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Eigenvalues of the Laplacian in a Region with
Randomly Distributed Small Obstacles
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Abstract. We remove m-balls of centers w,,...,w, with the same radius o/m
from a bounded domain Q in R* with smooth boundary y. Let p,(a/m;w(m))
denote the k-th eigenvalue of the Laplacian in Q\m-balls under the Dirichlet
condition. We consider p(o/m;w(m)) as a random variable on a probability
space (Wy,...,w,)eQ x---x Q and we examine a precise behaviour of
w(o/m; w(m)) as m — co. We give an elaboration of. M. Kac’s theorem.

1. Introduction

We consider a bounded domain Q in R® with smooth boundary v. Let
B(g;w) be the ball defined by B(e;w) = {xeR>;|x —w| <e&}. Let 0 < p,(e;w(m)) <
Us(e;wm)) < psesw(m)) <--- be the eigenvalues of — A(= —div grad) in

Q, my = 2\ U ¢;w™) under the Dirichlet condition on its boundary. Here

w(m) denotes the set of m-points {w{"}" . We arrange p,(e;w(m)) repeatedly
according to their multiplicities.
Let V(x)=0 be a C! function on Q satisfying

[ V(x)dx =1.

Then, we consider Q as the probability space with the probability V(x)dx. Let

= [] © be the probability space with the product measure.
i=1
The aim of this note is to prove the following:

Theorem 1. Fix o >0 and k. Then,
lim P(w(m)e@™; n [w(e/m; wim)) — p| <) =1 (L.1)

m—= oo

for any ¢>0 and 5e[0,L). Here y} denotes the k™ eigenvalue of — A +4naV(x)
in Q under the Dirichlet condition on y.
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Theorem 1 is an elaboration of the result of Kac [4] and Rauch—Taylor [13].
Kac [4] proved (1.1) when § =0, V(x) = (volume of ©)~! and Rauch and Taylor
[13] proved (1.1) for general V(x) when § =0. Kac used the theory of Wiener
sausage to get his result. Rauch and Taylor gave their result by combining functional
analysis of operators and the Feynmann—Kac formula. See also the very interesting
papers of Papanicolaou-Varadhan [12] and Simon [14]. Our proof of Theorem 1
is different from [4, 13] in the point that we employ perturbational calculus using
Green’s function of A4 — . For other related topics, see Bensoussan—Lions—
Papanicolaou [1], Huruslov—Marchenko [3] and Lions [6].

Theorem 1 was announced in Ozawa [9]. See also Ozawa [10, 11].

Now we give a rough sketch of the proof of Thoerem 1. Let G¥(x, y; w(m))
be the Green’s function of 4 — 2 in Q under the Dirichlet condition on its
boundary satisfying

(4, = DG (x, y;wm)) = — d(x — y),  x,yeQ
GH(x,y;wim)) =0, xeQ
Let G¥(x, y) be the Green’s function of 4 — A defined by
(4, = 2)GH(x,y) = —d(x —y), x,yeQ,
GH(x,y) =0, XEY.

a/m, w(m)

a/m,w(m)°

a/m, w(m)"*

Hereafter, we abbreviate G(x, y) as G(x, y), if there is no fear of confusion. Let
h{M(x,y;w(m)) be as follows:

P (x, y; wim)) = G(x, ) — (4mo/m)e* " i G(x, w)G(w,, y)

i=1

Z 4noc/m Ax/z(a/m)SX Gx W, )G(Wi,swiz)
s= ()

6w, _w )G(W, . ). (1.2)

Here the indices (ij,...,i)

S

in ) run over all 1<i,,...,i,<m satisfying i, # 1,

(s)
iy#iy,...,i,_; #i,. AkeytoTheorem 1is the fact that A" is a nice approximation
of G!¥ in a rough sense. This is discussed in Sect. 2.
Recall now that

%z G(x,w)G(w;,y) tendsto | G(x,z)V(2)G(z, y)dz
i=1 Q2

with probability one by the strong law of large numbers. See Kingman-Taylor
[5], Hall-Heyde [2], etc. We take a sufficiently large 4 and we fix it. Then, we
know from probabilistic argument as above that h» converges in a rough sense
to the integral kernal function of the integral operator (— 4 + A + 4rnaV)~'. Of
course, we need rigorous steps. Along this line we get Theorem 1.

From now on we show some technical points in our proof. The following
conditions on w(m), m= 1, 2,... are important in our study.
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(C-1), There exists a constant C, independent of m such that
wiMeQ
min (W™ —w| > Com™ ">
i)
hold. Here ve(0,3) is a fixed constant.

