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Eigenvalues of the Laplacian in a Region with
Randomly Distributed Small Obstacles
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Abstract. We remove m-balls of centers w 1 , . . . 5 w w with the same radius α/m
from a bounded domain Ω in R3 with smooth boundary y. Let μk(α/m;w(m))

denote the fe-th eigenvalue of the Laplacian in ί2\w-balls under the Dirichlet
condition. We consider μ/£(α/m;w(w)) as a random variable on a probability
space (w l 5 . . . , wm)eΩ x x Ω and we examine a precise behaviour of
μ/c(α/m; w(m)) as m-» oo. We give an elaboration of. M. Kac's theorem.

1. Introduction

We consider a bounded domain Ω in R3 with smooth boundary y. Let
£(ε;w) be the ball defined by B(ε;w) = {xeR3 ;\x - w <ε}. Let 0<μ1(ε;w(w))^
μ2(ε;w(m))^ μ3(ε;w(w)) < ••• be the eigenvalues of - zl( = — div grad) in

m

Ώε w(m) = £>\ |J 5(ε;w|m)) under the Dirichlet condition on its boundary. Here
i = l

w(m) denotes the set of m-points {w(™}}™=1. We arrange μ/c(ε;w(m)) repeatedly
according to their multiplicities.

Let V(x) ^ 0 be a C1 function on Ω satisfying

J V(x)dx = L
Ω

Then, we consider Ω as the probability space with the probability V(x)dx. Let
m

Ωm = Yl Ω be the probability space with the product measure.
i = l

The aim of this note is to prove the following:

Theorem 1. Fix α > 0 and k. Then,

lim P(w(m)eί2m; m^|μ/c(α/m; w(m)) - μ[| < ε) = 1 (1.1)
m-> oo

for any ε > 0 and <5e[0,^). Here μ£ denotes the kth eigenvalue of — A +4παF(x)
in Ω under the Dirichlet condition on γ.
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Theorem 1 is an elaboration of the result of Kac [4] and Rauch-Taylor [13].
Kac [4] proved (1.1) when (5=0, V(x) = (volume of Ώ)"1 and Rauch and Taylor
[13] proved (1.1) for general V(x) when δ=Q. Kac used the theory of Wiener
sausage to get his result. Rauch and Taylor gave their result by combining functional
analysis of operators and the Feynmann-Kac formula. See also the very interesting
papers of Papanicolaou-Varadhan [12] and Simon [14]. Our proof of Theorem 1
is different from [4, 13] in the point that we employ perturbational calculus using
Green's function of A — λ. For other related topics, see Bensoussan-Lions-
Papanicolaou [1], Huruslov-Marchenko [3] and Lions [6].

Theorem 1 was announced in Ozawa [9]. See also Ozawa [10, 11].
Now we give a rough sketch of the proof of Thoerem 1. Let G(^(x,yι w(m))

be the Green's function of A — λ in Ωa/m w(m) under the Dirichlet condition on its
boundary satisfying

(Δx - λ)G^(x, y; w(m)) = - δ(x - y), x,yeΩ»Mm},

G^(x,y w(m))=0, xeΩα/m>w(ra).

Let G(λ\x,y) be the Green's function of A — λ defined by

(4 - λ}G(λ\x, y)=-δ(x-y\ x,ye Ω,
G(λ\x,y)=0, xeγ.

Hereafter, we abbreviate G(/i)(x, y) as G(x,y), if there is no fear of confusion. Let
h(V(x,y;w(m)) be as follows:

, y; w(m}} = G(x, y) - (4πα/m)eAl/2(«'m) JΓ G(x, w,.)

(s)

^wJG^y)- (1.2)

Here the indices ( i l 5 . . . , z s ) in £ run over all 1 <. il9...,is g m satisfying iί^i2,
(s)

i2 =£ / 3, . . . , is_ 1 =f= is. A key to Theorem 1 is the fact that h(£} is a nice approximation
of G^} in a rough sense. This is discussed in Sect. 2.

Recall now that

1 m

- Y G(x, w.)G(wί5 j;) tends to j G(x, z)V(z)G(z, y) dz
m i=l Ω

with probability one by the strong law of large numbers. See Kingman-Taylor
[5], Hall- Hey de [2], etc. We take a sufficiently large λ and we fix it. Then, we
know from probabilistic argument as above that h(® converges in a rough sense
to the integral kernal function of the integral operator (— A + λ -MπαKΓ1. Of
course, we need rigorous steps. Along this line we get Theorem 1.

