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Abstract. The mathematical background for a graded extension of gauge
theories is investigated. After discussing the general properties of graded Lie
algebras and what may serve as a model for a graded Lie group, the graded
fiber bundle is constructed. Its basis manifold is supposed to be the so-called
superspace, i.e. the product of the Minkowskian space-time with the
Grassmann algebra spanned by the anticommuting Lorentz spinors; the
vertical subspaces tangent to the fibers are isomorphic with the graded
extension of the SU(ΛO Lie algebra. The connection and curvature are defined
then on this bundle the two different gradings are either independent of each
other, or may be unified in one common grading, which is equivalent to the
choice of the spin-statistics dependence. The Yang-Mills lagrangian is in-
vestigated in the simplified case. The conformal symmetry breaking is dis-
cussed, as well as some other physical consequences of the model.

1. Construction of a Graded Lie Algebra Associated with a Lie Group G

Let G be a Lie group of dimension N in what follows, it will be supposed compact
and semi-simple, unless explicitly stated otherwise. Let s$G denote its Lie algebra
for X, Y<Ξ£/G their skew product is [X, 7] and satisfies

and the Jacobi identity

[[Y, Y], Z] + [[7, Z],*] + [[Z,X], 7] = 0 . (1.2)

The adjoint representation of J/G is defined as the mapping

ad:<-+L«,O, (1-3)

such that

pr,Y]; (1.4)
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therefore

ί, 7]). (1.5)

In local coordinates aά(X) takes on the form of a (N x ΛΓ)-matrix XaCb

ac, Cb

ac being
the structure constants of G.

The Cartan-Killing metric form in stfG is defined by

(1.6)

For G compact and semi-simple, gG is known to be negative-definite, non-
degenerate, and satisfies the invariance condition

Consider now a faithful representation of s$G in a linear vector space E of
dimension s (the lower bound on s will be discussed later). This representation,
denoted by

) (1.8)

satisfies

τ(X}τ(Y)-τ(Y)τ(X) = τ(\_X,r\). (1.9)

Let us introduce now the following mapping ρ :

ρ:ExE-^^G, (1.10)

satisfying

Vu,veEQ(u>v) = Q(v,u) (1.11)

also

(u, i?) - [X, ρ(n, u)] - ρ(τ(Y)κ, ϋ) + ρ(u, τ(X» , (1.12)

which can be interpreted as the formula for the derivation of ρ(u, v) through the
derivation of its arguments and finally

VM f l, f W e £τ(ρ(tt,t;))w + τ(ρ(t;,w))M + τ(ρ(ιv,M))t; = 0. (1.13)

The four identities (1.2), (1.9), (1.12), and (1.13) can be considered as a Z2-graded
Jacobi identity in j/G0E, which therefore acquires the properties of a Z2-graded
Lie algebra. It is enough to define the generalized product in <$/G@E as follows:

for any X, Ye^G, u,veE.
Any two elements from j/G combine now to give an element of stf& any two

elements of E combine to give an element of ^/G, whereas two elements from s$G

and E combine to give an element of E. We may call stfG and £, respectively, the
"even" and "odd" parts of stfG®E. If by &,3t,Sf we denote elements of
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then the generalized Jacobi identity of our Z2-graded Lie algebra can be written
down simply as

The notation generalizing the Lie derivation of (yet hypothetical) corresponding
vector fields may be sometimes useful, too we shall write

= pf,Y], (1.16a)

X 14

£υ= £u = ρ(u9υ)9 VXtYeΛ,GtUίVeE. (U6c)

Let π(^) denote the Grassmann parity of ̂ , i.e. π(^) = 0 if ̂ e^G, and π(^)=

In the next paragraph we shall construct generalized differential operators
which realize abstract relations (1.16) and satisfy

££_(_!)«<*>-<*>££ = £ . (1.17)
& &t 3% 0> {&,&}

After generalizing the Jacobi identity for sίG@E9 we proceed to generalize the
definition (1.6) of the invariant Cartan-Killing metric. The mapping ρ together
with gG enables us to define the following mapping ε from E x E onto IR1 : let

V^xe^' β(τ(ϊ)M = 0G(X><KM) (1-18)

Thus defined, ε will be non-degenerate because gG was non-degenerate and τ
faithful.

Lemma. // we define

£(ε(u,v)) = ε(τ(X)u,v) + s(u,τ(X)v), (1.19)
x

then

£ (ε(u9 v)) = 0 for any X, u9 v implies ε(u9 v) = — ε(v9 u) , (1.20)
x

and vice versa.

Proof. £ ε(u, v) = 0 means ε(τ(X) u,v)=— ε(u, τ(X) v) but ε(τ(X) u, v) = gG(X, ρ(u9 v))
x

= gG(X,ρ(v,u)) because ρ is symmetric; therefore ε(τ(X)u9v) = ε(τQζ)v9u)9 whence
s(τ(X)v,u)= —ε(u9τ(X)υ)'9 the antisymmetry of ε follows because X was arbitrary.
The inverse is obvious, too. The formula (1.19) generalizes the invariance property
of gG given by (1.7). Let us also notice that instead of defining ρ first and the
antisymmetric form ε by means of gG, ρ, and τ, we can start by defining an
invariant antisymmetric form ε and then define the mapping ρ with the aforemen-
tioned properties by means of ε, gG9 and τ.
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The next obvious step consists in generalizing the notion of the adjoint
representation. Just as ad mapped s$G into L(stfG, J/G), its graded extension, which
we denote by ad, will map

ad : ̂ G@E-*L(^G®E, ̂ G®E] . (1.21)

It is enough to define the action of ad(&] on any element $e&tfG®E\ more
explicitly, as 0> and 3% may both denote either X, Ύe^G or u.veE, we ask the
following relations to be satisfied :