(C-2) There exists a constant C¥ independent of m (possibly depending on &) such
that

maxm 2 Y w" — w73 CF < + 0 (1.3)
m i,ij:jl
holds for any & > 0.
(C-3) Let f,, h=1,2,3,... be an arbitrary family of continuous functions on
Q satisfying
max | f,(x)| < C; " D*
xeQ

for some constant C_ > 1 and D* < co. Then,

m— oo h

lim m”(sup c(% S o — | fh(X)V(X)dX>> 0 (1.4

and

. P A .

lim mf( sup Ci2( =3 <= % GOW™, wim) £,(wim)

m- o h * \m i=1 (Mj=1 ! !
j#i

2
—(G‘“th)(W?"’)} >>=0 (1.5)

hold for any fixed fe[0, $) and 2 >0. Here G denotes the integral operator
defined by

(GP N)(x)= | GO, y)f(y)dy.

We can prove the following Proposition which is crucial to our step to prove
Theorem 1. Let H'* denote the operator given by

GP+ Y (—dnay GV GWy.
s=1

Let G denote the operator given by

Qo jm | wim)

(G;,:)f)(x) = j G;:‘)(X, y; W(m))f(y) dy7 Xe‘Qa/m,w(m)'

Proposition 1. Fix o>0 and k. Let ¢, denote the k™ eigenfunction of
— A +4naV(x) in Q under the Dirichlet condition on y satisfying

[o/(x)?dx=1.
Q
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Assume that {w(m)}>_ satisfies (C-1),, (C-2) and (C-3) for any fixed 2> 0. Then

lim ”ma(@%) - Hg))ﬁol‘c/”u(g«,mw(",,) =0 (1.6)

m— oo

holds for any fixed 5€[0, 1) and for any sufficiently large J.> 0.
In Sect. 4, we make a probabilistic consideration on (C-1),, (C-2), (C-3) and we
finish our proof of Theorem 1 based on Proposition 1.

2. Construction of an Approximate Green’s Function

We give preliminary Lemmas. Let b,,, a

ij» @ @ denote positive numbers. Then we
have the following:

Lemma 1. The inequality

[ FUNON Js=1 =1
P# 1,0, Js—1% s JFi
m 1/2
’2
< > ajk> 2.1
Jk=1
JFk
holds for s =2, where
m 1/2
_ 2
cu—( > ajh)
jk=1

Therefore (2.1) does not exceed
m 1,2 m 1/2
mws‘2< Y bé) < Y aﬁ) ) (2.2)
i,j=1 jk=1
i#j j

Proof. By the iterative use of the Schwarz inequality we get (2.1) and (2.2). q.e.d.
From now on we abbreviate Q,, ..., as Q.. Also B(a/m;w,) is written as B,,
if there is no fear of confusion. We have the following

Lemma 2. Suppose that ueC*(Q,) satisfies
(— A4+ Wu(x)=0 xeQ,,
ux)=0, xey, (2.3)
max {|u(x)|;xedB,} =M (m), r=1,....,m.
Then, there exists a constant C, independent of m such that
oo, < Cm~ P 5 M, (m) 24

r=1

holds for any fixed p > 3.



Spectra of A in a Region with Randomly Distributed Obstacles 471
Proof. By using the Hopf maximum principle we easily see that
)] S Clom) 3. = M ) 23
holds for a constant C independent of m. See [8]. Thus (2.4) follows. q.ed.
For the sake of simplicity we abbreviate G¥(x, y) as G(x, y). We put

S(x,y) = G(x,y) — G (x, y),
where

G, y) = (@nlx — ) le™H x — yl.

Then S(x, y)eC®(2 x Q).
We have the following.

Lemma 3. Assume that {w(m)}>_, satisfies (C-1),. Then

max [G(x, w) — G(w,, w)| < Cla/m)lw, — w2, 2.6)
xedB,
max [S(x, w,)G(w,, w;)| < Clw; — w,|~? 27
xe0B,.

hold for a constant C independent of sufficiently large m.
Remark. C can be taken as independent of 1.