From now on we show some technical points in our proof. The following
conditions on w(m), m= 1, 2,... are important in our study.
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(C-l)v There exists a constant C0 independent of m such that

hold. Here VE(O,|) is a fixed constant.
(C-2) There exists a constant C* independent of m (possibly depending on ξ) such

that

maxm- 2 £ |wf> - wf > ~ 3 + *^ C* < + oo (1.3)

holds for any ξ > 0.
(C-3) Let fh, h= 1,2, 3,... be an arbitrary family of continuous functions on

Ω satisfying

xeΩ

for some constant C^ > 1 and D* < oo. Then,

Urn m^sup Cf (- Y /,(w^) - J /Λ(x)l/(x)dx =0 (1.4)
^-

and

lim mβsupC»2- - G(A)(wjm), w

0 (1.5)

hold for any fixed βe[0, )̂ and A ^0. Here GU) denotes the integral operator
defined by

( G ™ f ) ( x ) = $ G < λ \ x 9 y ) f ( y ) d y .
Ω

We can prove the following Proposition which is crucial to our step to prove
Theorem 1. Let H(

0J
) denote the operator given by

Let G^ denote the operator given by

Proposition 1. Fix α > 0 and k. Lei φv

k denote the kth eigenfunction of
— A +4πaV(x) in Ω under the Dirichlet condition on y satisfying
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Assume that {w(m)}£=1 satisfies (C-l)v, (C-2) and (C-3) for any fixed λ > 0. Then

lim K(G<i> - H^)φrilL 2 ( β β n f W ( m ) =0 (1.6)
m — > oo

/ιoMs /or any /ϊxed Je[0, £) and /or any sufficiently large λ > 0.
In Sect. 4, we make a probabilistic consideration on (C-l)v, (C-2), (C-3) and we

finish our proof of Theorem 1 based on Proposition 1.

2. Construction of an Approximate Green's Function

We give preliminary Lemmas. Let bip ajk, akl denote positive numbers. Then we
have the following:

Lemma 1. The inequality

m / m / m

ίh Σj_ι ^/^•••^-^A-u^1/2^2( Σ ( Σ.*?,

( $ '
V ίιαj';

for 5^2, where

Therefore (2.7) ί/o^5 woί exceed

l / 2 / m \ l / 2

Σ < (2 2)

Proof. By the iterative use of the Schwarz inequality we get (2.1) and (2.2). q.e.d.
From now on we abbreviate Ωa/m w(w) as jQw. Also £(α/m;wκ) is written as Br,

if there is no fear of confusion. We have the following

Lemma 2. Suppose that weCGO(βw) satisfies

(-Δ+λ)u(x) = Q xeΩw,

, xey, (2.3)

r} = Mr(m), r = l , . . . ,m.

T/zβn, ί/zβre exists a constant Cp independent of m such that

IMUίw,^Q^(3/i"Σ M» (2 4)
r= 1

/zo/ί/5 /or any fixed p > 3.
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Proof. By using the Hopf maximum principle we easily see that

\u(x) I ̂  C(a/m) £ * ~ W,Γ ' Mr(m] (2.5)
r=l

holds for a constant C independent of m. See [8]. Thus (2.4) follows, q.e.d.
For the sake of simplicity we abbreviate G(λ)(x, y) as G(x, y). We put

where

Then S(x9y)eC">(ΩxΩ).
We have the following.

Lemma 3. Assume that {w(m)}™=1 satisfies (C-l)v. Then

max |G(x, w.) - G(wr, w f)| g C(α/m)K. - w rΓ
2, (2.6)

xedβr

max |S(χ, w,)G(wr, w f)| g C|w,. - wrΓ
 2 (2.7)

/or α constant C independent of sufficiently large m.

Remark. C can be taken as independent of λ.

Proof. We know from (C-l)v that |wr — w f | ̂  4(α/ra) holds for sufficiently large m.
By the intermediate value theorem we get

max \G(x, w f) - G(wr, w^l ^ C(α/m) max |(VvG)(j;, w.)| .
xedBr yeBf.

Now we have (2.6) by Thoerem 8.6 in [7].
We want to prove (2.7). Let w* be a point on y such that dist (w,., y) = dist (wr, w*).

Then

dist(w r,y)-1G(w r, w.) - |wr - w*Γ '̂ (w,, Wί) - G(w*, w.)|. (2.8)

By a simple consideration we see that (2.8) does not exceed C0\\vi — w r |~
2 for a

constant C0 independent of m. Here we also use Theorem 8.6 in [7]. Now we will
show

max \S(x, wr) | dist (wr, y ) ̂  C 1 . (2.9)
xe5βr

Consider the case ί2 = R+ = {(x1?x2,x3)eR3; Jc^O}. In this case S(x,wr) =
— (4π|x — w^l)" 1 exp( — λ1/2\x — wr|), where jc = (~x1,x2,x3). Thus

We can apply the usual techniques in analyzing boundary value problems, for
example, local parametrix . . . etc., to study S(x, wr) and we get (2.9). In summing
up these facts we get (2.7). q.e.d.

