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Abstract. Using Newton’s method to look for roots of a polynomial in the
complex plane amounts to iterating a certain rational function. This article
describes the behavior of Newton iteration for cubic polynomials. After a
change of variables, these polynomials can be parametrized by a single
complex parameter, and the Newton transformation has a single critical point
other than its fixed points at the roots of the polynomial. We describe the
behavior of the orbit of the free critical point as the parameter is varied. The
Julia set, points where Newton’s method fail to converge, is also pictured.
These sets exhibit an unexpected stability of their gross structure while the
changes in small scale structure are intricate and subtle.

1. Introduction

The study of iteration of rational mappings of a complex variable has a long
history. Seminal work on this topic appeared in the early studies of Fatou and
Julia at the turn of the 20" century [4,7]. In the 60’s the work of Brolin [1] and
Guckenheimer [5], Jakobson [6] should be mentioned. More recently Sullivan
[10] Mané et al. [9] have made contributions. The articles cited above have made
significant theoretical contributions ; in contrast there have been few experimental
studies of the iterates of rational maps. The work of Mandelbrot [8] has stood
alone.
Mandelbrot has considered iteration of the transformation

flz)=z*+c, (1.1

where ¢ is a complex number, and produced striking pictures whose most obvious
feature is the prevailing self-similarity. A major contribution toward the under-
standing of Mandelbrot’s bifurcation diagram has been announced by Douady
and Hubbard [2,3].
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The quadratic transformation (1.1) is perhaps the simplest nontrivial rational
map. We will study here another class of examples, rational maps contructed by
applying Newton’s method to a polynomial f(z):

f(2)
Nf(z)=z— ——. (1.2)
A NTE
We will refer to Nf(z) as the Newton Transformation associated with the function

1.

The transformation (1.2) has been and is much studied by numerical mathema-
ticians whose primary concern is with choosing initial conditions so that the
iteration sequence

L) (1.3)

T )

converges to a solution of the equation f(z)=0. These studies have generally not
attempted to catalogue all the possible types of behavior that the sequence of
points {z,} may exhibit. On the other hand, the classical theory due to Fatou and
Julia offers some general insight into the possible behaviors of the sequence {z,}.
The purpose of this article is to catalogue in a concrete way, using the computer,
the asymptotic behavior of (1.3) when f(z) is a cubic polynomial with simple roots.

In Sect. 2 the precise family of polynomials to be considered is presented along
with other preliminary results. Section 3 discusses the morphology in parameter
space of the Newton transformation as parameters are changed. In Sect. 4 the Julia
sets from a random walk in parameter space are presented and the asymptotic
behavior of the free critical point is described.

2. Preliminaries

We stud
e study Nf(2)=z2~f(2)/fi(2),

where f,(z) is the cubic polynomial
f@)=2+(A-1)z—A.

The polynomials f, are exactly the monic cubics whose roots sum to zero and
which have 1 as a root. Since any cubic can be transformed into an f, or into z* by
an affine change of variable and multiplication by a constant, analyzing Newton’s
method for a general cubic reduces essentially to analyzing it for the f,’s.

In what follows the critical points of Nf,(z) will play a crucial role. The critical
points of a function are simply those points where its derivative vanishes. In
particular, since the derivative of (2.1) is given by

. f42)f4(2)
(Nf4(2)) ) (2.1)
the critical points are located at the zeros of f,(z) and z=0.

Much of the motivation for the material to be presented is the following
theorem due to Fatou [4]:
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Theorem. If R(z), a rational function, has an attracting periodic cycle, then the orbit
of at least one critical point will converge to it.

Three of the critical points of Nf, are fixed points so the fourth critical point
located at z=0, is the only one available to converge to an attractive periodic
cycle, should such a cycle exist. Hence, in what follows the orbit of the free critical
point, at z=0, shall be our only concern.

The closure of the expanding periodic points, the sources, is called the Julia set
of the transformation and will be denoted by J(Nf,). We remark that the Julia set,
which is closed and nowhere dense, together with the domain of an attractive
periodic cycle (if there is one) constitute the set of initial points where Newton’s
method fails.

3. Numerical Results: Morphology in Parameter Space

Let us now describe the numerical experiments which were performed in the
A-parameter plane. In order to determine whether a stable attracting periodic
solution exists for (2.1) the theorem cited in the previous section indicates that it is
only necessary to follow the orbit of the free critical point. Typically, the initial
condition z=0 was iterated as many as 200 times while simultaneously computing
the norm of the difference of the current iterate and z= 1. If the norm was less than
104, it was assumed that, for this A-parameter value, the orbit of the critical point
converged to one. This procedure was used to test 160,000 parameter values which
were elements of a square grid with 400 points in both horizontal and vertical
directions.

In Fig. 3.1 the global behavior of orbit of the free critical point is pictured. The
horizontal and vertical axes correspond to the real and imaginary parts of the
complex parameter A. The dark area in this figure is the subset of 160,000
parameter values for which the orbit of the critical point tends to the root z=1.

Figure 3.2 is an enlargement of the region [0.95, 1.05] x [ —0.05, 0.05]. In this
figure, which was generated by examining parameter values on a 400 x 400 grid,
the self-similarity of regions in parameter space is evident. The “hole” in parameter
space for A =1 is real since the orbit of the free critical point maps to infinity in one
iteration for this A-value.

