\j=-L I n J J
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where 0(n~ 2) denotes an element in #c of norm O(n~ 2) uniformly in α. By (4.2) this
gives

> (5.10)

where 01- now denotes an endomorphism of hn of norm Oι- uniformly in α.

Let EΛ( - ) be the expectation with respect to the Brownian bridge. Thus

ί-dPί

x.y = (2πί)-v/2e"JL2Γ-£β( ). (5.11)

In the appendix we will give a proof of the following lemma

Lemma 5.2. For any £>0 there is n(ε) such that for all n^n(ε)

c trace, Wexpί- \ (mnP-aQ}+v]ds+ Σ } πn (± α
I \ L 0 \ \n I I j=l 0 \n

-βV(x)-iβπn(-A0(x))
— e n

Therefore, to prove Theorem 5.1, it suffices to show

lim —~ \ d xe trace^ e ==\d xct{Ap\l)e . (^j.Uj

But this follows easily from Lemma 4.2 and the Lebesgue bounded convergence
theorem.

We note that Theorem 5.1 may also be extended to the case which includes an
external metric field. The way is to combine the methods used here with those
applied in [Ho], which control the metric field. An entirely different proof which
covers all such external fields simultaneously will be given in [ST].

6. The Classical Limit for the Equations of Motion

In this section we extend Hepp's discussion [H] of the Ehrenfest solutions to the
motion in external Yang-Mills potentials. In particular we will determine the
quantum fluctuations around the classical solution. We incidentally remark, that it
is possible to include external metric fields simultaneously, the case of external
metric fields alone having been discussed in [Ho]. To simplify the proofs we
assume in this section that V (together with the Aμ) is C^, although extensions to
more general V (and Aμ) are possible.

Define Weyl operators

Ϊ7(α) = expi(α 6-α* b*) (6.1)

with b*, b being the usual creation and annihilation operators for the harmonic
oscillator

-112, (6.2)
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and

α .̂ + iπ^-1'2 (6.3)

for (ξ,π)eIR2v. Also q. is the multiplication operator by x. and p.= — ίdr We have

= &-«. (6.4)

Also we set

and (see Sect. 3 for the definition of H%)

Uh(t) = exp Hit, (6.6)

by which h is introduced in a symmetrical way. Again we fix Γ to be the coadjoint
orbit — iΓ, where Γ is the coadjoint orbit in gc through the fundamental weight
70 = ao. We recall from Sect. 2 that (<f, π\ f ) and (ξ\ π\ λ1) for |ί| < T are solutions of
the Wong equations with initial conditions (ξ, π, e) and (ξ, π, λ) respectively such
that Ad* fλ = λ1. We set λ = iλ, % = iλ* and vt = (ξ* + iV)2"1/2. To obtain the ansatz
for the Hamiltonian describing the quantum fluctuations, as in [H] we will expand
the Hamiltonian around the classical orbit. The quadratic part will give us the
desired operator.

More precisely consider

+ V(hll2q + {') - ihπn((AdfΓ lAQ(hll2q + ?)) . (6.7)

In order to expand this around (<f, π\ λ1}, we recall the definitions of the quantities

(6 8)

for αe^c. Using the Wong equations for ( ξ ^ π ^ f ) we obtain

d .

'. (6.9)

The quadratic term H"fl(t), which will describe the quantum fluctuations, is given
as

H"fl(t) = (PJ + λ'(dkAjί?))cf + Φn_ λ ((Ad f ) ~ 1 Aj(ξ')))2

Π_ λ ((Ad Y) ~ 1 dkA0(ξ'))qk + ̂ (
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Hn

fl(t) has the following structure: It is quadratic in q, p, and Φn λ (a "harmonic"
oscillator) with coefficients (including Lie algebra elements) which depend on Aμ

and V and its derivatives evaluated at (<f, π*, λ1). In particular these coefficients are
bounded for \t\<T. Finally Έf is of the form

B*= £ aijk(t, q, fyXfaϊXjfaϊXjjin). (6.11)

Here {Xi(n)}1^i^2v+dίmG is the family of operators q.9 pj9 and ΦΛfλ(em) enumerated
in an arbitrary way (em a fixed basis in )̂. The aίjk(t9 q, h) are C°° functions in
t (\t\< T) and q9 uniformly bounded in h.

To state the main result, let Φλ( ) be the operators as defined in Sect. 4. Then
Hfl(t) obtained by substituting Φλ for Φn λ in Relation (6.10) is of a harmonic
oscillator type and thus is easily seen to have a dense set of analytic vectors in the
Hubert space JSfλ=L2(lRv,dvs) ®L2(^*,dρJ. Therefore this operator defines a
selfadjoint operator also denoted by Hfl(t). Let q.(t)9 pt(t)9 and Φλ(t)(a) be the
unique solutions in the Heisenberg picture in ££λ to the operator differential
equations

d_

dt

with initial conditions q , pi9 and Φλ(a) respectively. q.(i)9 pt(f)9 and Φλ(t)(a) may
alternatively be given as follows. Consider the unitary operators:

W(t9 s) = T exp - i J Hfl(u)du, (6.13)
s

where T denotes time ordering. As in [H] the existence of the W(t9 s) and their
differentiability properties may easily be established using the Dyson series on a
dense set. Then

f(t)=W(t,0)*fW(t,Q) (6.14)

is indeed a solution of the Heisenberg equation (6.12) with initial condition /, as
follows directly by differentiation.