Proof. We know from (C-1), that |w, — w;| = 4(«/m) holds for sufficiently large m.
By the intermediate value theorem we get
max |G(x, w;) — G(w,, w))| = Clor/m) max |[(V,G)(y, w;)!.
xe€0B, yeB,.
Now we have (2.6) by Thoerem 8.6 in [7].
We want to prove (2.7). Let w* be a point on y such that dist (w,, y) = dist (w,, w*).
Then

dist(w,,y) "' G(w,, w;) = |w, — w*[ "[G(w,, w;) — G(w*,w))|. (2.8)

By a simple consideration we see that (2.8) does not exceed Cy|lw, —w,|”* for a
constant C,, independent of m. Here we also use Theorem 8.6 in [7]. Now we will
show
max |S(x, w,)|dist(w,,y) < C,. (2.9)
xe0B,
Consider the case Q=R3 ={(x,,x,,x3)eR? x,>0}. In this case S(x,w,)=
— (@n|x —w,))" Pexp(— AY?|x — w,|), where X = (— x,, X, x3). Thus

1S(x, w,)] < C, dist (w,.7) .

We can apply the usual techniques in analyzing boundary value problems, for
example, local parametrix ... etc, to study S(x,w,) and we get (2.9). In summing
up these facts we get (2.7). q.e.d.

Now we come back to study GY. Let H'Y be the integral operator given by

(PN = | KD y;wm) f(y)dy, xeQ,.

2,
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We here introduce the following decomposition (2.11) of H{» f. Fix r. We put
(LANx) = 3 G(x,w, )Gw; ,w,) ... Gw,_,w, ) (G [)(w, ) — (4mar/m)e* "™
(s)

" G(x, w,)G(w,, w)...Gw, _,w) (GPf)(w,) (2.10)
® ’

for s> 1. Here the indices in )’ run over all 1 <i,,...,i, <m such that i, #r,
B)
iy #1i,,...,i,#i,_,. Then it is easy to see that

(HY 1)) = (G f)(x) — (dma/m)e? "G x, w, ) (G f)(w,)

+ i (— 4noc/m)se’1‘”“"/"”S(Ii(/l)f)(x) +(— 47'(0(/m)mell/2°‘

s=1

Y Gl w )W, w, ) Gow, L w J(GPf)(w, ). 2.11)

=12 Vi
(m)

Recall the definition of S(x,y) and G _(x, y). It is easy to see that

(L)) seon, = (LA S )X |eom, + (NS cop,s (2.12)
where
(LY D) xeon, = 2. (Gx, w;) = G(w,, w; ))G(W, , W) ... G, w ) (G f)(wy),
. (2.13)
and

(N:(l)f)(x)lxeas,_ =(- 4TEOt/m)e’“/2(a/m)
Y S(x, w,)G(w,, w,)...Gw, W (GO w).  (214)

is— 12 Vi
(s)

Here we use the fact that G (x, y) = (4no/m)~*e™*""@™ when |x — y| = a/m.
We have the following:

Lemma 4. Assume that {w(m)}y_, satisfies (C-1),. Then

Y max {|I(2)f(x)]; x€dB,} < C,a(l + " @yc(w(m); 2y~
r=1

m 1/2
( Z |W1—Wj|_4> ”f“LP(QW) (2.15)
i,ij:jl
holds or a constant C, independent of m, ). Here
m 1/2
k(w(m); 1) = ( Y G(wi,wi)2> , (2.16)
oy

and p is a fixed constant satisfying p > 3.

Proof. We apply Lemma 1 to (2.13), (2.14). We use the estimate
max (IGPf) +IV.GPf)) £ Coll fll ooy (P>3) (2.17)
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to get the desired result. Here Cp is independent of 4. q.e.d.
We put QP = G — H'Y. Then it is easy to see that
(—4,+)QPf(x)=0, xeQ,,
QP f(x)=0, xey,
for any feCg(Q,). We have the following:

Lemma 5. Assume that {w(m)}<_, satisfies (C-1),. Then there exists a constant
C,, such that
1Q N Lo, S Cprp(wlm), o, 2) (2.18)
holds for any fixed p> 3. Here
T (w(m), o, 2) = m~ 3P o1 + exp (22" Xa/m))) (1 + J ) + J,}, (2.19)

where

Jx=<i lWi—Wj|“4) {i (dmo/my)’ SXPUl’z(dS/m))K(W(m);i)S“},

1/2
. )
Jwi—wj] >
1

i,j=1
i
J

.Ms

J 5 = (4na/m)" exp (' Zaic(w(m); )"~ lm(

i, J
!