Figure 3.3 is an enlargement of the “island” at the top of Fig. 3.1. Once again
the dark area in this figure corresponds to the set of parameter values for which the
orbit of the free critical point tends to one. It is now necessary to distinguish
between two kinds of white regions, those corresponding to parameter values
where the orbit of the free critical point converges to a fixed point (i.e., a root of f,)
other than one, and those where the orbit of the free critical point is asymptotically
periodic. The dark region in Fig. 3.4 represents the set of parameter values for
which iterates of z=0 do not converge to a fixed point. In the central part of this
figure the Newton transformation has a stable attractive period two cycle, e.g.
A=(0.31,1.62). In the large region to the left of the central part, e.g
A=(0.275, 1.65), Eq. (2.1) has a stable period 4 cycle. For 4=(0.265, 1.655) there is
a stable period 8 cycle, as the real part of 4 moves further to the left, but still
remains within the dark region. Further period doublings have been observed, but
the rate of accumulation of these bifurcations has not been examined.
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WHERE CRITICAL POINT TENDS TO ONE

Fig. 3.1. Morphology in parameter space. Horizontal and vertical axes correspond to the real and
imaginary parts of the complex parameter 4

WHERE CRITICAL POINT TENDS TO ONE

Fig. 3.2. Enlargement of the region [0.95, 1.05] x [ —0.05, 0.05]. Self-similarity in a neighborhood of
A=11is clearly visible
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Fig. 3.3. Enlargement
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If the central region is exited near the top of Fig. 3.4 period tripling has been
observed [ A4 =(0.323, 1.673) for period 6 and (0.3225, 1.67875) for period 12] and
quintupling bifurcations are also present in this system [A4=(0.3425, 1.6625) and
A=(0.3025, 1.6675), respectively].

To close this section we return to Fig. 3.1, where other islands are visible.
Choosing successively the progressively smaller islands in a clockwise rotation
from the topmost island, parameter regions for which the free critical point
converges to periods 3, 4, 5, 6, and 7 have been observed. In each of these regions
period doubling bifurcations are also present.

4. A Walk in Parameter Space: Julia Sets

As mentioned in Sect. 2, the Julia set, J(Nf,), is the closure of the expanding
periodic points. An approximation to J(Nf,) can be computed by using the fact,
due to Fatou and Julia, that for any z in J(Nf,) the inverse orbit () Nf, "(z) is

n>0

dense in J(Nf,). Thus it is sufficient to locate a point ze J(Nf,) and compute its
inverse orbit. The point at infinity is an obvious choice for z; it is a repelling fixed
point, and its other two inverse images are the critical points of f,. A tree structure
is then generated which starts from a node (initially a critical point) and has three
branches corresponding to the inverse images of that node. The tree is then
allowed to grow to some maximum level, typically level 10, and the resulting
points are plotted.

The complement of J(Nf,) in the Riemann sphere, €, consist of countably
many connected components, called the stable regions of Nf, and are transformed
among themselves by the action of the Newton map. Under iteration, each stable
region is eventually cyclic and the cycles are classifiable into five types, Sullivan
[10]. The two sorts of stable regions which are relevent for this section are the
superattractive and attractive basins. An attractive basin consists of the com-
ponents of the stable manifold of a periodic orbit and it is required that the
modulus of the derivative at the periodic cycle is between zero and one (strict
inequality). The superattractive basin is similarily defined but the modulus of the
derivative at the cycle vanishes, e.g. at the fixed points of Nf,.

Table 1 is a tabulation of the asymptotic behavior of the orbit of the free
critical point for the Julia sets which are presented in this section. As indicated by
the parameter values in the table, attention is concentrated on values correspond-
ing to points in the island pictured in Fig. 3.3. Clearly, it is expected that as

Table 1

A-parameter values Period Modulus of derivative
(0.000, 1.750) 1 0.000

(0.210, 1,760) 1 0.000

(0.310, 1.620) 2 0.524

(0.275, 1.650) 4 0.259

(0.323,1.673) 6 0.379

(0.305, 1.667) 440 0.820
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Fig. 4.1. A typical Julia set for parameter values in the region pictured in Fig. 3.2
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parameter values are varied the Julia set for Nf, will undergo many structural
changes, but the “gross” structure remains essentially unchanged once values are
in the region pictured in Fig. 3.3. Figure 4.1 exhibits this typical structure.

In Fig. 4.2a-{ attention is concentrated on the portion of J(Nf,) which lies in
the square [—0.5,0.5]x[—0.5,0.5]. The cross(es) present in each of figures
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correspond(s) either to the location of the free critical point (or a few points on the
stable periodic cycle if it is present). In all cases pictured, except Fig. 4.2f, one-half
of the points on the periodic orbit are indicated ; in the exceptional case the period
is 440 (2*-5-11) and no attempt has been made to accurately represent the cycle.
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The most cursory comparison of Fig. 4.2¢ and f suggest that the structure of
the Julia set has not undergone a radical change as parameters have varied even
though the A-values are from markedly different regions of parameter space.

5. Discussion

In this article the study of Newton’s transformation for the generic cubic
polynomial was presented. For this iteration scheme two distinctly different types
of behavior have been observed. In the first case Newton’s method works for an
open dense set of starting points. The exceptional set (Julia set) is closed, nowhere
dense and has two dimensional Lebesgue measure zero. The second case exhibits
an open set of initial conditions where Newton’s method fails. The failure of the
algorithm is due to the existence of a stable attracting period solution. The
classical theory due to Fatou and Julia indicates when the iteration method should
be expected to fail, i.e., when the orbit of a free critical point is attracted to a stable

cycle.
Figure 3.4 indicates one of the parameter regimes where periodic behavior is

obtained. A similar picture was first published by Mandelbrot [8] in the study of
the iterations of (1.1). The reappearance of this figure in this study and in any
general analytic family is explained by the behavior of the complex eigenvalue or
derivative on the attracting periodic cycle.

In this study it was also noted that the Julia set of Nf,, shows an unexpected
robustness, but that Julia sets for different islands are significantly different.
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