Now we come back to study G^}. Let Hj^ be the integral operator given by
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We here introduce the following decomposition (2.11) of H^/. Fix r. We put

(ISrWf)(x) = Σ' G(x> wJG^, w ί z) . . . G(wίs ι ? w J(GU)/)(wίs) - (4πα/m)^1/2{α/m)

(s)

• £' G(x, wr)GK, wj . . . G(w-s ι 9 wίs) (G«>/)K) (2.10)
(*)

for 5^1. Here the indices in £' run over all 1 ̂  i l 5 . . ., is <; m such that iί=^r9

(s)

i2 =/= / 1 5 . . . , z's ^ / s _ !- Then it is easy to see that

(H^/X-x) = (G(A)/) (x) - (4πα/m)βλl/2(α/m)G(x, wr)(G(A)/)(wr)

m

+ Σ ( - 4πα/m)sβAl/2(α/m)s(/s

rμ)/)(x) + ( - 4πα/m)/V1/2α

s = l

• X' G(x, w^G^, w i2) . . . G(w i m_ ,, w;J(Gu)/)(w;J. (2.1 1)
(m)

Recall the definition of S(x, y) and G^(x, j;). It is easy to see that

(/;W)/)WIX6aBr = ( L s

r ( λ ) f ) ( x ) \ x e d B r + (N%λ)f)(x)\xedBr, (2.12)
where

(L8

r(λ)f)(x)\xedBt = Σ ((G(x' W0 - GK> w^MGίw^, w ίz) . . . G(w f <_ ι 9 wίβ)(G(λ)/)(wίβ),
(s)

(2.13)

and

• Σ S(x, wr)G(wr, wj . . . G(w ί s_ ι ? wJ(G(λ)/)(wίβ). (2.14)
(s)

Here we use the fact that G#(x, y) = (4πα/m)"1e~A l / 2 ( α / m ) when |x - y| = α/m.
We have the following:

Lemma 4. Assume that {w(m)}^=1 satisfies (C-l)v. Then

Σ max{\Is

r(λ)f(x)\;xedBr} ^ Cpoc(l + e2 λ l / 2 ( α /

^ (2.15)
/

holds or a constant Cp independent of m, λ. Here

/ m \ l / 2

κ(w(m);λ)= X Gίw^w^)2 , (2.16)
\ i , j = l /

i ^ J

and p is a fixed constant satisfying p>3.

Proof. We apply Lemma 1 to (2.13), (2.14). We use the estimate

max(|G ( λ )/(x)| + |VxG
( A )/(x)|)^ep | |/| |L P ( f l w ), (p>3) (2.17)

xeΩ
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to get the desired result. Here Cp is independent of λ. q.e.d.
We put QW = G^} - H^. Then it is easy to see that

= , xey,

for any /eC^(Ωw). We have the following:

Lemma 5. Assume that {w(w)}*=1 satisfies (C-l)v. Then there exists a constant

(Ωw)^CΛ(w(m)5oU) (2.18)

Cp such that

holds for any fixed p> 3. Here

τp(w(m), α, λ) = m-(3/ί?){α(l + exp (2A1/2(α/m)))(l + JJ + J2}, (2.19)
where

l / 2 Γ m

l / 2

J2 =(4πα/m)mexp(/l1/2α)κ:(w(m);/l)m~1m

Proof. Since we have Lemma 2 and (2.17), we must only examine

to get a bound for HQ^/H^^j. Observing Lemmas 1, 4 and

|G(w , v»j)\ ^Cexp(-λ1/2\wi - w- |) |w ; - Wj\~\ (2.20)

we get (2.18).
We have the following:

Proposition 2. Assume that {w(m)}%=1 satisfies (C-l)v, (C-2). Take an arbitrary
fixed pe(3, oo) and p > 0. Then there exists Λ 0 > 0 and a constant Cp which is
independent of m, λ such that

l i ( Γ D U ) l l <Γ
II ^m ΠLP(Ω W ) = ^p

/or α?7j; /Le[/ί0, oo).