We want to make an additional comment on Eq. (6.12). One might be
tempted to introduce the operator Hfl(i) on <gλt obtained by substituting Φλt( ) for
ΦΛtλ((A.dγt)~1') in (6.10). Hfl(t) on jSfλt and Hfl(t) on jSfλ are of course unitarity
equivalent, as follows from the concluding remarks of Sect. 4. It turns out, however,
to be more convenient to work in the fixed space jSfλ. In particular the Heisenberg"
equations are in a sense equations obtained by taking covariant derivatives of
operators in the bundle [&λ}λeΓ of Hubert spaces over the coadjoint orbit Γ.

We are now in a position to formulate the main result of this section. In what
follows ^ X f;L [see (4.20)] is considered to be a linear operator, which maps
bounded operators in ^Kn into bounded operators in Z?(IRV

? d
vx). Similarly <C ^>Λ

maps bounded operators in 5fλ into bounded operators in L2(IRV, dvx).

Theorem 6.1. For any (r, s)eIR2v, ae^ and \t\ < Tg T (T> 0 depending on the initial
conditions only)
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5- lim { U(h~ 1/2α)* Uh(t)* expίr(q - h' 1}2ξ*) + is(p-ft" J /V)

(6.15)

'n\
V*υι xx
nh= 1

n,λ

= «expi(rq(ί) + sp (ί) + ΦA(ί) ((Ad/)"" '

s- lim < U(h~ 1/2a)* t/s(ί)* expifa, + sPf) expπn

). (6.16)

Proo/ As in [H], (6.16) is an easy consequence of Relation (6.15), so we introduce

H'd(ήdr, (6.17)
" S

where / , v

H'cl(r) = Hd(ξ\π\λ')-λr(yr~(yr1j. (6.18)

Then the expression on the left hand side of (6.15) may be written as

« W,(t, 0)* exP/ΦBι A((A<U'Γ 'α)) expi(rq+sP)Wh(t, 0)»n> A . (6. 19)

We will need another set of unitary operators, given in analogy to W [see (6.10)]
as

(6.20)

on 3Jfπn. Since for fixed n, \\πn(a)\\ ^n \\a\\ by (4.2), the existence of these operators
follows as in [H] using a Dyson series on a suitable dense set and extending. In
particular Wh(t, s) |tpxo> is strongly differentiate in t where \ψxo) is of the form

Ψxo(x) = π-^Qχp-(x-x0)
2/2®ιp (ιpehn) (6.21)

which form a dense set. Also Wh(t, s) \ψxoy is in the domain of any polynomial in the
qί9 pp and Φn>λ(a) (aε#). Our first aim is to replace by Wh by Wh in (6.19) when
considering matrix elements between states of the form φχ,Q and φxo with

(x-x0)
2/2. (6.22)

To estimate the resulting error, consider

(wκ(t, o) - wΛ(t, o)) \Ψxoy = ~(wh(t, S)wκ(s, o)) \Ψxoyds
o α5

= i J Wft(ί, s)/1s^(s, 0) \Ψχoyds (6.23)

with

A* = ft- ̂ ^Jίs) + 6^5) + β2(s) - H}Z(S) - ft- iH'd(s) . (6.24)
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Here

(6.25)

(6 26)

Hence, by (6.8), (6.9), and (6.18), we obtain the estimate

\\(Wh(t,Q)-WΛ(t,Q)\Ψχoy\\^h1/2 sup \\BsWΛ(s,Q)\Ψχoy\\. (6.27)
O^s^ί

We are interested in obtaining a bound of (6.27) which is uniform in h, namely for
the special case ψxo=ψn

xθίg with

K,, β (*) = * " v/2 exp - (x - xQ)2/2®πn(g)ψnlo , (6.28a)

where t/yo is as in Sect. 4 and geG satisfies

Ad* #/ 0=i. (6.28b)

Note that Pn(λ) is the projection into the one-dimensional space spanned by
πn(0)Ψnΐ0 To °btain the desired bound, note first that with the notation employed
in (6.11) Hn

fl(t) may be written as

, (6.29)
ij

where the ^-independent, complex valued functions A^t) satisfy

supl4/ί)|<C (6.30)
| f | £ Γ

ί>j

for some C < oo uniformly in n. Now the Dyson series for W^(s, 0) takes for form

CO S Si S m -l

^(s,0)|φ^fl>= Σ(-O m Π- ί .̂..ds^^ ί̂. .^ίsJK.β). (6.31)
m = 0 0 0 0

Therefore (6.11), (6.30), Lemma 4.7 and the analogous harmonic oscillator
estimates for expectations of monomials in the qi and pj in the state φxo give

klm

\\ffWΛ(s,ΰ)\ψ»XOιβ>\\ £ Σ ~(C)m+1(2m + 4r+2 II Kfί>|| (6.32)
m ^

for some new C>0 independent of n. Now the right hand side of (6.32) is
absolutely convergent for all |s|^Γ:gT(T>0 independent of n) by Stirlings
formula. Combining this with (6.26) we obtain

lim h112 ||(^(ί,0)- WΛ(t90))\ψa

XOfβ>\\ -0 (6.33)
#-*o
nh= 1

for all \t\ ̂  f. As a consequence, to prove (6.15), we may indeed replace Wh(t,Q) by
t^(ί,0) in (6.19) and look at the resulting matrix elements between any states φχ,Q

and φxo (6.22). We recall that norm boundedness and weak convergence on a
dense set implies strong convergence. Hence we have to show that
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^((Ady'ΓMWO)^)