It

RS

Proof. Since we have Lemma 2 and (2.17), we must only examine

gk
8

ax {|H f(x)]; xedB,}

r=1

to get a bound for @Y f 1|, ., Observing Lemmas 1, 4 and
|G(w,, w)| < Cexp(— A2 w, —w))|w, —w| ™', (2.20)
we get (2.18).
We have the following:

Proposition 2. Assume that {w(m)}<_, satisfies (C-1),, (C-2). Take an arbitrary
fixed pe(3,0) and p>0. Then there exists i, >0 and a constant C, which is
independent of m, 4 such that

1Q Lo
holds for any Ae[4,, o).

Proof. We examine J,. We have

<C m— G+ =v)2)+p (2.21)

w) =

= - —1-
[wi_wj' ‘_Iwi—wjl 3+€‘Wi_wjl 1oe
§Cm(1_")‘”<)]wi—wjl‘“é,

we get

m 1/2
(Z ]W.—w.|*’4> < O =002y Cx (2.22)
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Recall (2.20). It is easy to see that

|G(wi7 Wj)l é Cl— 1/6|Wi — wjl_(4/3).
Thus

m 1/2
k(w(m); 1) £ C"A~ “6< 2 Iwi— Wj|_8/3>
i,j=1
L#]

SC'A7YmCy 5. (2.23)
By (2.22), (2.23) we have

J, <Cmt-va +¢)/ch{ Y (4naC" i~ YOCE ) exp(l”z(as/m))}. (2.24)
s=1

We also have the estimate for J,. Since C”, C% ; are independent of J, we get the
desired result by taking &> 0 small enough. q.e.d.

Corollary 1. Assume that {w(m)}z_, satisfies (C-1),, (C-2). Then there exists 1, >0
and a constant C independent of m such that

19 20y S Cm™ 2
holds for any Ae[ 4. o0).
Proof. 1t is easy to see that

[ QPu(x)u(x)dx = | u(x)QPv(x)dx
Qw

2w
for u,veCg(Q,,). Therefore

”@%)”LP’(QW) = H@fy?)”[,p(gw)'
Here p’ is defined by p'~!'+p~'=1. Since p> 3, p’ <3. By the Riesz—Thorin
interpolation theorem we get
”@#)HLZ(QW) § “@%)”Lp(gy

Now we take pe(3, 00) as close enough to 3. We get the desired result, since ve(0,3)
is fixed. q.e.d.
Let {2 be the integral operator defined by

(AP f)x) = [ P (x, y; wim))dy, xeQ.
o

Let y,, , (respectively j,, ) be the characteristic function of Q, (respectively Q\Q,,).
Put g,,(x) = %o, (H,,01)(x) — H, (10, ¢i)(x)). Then

In(X) = 10, (AP (10, (0))(X).
We see that Ag,(x) =0 for xeQ,, and g,(x) =0 for xey. To estimate g,, we need a
bound for

i max {|g,,(x)|;x€dB,}. (2.25)

r

By a simple consideration we see that (2.25) does not exceed the term which is
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given as replacing f in the right hand side of (2.21) by 7, ;. We know that
I Gu)(igw(/’llc/) ey = C/“)ZQW(/)II(/ l|L4(Q) = Cm™ 172, (2.26)
Therefore, as in the proof of Lemma 5, we have the following:

Lemma 6. Assume that {w(m)}y_, satisfies (C-1),. Then there exists A, and a
constant C, such that

HgmHLZ(QW) =Cm” Lz (2.27)
holds for Ae(hy, o).
Proof. We know that

[ gm”Ll(Qw) s C”gm”umw)
< CCry(w(m), o, )) max |G, of)|
)
S Cc4m—(3/4)+(1 —v)/2)+ pém— 1/2

by (2.17), (2.18), (2.21), (2.26). Since p >0 is arbitrary and ve(0,3), we have the
desired result.

3. Convergence of [H» to H
In this section we will prove the following:

Proposition 4. Fix o >0. Assume that {w(m)}>_, satisfies (C-1), (C-2), (C-3).
Then there exists A such that

lim ||m"([}7[lf,f) - Hg))(l’ll:”LZ(Q) =0 3.1

holds for any fixed Be[0,3).
Proof. We examine the following term for s > 1:

Jis(Aot,v3W(m) = m™* Y (GPv)(w, )G(w; ,w;)... Gw; _ ,w, )(GPu)(w,)
(s)

— [ (G GPyu)(x)(x)dx
o

- Z Iy 111,05 W(m)), (3.2)
h=1
where ) ... means
(D m
D (GPv)(w,)(GPu)(w)),

and where

Jo G vswm) =m S (GPe)w)(GAV GHF~u)(w)
i=1
— [ (G GPyu)(x)u(x) dx, (3.3)