Proo/. We examine J^ We have

|W. - w.|- 4 = |W. - w.|- 3 + «|W. - w.|- 1

we get

1/2

Σ |w ( -w." 4 ^em ( l-v ) ( 1 +« ) / 2mC* (2.22)

v?/
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Recall (2.20). It is easy to see that

Thus
, 1 / 2

(2.23)

By (2.22), (2.23) we have

ί m ι o l
Ji ^Cm(1-v)(1+*)/2qN X (4παC"/l-1/6C*3)

sexpμ1/2(αs/m)) I. (2.24)
U = ι J

We also have the estimate for J2. Since C", Cf/ 3 are independent of/I, we get the
desired result by taking ξ > 0 small enough, q.e.d.

Corollary 1. Assume that (w(m)}^= ί satisfies (C-l)v, (C-2). Then there exists λ0 > 0

and a constant C independent of m such that

holds for any λe[λQ. oo).

Proof. It is easy to see that

f Q(»u(x)v(x)dx= J u(x)Q(»υ(x)dx
Ωw Ωw

for u,veC£(Ωw). Therefore

_
LP'(ΩW) — II ̂ m llLP(Ωw)

Here p' is defined by p'~l +P" 1 = 1. Since p> 3, p '<f. By the Riesz-Thorin
interpolation theorem we get

Now we take pe(3, oo) as close enough to 3. We get the desired result, since ve(0,^)
is fixed, q.e.d.

Let H^ be the integral operator defined by

9 xeΩ.

Let χΩ (respectively χΩ ) be the characteristic function of Ώw (respectively Ω\ΩW).

gjx) = χΩJ(Hmφΐ)(x) - Hm(χβvvΦnW) Then

We see that Agm(x) = 0 for x<=Ωw and gm(x) = 0 for xeγ. To estimate gm we need a
bound for

m

X max{|ffm(x)|;xeθBr}. (2.25)
r = l

By a simple consideration we see that (2.25) does not exceed the term which is
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given as replacing / in the right hand side of (2.21) by χβwφ/^. We know that

\\Gw(χΩwφΐ)\\cnv ^ C'\\χΩvfφΐ\\L4(Ω) ^ Cm"1/2. (2.26)

Therefore, as in the proof of Lemma 5, we have the following:

Lemma 6. Assume that (w(m)}^=1 satisfies (C-l)v. Then there exists λ0 and a

llfcJz^ίiC^-1'2 (2.27)

constant Cλ such that

holds for λe(λQ, oo).

Proof. We know that

^ CC4τ>(m), α, λ) max |
Ω

by (2.17), (2.18), (2.21), (2.26). Since p>0 is arbitrary and ve(0,j), we have the
desired result.

3. Convergence of H^ to

In this section we will prove the following:

Proposition 4. Fix α>0. Assume that {w(m)}%=1 satisfies (C-l)v, (C-2), (C-3).
Then there exists λ such that

lim | |m^HW-H^)(pjniL2(fl) = 0 (3.1)
m-> oo

holds for any fixed /?£[0,|).

Proo/. We examine the following term for 5 ̂  1 :

/sα M, t;; w(m)) = m
(s)

- j (&λ\VG(λ})su)(x)v(x)dx

Σ T (1 ( \\ C\ O\
S,«V 5 9 ? V / / ? V /

Λ = l

where .. . means

and where

n

Jss(/ί,w,ί;;w(m)) = m"1 ^_

- j (GU)(7GU))sM)(x)t;(x) dx, (3.3)
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(3.4)

- 1 X G(wiq_ιwiq)\m'ί £ G(w.

(3.5)
We now put

2 η ι / 2
(3.6)

By using Lemma 1 we get

1/2

s <; m 1 X

πs_q(λ, v; w(m)) (3.7)
for q ̂  1 and

Therefore

m

(3.9)

holds for a constant C independent of λ. From now on we study πs by using (C-3).
We put

We see that there exists λ1 ^ 0 such that

ί-l
Γ^2(Ω)

i+1 (3.10)
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hold for any /Ie[/L l 5 oo). We here fix λ ̂  λl and take fn in (C-3) as f^λ. Taking into
account of the assumption (C-3) we see that

lim mβ/2 sup 102Vπfc(A, φ£; w(m)) - 0 (3.11)
m-*oo fi

holds for any /?e[0,-|), A ̂  /L^
In summing up (2.23), (3.11) we get the following: Take an arbitrary ε0 > 0 and

fix it. Then there exist λ0, m0 and a constant C independent of m, s such that

The term (3.9) ̂ ε 0 <C £ (lO-^χ-^-'m-^lO-'oΓ1)*-* + (HΓ2^1)^-
( β=ι

^ Ce0m-^2orsl(T2s10 V + 1) (3.12)

holds for any λ^λ0, m ̂  m0. Here /? is a fixed constant in (0,^).
From now on we want to estimate

where < ? > L 2 denote the usual L2(Ω] inner product. Recall the definition of
Then we see that (3.13) is equal to M1 + M2 + M3, where

m

M! = Σ AW, ", <p[ w(m))( - 4πα)s exp (A1/2(«s/m)),

M 2 =

)su,φ^yL2. (3.14)

By (3.12) we see that
/ m

m^/2 supremum |M J ^ Cε0 V 10"2s(4π)s103(αs + 1) expU1/2α)
Nl^i V^1

We divide M2 into two parts.