Satisfies

- <Φxb\ «W(t, 0)* expifa H-sp + Φλ((Ad/Γ la

Lim|F(n,ί)|=0

,IΦχo> (6.34)

(6.35)

for ajl \t\ rg T. To see this, we expand both terms by writing down the Dyson series
for Wh(t, 0) and W(t9 0) respectively. Again by Lemma 4.7 and harmonic oscillator
estimates for monomials in the q. and p. these series are uniformly convergent in n.
If we combine the corresponding terms of each order, their difference vanishes as
n->oo by Lemma 4.5. Hence (6.35) follows by the Lebesgue dominated con-
vergence theorem. This concludes the proof of Theorem 6.1.

Appendix A

In this Appendix we give a proof of Lemma 5.2. Choose some large R, K > 0, (they
will be specified more below) and let

F(α,ί) =

Then

7=1

1

In J£β(F(α, ί)) - exp - β ( V(x) + ίπn ί AQ(x)

. χΛ(α) '(α,ί)-exp-j

(A.2)

Here χΛ(α) is the characteristic function of the set { α l l α l l ^ ^K} and we have used
assumption (3.3) and (4.2). We first estimate the expectation in I. The estimate

for real numbers α and β and

(A.3)

(A.4)

for matrices A, B combined with estimates (4.2) and our assumptions on the Aμ

give
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)-exp-β(V(x) + iπn\-AQ(x)

(A.5)

where

(v,-βV(x))ds
o

(a0ιt-βA0(x))ds (A.6)

depend on α. Note that

i Σ *,>/
0 j = l

B2<c3 (A. 7)

uniformly in α, x, and f = n 2βm 1. We now use Holder's and Jensen's inequality
to estimate the stochastic integral. This leads to a bound of the expression (A.5) in
terms of L2 (Dα)-norms in the form

Since |x|^K, by the continuity of F(x), llχ^J^ is finite for all f and R. Also B^
a.s. as £->0. Therefore by the Lebesgue dominated convergence theorem ||χ^J31||
<Min(l,ε/15c) with

= e2c4Jexp-j8F(x)dvx, (A.9)

provided t^t(R,K,ε). The same applies to ||%ΛJ32||2 yielding another Min(l,ε/15c).
Now consider the term \\χRB3\\2. Using the relation

j = ι
f A/x)dα/s) = 0 a.s.,

\\M\2*

1 v

ί Σ
o j= \

(A. 10)

v l / 2

0 j = l

(A.11)

by a standard bound for the α-integral (see e.g. [Si2, p. 159]). Since A} is in CQ we
may apply the mean value theorem which yields the bound

for ί^ί(ε). This gives a bound ε/5 for the term I in (A.2) provided t^t(R,K,ε).
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Next we estimate the term III in (A.2).

χ(α, \\a\\ „ ̂ £)exp \-β J
'

In the last equality we have used Fubini's theorem. Hence

£c9E sup S g c 1 0 ,
se[0,l]

where the last estimate follows e.g. from [Po], Theorem II.2. Therefore

provided R^
We turn to a discussion of the term II.

Π = Cl j <rxE(χR(*)\\F(*,t)\\)

^c8 J dvxEaχR(a
\x\>K

^ c

/ Γ 1

exp \-β$V(x+}/ta(s))ds
\ L o

(A. 16)

Now set

Then we obtain

V_(x,]/tR)= Min

- J
lχ|<_τ

(A. 18)

Now by [Si2, Theorem 10.1] the first term in the right-hand side of (A. 18)
converges to §dvxe~βv(x} as f-»0 and by the preceding considerations Eα(χΛ)-»l as
.R-^oo. Hence for all ί^ί(ε) and R^

-.
lϋ

7(x) as ί-^0 by continuity for all |x|gK. By
^ | F(x)|) the second term in (A. 19) converges to

Now for fixed R 7_(x,
dominated convergence (| V_
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j e~βv(x)dvx. Therefore, if first R is chosen large, then K large and then ί small,
\χ\*κ

we obtain

Π ̂ |. (A.20)

Also

IV ̂  I (A.21)

forallX^X(ε).

Combined we have
I + II + III + IV + V ^ f i (A.22)

concluding the proof of the lemma.
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Note added in proof. The basic relation (4.1) has also been derived and used by D. Zelobenko (Compact
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In [St] it will be shown that the formal series in h for the partition function as derived by Uhlenbeck,
Gropper, and Wigner is indeed an asymptotic expansion.