Q
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Jos_1(u,0;w(m)) =m™* Z GP)( w){ -1 Z Wi, W)

in=1
ir#ig

GV GPy- 2u)(wl.2) — (GW(V GWy lu)(wi1 }, (3.4

ss q(’1 U,U,W(m)): -1 i G"”v) < Z G

=1 ir=1
i) #1iy

.~<mﬂ1 Z G(Wiq—l,wiq){m‘l Z G(Wiq’ Wiq+l)
ig=1

ig+r1=1
iqg #ig- ig+1#iq

‘(G(M(VGM))S_qﬁ 1u)(wiq+ 1) _ (G(X)(VG(A))S"IM)(W%)}:

(1=s—¢,2=9). (3.5
We now put
_ (A, v;w(m)) [ Z { i G(A)(VG(Z))S g1 b)(w)
2711/2
— (G(A)(VG(A))s—Q) (Wi)} } . (36)

By using Lemma 1 we get

m 1/2
s —qlAs s 03 Wm))| = {m“ ) (G‘“u)(wi)z} (m™ r(w(m); 2))
i=1

— g4 vsw(m)) (3.7)
for g > 1 and
(2 t, 03 w(m))| = m (4, 05 wm)). (3.8)
Therefore
supremum| (it 0} ;w(m) | < C 3. (m xtwlm; )", 0} s wim)
lull L2y 1 q=1
+ 1A, @f s w(m)) (3.9)

holds for a constant C independent of 1. From now on we study =, by using (C-3).
We put

R (L
We see that there exists A, >0 such that
Sug ]f;/. A= Cyll VG(M”Lz(Q)

C5)._h+1
C

<
< C4 (10804 h+1 (3.10)
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hold for any 1e[/;,0). We here fix 1 > 1, and take f, in (C-3) as f, ,. Taking into
account of the assumption (C-3) we see that
lim m?? sup 10**o",(A, @} ; w(m)) =0 (3.11)
m— oo h
holds for any Be[0,3), A= 1.
In summing up (2.23), (3.11) we get the following: Take an arbitrary ¢, > 0 and
fix it. Then there exist ., m, and a constant C independent of m, s such that

The term (3.9) gsO{C Y (107 imTAR(10 ™ 20 +(10_2a_1)sm_’”2}

q=1
< Cegm™P2675107 25103 (as + 1) (3.12)

holds for any A= A,, m=m,. Here f is a fixed constant in (0,3).
. From now on we want to estimate

AR = BDoi uy 2 = (o, (A — HPw) 1o,

where ¢,),. denote the usual [*(Q) inner product. Recall the definition of [J{P.
Then we see that (3.13) is equal to M, + M, + M, where

M, = i Fisl t, @ s wim))(— 4ma)* exp (212 (as/m)),
s=1

M, = i (exp (A**(as/m)) — 1)(— 4r0){ GI(V GPyu, (ka>“,
s=1

o]

My=— 3 (—4naf (GAV P u, o > .. (3.14)

s=m+1

By (3.12) we see that

mP!? supremum |M, | < Ceo< Y 107 25(4m)*103(os + 1) exp(l“%c)).
s=1

| oy S 1

We divide M, into two parts.
M, =M,, + M,,,

[ml/2] m
M21 = Z s M22: Z >
s=1 s=[m!/2}1+1

where [ ] denotes the Gauss symbol. Take an arbitrary ¢, > 0. Then we can take
A, sufficiently large so that

m

Y (Aro) (GPV G u, pf .| e

s=1

holds for any 1> 4,. Fix A*e[1,, o). Since
lexp(2*(oa/m)[m'*]) — 1] < Csm™2a) 2,
we know that there exists m, such that

m'PIM, | <e
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holds for any m =m,. Also we can see that there exists 1 and m, such that
m(|M,,| + |M3|) < ¢, holds for any m = m,,

In summing up these facts we get Proposition 4. g.e.d.

Proposition 1 is an easy consequence of Proposition 4, Lemma 6, Corollary 1.

4. Probabilistic consideration on (C-1) ~ (C-3)

We recall a basic argument concerning the law of large numbers. Let E(-) denote
the expectation. Let g(x) be a square integrable function satisfying

E(9(-))=0,
that is
[ g(x)V(x)dx =0.