M2= M 2 1+M 2 2,

[m1/2] m

s=l s = [m1/2 ] + 1

where [ ] denotes the Gauss symbol. Take an arbitrary ε^ > 0. Then we can take
λ2 sufficiently large so that

holds for any λ > λ2. Fix A*e[/l2, oo). Since

|exp(A1/2(α/m)[m1/2]) - 1| ^ C5m~ 1/2α/ί1/2,

we know that there exists m0 such that
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holds for any m ̂  m0. Also we can see that there exists λ and m0 such that
m(|M22| + |M3|)^ε1 holds for any m ̂  m0.

In summing up these facts we get Proposition 4. q.e.d.
Proposition 1 is an easy consequence of Proposition 4, Lemma 6, Corollary 1.

4. Probabilistic consideration on (C-l) ~(C-3)

We recall a basic argument concerning the law of large numbers. Let E(-) denote
the expectation. Let g(x) be a square integrable function satisfying

that is

Sg(x)V(x)dx=0.
Ω

We consider

as the sum of independent random variables. We know

from

We now put

(4.2)
i = l

and

(4.3)

By (4.1) we have

. (4.4)

Here |Ω| = volume of Ω. Thus,

m

P(w(m);sup|<3/j(w(m))|^ε)^l-4ε-2m2^1 |Ω|D*2 ^ C~\ (4.5)
Λ fι = l

From now on we examine qh. It is divided into three parts mβCh^2(Llίh + L2 >ή +

L3 Λ), where

2
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m m

Y. (4.8)
ί — 1

We put

It is easy to see that

1; |L3 j Λ-<L>h |^ε)^4ε"2m-1 | ί2|max

Therefore

m*sup Cf |

(4.9)
/ ί = l

We see that E(L2ίh) = — 2<L>/1. By a similar argument to that above we get

Ω Ω

~2m2β-2C-4h. (4.10)

Thus

cfî

Γ C'3h. (4.11)
f ι = l

Notice that L l j Λ = L 1 > Λ H- Lj Λ, where

L = m ~ 3 Vi ,Λ ^_^

Σ GW(w i9w.)2/ fc(Wj.)
2.

Then we also see that

lim P3 m Ξ lim P
w-»oo ' m-+ao

-0 (4.12)
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sup \qh\ ί m" jsup Cf |L1>Λ - <L> J + sup Cf |L2>Λ + 2 < L > Λ |
π (̂  n h

supCf |L3>,,-

we have

Hence we get

(w(m))| ^ sΛ ^ max{(l - P1 J,(l - P2 J,(l - P3 J}
j

lim
m-> oo

if βE[0,^) for any c > 0.
We easily see that

lim P>(w(m)eί2m; (C-2) does nqt hold) - 0,
m—> oo

(4.13)

(4.14)

since the probability of

m

tends to zero as m-^ oo.
Finally we examine (C-l)v. By a simple combinatorial argument we have

r-w7|<C0m-1 +*

P((w 1 ,w 2 )eί2 2 ; |w 1 -w 2 |<C 0 m

gCm3^1. (4.15)

Thus (4.14) tends to zero as m— » oo, if VE(O,|).
We are now in a position to prove Theorem 1. In summing up these facts and

Proposition 1, we have the following:

lim P(w(m)6ί2m;m^||(GLA )-μDφ7riiL 2 φ v v )<β)- 1 (4.16)
m-> oo

for any fixed ε > 0, j8e[0,^). We know from the spectral theory of self-adjoint
compact operators that

lim ίP(w(w))eΏm; there exists at least ^-eigenvalues

(4.17)

satisfying \μk (w(m)) — μζ < 2εm~li)

= 1. '
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Here $Rk denotes the multiplicity of φ%. On the other hand, we know that
Theorem 1 with 5 = 0 holds. See Kac [4], Rauch-Taylor [13] and p. 235 of Simon
[14]. By combining Theorem 1 with <5=0 and (4.17), we get the theorem for
general δe[0,£).

The author hopes that Theorem 1 with δ = 0 can also be proved by using our
perturbational calculus.
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