Q
We consider

S(@)=m"Y gow,)
i=1

as the sum of independent random variables. We know

Pwm)eQ™;S,(g;)> 2 &) <& 'm gl faq 4.1)
from
E(S,.(9; )2) =m! ”g“il(gy
We now put
gu(wim)) = m”C';!Z< m~! i o) = | L)V (x) dX>, (4.2)
i= Q
and

Gy(wm)) = mPC2m ™!

||M§

{m‘l z GP(w,, w)) fi(w;)

1*1

= (GYV 1)( W,)} (4.3)

By (4.1) we have
P(w(m)e Q™ |g,(wim))| 2 &) < 46 >C"m* = 1|QID*". (4.4)
Here |Q| = volume of Q. Thus,

P(s(m); sup [g,00(m) | <) = 1 — 4~ 2m 1 QID*" Y Co% (45)
h h=1

From now on we examine §,. It is divided into three parts m’C**(L, , + L, , +
L, ,), where

=m! i {m‘l i G(l)(Wi:Wj)fh(Wj)} , (4.6)

J#Fi
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Lig==2m* % z G0, )GV F)05) 00, @)
Lyy=m' Y GOV, 4.8)
=1

We put
(LY, = [ (GWV f)(x)* dx
Q2

It is easy to see that

Pwm)eQ";|Ly , — (L)l 2 6) S4e™*m ™ Q max |GV f,/2
2

<de72ComYQIC;

Therefore

Pin= P(w(m)eQ’”; mPsup Ch?|Ly , — (L), < e)
h

21 —4e72ColQm* =1 Y C;n (4.9)

h=1
We see that E(L, ,) = —2(L),. By a similar argument to that above we get
Pwm)eQ™;m’|L, , + 2{LY,| 2 &) S 16Cye ™ *m** ~2 max |GV f,]> max | f,|*
Q Q2

§16C18“2m2’3‘2C;4’“. (4.10)
Thus

Py, = P(w(m)eQ’”;mﬁ sup C¥2|L, , + 2Ly, < 8>
h

<1-16Ce 2m* =2y " @.11)

h=1
Notice that L, , =L, ,+ L, ,, where
Ll,h =m> Z G(A)(Wio Wj)G(M(Wi’ Wk)fh(Wj)fh(Wk),

ijk=1
i Elk#i

m
.. s
Ly,=m . ‘2—:1 GH(w;, Wj)th(wj)z
Y

Then we also see that

m— oo m— o0

im P;, = lim (P(w(m)eQ’" mﬁsup Ch2 Ly, — <Lyl ge)

=0 4.12)
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when Be[0,3). Since

S'-ip 1Gul = mB{Sl;p Ci/z [Ly,— <L)l + sup C:;/Z ILy  +2< L)yl
h

+ sup C::/2|L3,h - <L>h|},
h

we have

P(W(m)eﬂ'"; sup [Gu(w(m))| = 38) smax{(1 —P,)(1=P,,), (1 —P3,)}
Hence we get

lim P(w(m)eQ’";sup [q(w(m))| = 3s> =0 (4.13)
m— o h
if pe[0,1) for any ¢ > 0.
We easily see that
lim P(w(m)eQ™; (C-2) does not hold) = 0, 4.14)

m-—= oo

since the probability of

m

’m—z Z IWi_Wj]_3+é—j“x"‘yr3+édXdY 2,
ij=1 0

1#j

tends to zero as m — co.
Finally we examine (C-1) . By a simple combinatorial argument we have

v

P(w(m)eQ’"; min |w, —w | <Com™! *")
P #j

2
g( )P((wl, w,)eQ?;w, —w,| <Com™ ')
m

=Cm? 1. @4.15)

Thus (4.14) tends to zero as m— o, if ve(0,3).
We are now in a position to prove Theorem 1. In summing up these facts and
Proposition 1, we have the following:

lim P(w(m)eQ"; m*| (G — )9l | ., <) =1 (4.16)
for any fixed ¢>0, fe[0,2). We know from the spectral theory of self-adjoint
compact operators that

lim P(w(m))eQ™; there exists at least 9i,-eigenvalues
t (Wm)), j=1,... .0, of GH
satisfying |, (w(m)) — i | < 2em™")
=1. 4.17)
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Here M, denotes the multiplicity of ¢}. On the other hand, we know that
Theorem 1 with § = 0 holds. See Kac [4], Rauch-Taylor [13] and p. 235 of Simon
[14]. By combining Theorem 1 with § =0 and (4.17), we get the theorem for
general 5e[0,2).

The author hopes that Theorem 1 with § =0 can also be proved by using our
perturbational calculus.
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