{0>9Λ}, (1.22)

and

ad(0>) ad(») - ( - 1)«*™*> ad(M) ad(&) = ad({0>, m}} . (1.23)

The formula (1.22) can be written in a more explicit form,

ad(X}Y={_X,Γ[ = -ad(Y}X, (1.24a)

ad(X)u = - ad(u)X = τ(X] u , (1.24b)

ad(u)v = ad(v)u = ρ(u, v) . (1.24c)

We see that ad(X) are even operators which map the even and odd components of
onto themselves:

*G-+s/G, E^E, (1.25)

whereas ad(u) are odd operators, mapping s$G into E and E into s$G :

/G-+E, E^^G. (1.26)

We define now the "super-trace" for the (N x 5) x (N x 5) matrices ad(3P) as the
mapping Str of these matrices onto IR1 which satisfies the following properties :

= Stτ(ad(0>)) + Str(ad(&) , (1.27a)

(1.27b)

The generalization of the definition of the invariant Cartan-Killing metric in J/G

(1.6) extending it onto ^G@E is now obvious. First, the even and odd subspaces of
should be orthogonal to each other: if £P=XestfG, & = u<=E, then

Str(ad(0>) ad(@}} = $tr(ad(X) ad(u)} = 0 . (1.28)

This is obvious because of the "even" and "odd" properties of the corresponding
matrices ad(X) and ad(u) as a matter of fact, the matrix ad(X) ad(u) is off-diagonal,
whence the result.

Next, we postulate

Stτ(adQί) ad(Ύ}} = λgG(X, Y) , (1.29a)

and

Str (ad(u) ad(v)) = με(u, v) . (1.29b)
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The normalizing constants λ and μ depend, of course, on the representation τ
chosen (i.e. the dimension 5 of £).

Let us fix our representation by asking that the following independent identity
is satisfied :

0G(ρ(tt, υ\ ρ(w, z)) = ε(w, w) ε(υ, z) + ε(u, z) ε(v, w) . (1.30)

A simple calculus shows then that (up to a common multiplicative constant) we
must have

λ=^, ^2(S + 1). (1.31)

This condition fixes the representation τ up to an equivalence (automorphisms of
E and J/G) it is known that such a representation has the dimension given by

Γ-ls = 2L2\ (1.32)

\N] N
— being the integer part of — , and is called the spinor representation.

[ 2 \ 2
Summarizing, we may observe that the symplectic structure ε on E, invariant

with respect to the action of the representation τ of J/G, together with the
definition of τ are enough to define canonically the Z2-graded extension ^G®E of
a compact, semi-simple Lie algebra J/G we started with.

2. Representation of s$G@E in Graded Differential Operators

The Lie algebra J/G could be identified with the set of left-invariant vector fields
defined globally on G, and generated by the right action of G on itself; the Lie
brackets of these N independent fields satisfied the commutation relations of J/G.
These vectors fields were also interpreted as invariant differential operators acting
on the module of smooth real functions on G.

We would like to extend the analogy of the first paragraph and define some
graded manifold including G as its even component, and then define some analogs
of the invariant differential operators acting on functions over this graded
manifold in such a way that their generalized Lie brackets, formally defined in
(1.16), satisfy these commutation-anticommutation relations.

In order to do it, let us first introduce the exterior antisymmetric product in E,

Now E acquires the properties of a Grassmann algebra; let us denote by ΛE the
exterior algebra of E, i.e. the linear space spanned by all independent formal
powers of elements from E. If dim E = s, then dimΛE = 2s.

We can exponentiate the action of J/G on E, thus obtaining a corresponding
representation of G in L(E, E), namely, for any Xe s$G if exp tX = gte G, then we put

)9 (2.2)

where Expτ(tX) means the usual exponential of an 5 x s matrix τ(tX). Obviously,

(2.3a)
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and

A(g~1) = [A(g)~]~1. (2.3b)

Consider now the semi-direct product of G and E, denoted by GDE, with the
following composition law:

(h1,u1)(h2,u2) = (h1h2,u1 + A(h1)u2), Vh19h2eG9u19u2eE. (2.4)

This law is obviously associative, the neutral element is (e, 0), e being the unit
element of G, OeE; the inverse of (h,u) is given by

(h,uΓl=(h-\-Δ(h-l)u) 9 (2.5)

GΠ£ acquires the structure of a Lie group, E being its abelian subgroup,

We face the following problem now : in order to define differential operators
(vector fields) we have to define first what we mean by module of functions upon
which these operators shall act; once we imagine functions on GOE replacing
functions on G, we are led to the whole ΛE, i.e. all possible exterior products of
elements from E and finite polynomials of order ^s. So we have to extend GD£ to
a structure containing G and AE. The group G acts on ΛE by extension of the
action on E defined by (2.2): for geG, u,veE, we put

) = (A(g)u)(A(g)v), (2.6)

and then, by recurrence, for any two elements 17, We ΛE, we define

A(g)(UW) = (A(g) U) (Δ(g) W) . (2.7)

Consider now the semi-direct product GΏΛE with the following composition law :

U 2 ) ) . (2.8)

This composition law is obviously associative, but there exists neither inverse, nor
the group structure in G ΏΛE.

Consider the set of ΛE- valued functions on G it is obviously a module (we can
add them up together, and multiply them one by another). Our first set of vector
fields can be induced by the action of the group GOE on the module of these
"functions."

In order to define the action of GD£ on GDΛE it is enough to define it on
simple elements of GDΛE, i.e. on the elements of the form:

(g9u1u2...up)9geG9u19u2,...9upeE. (2.9)

The group GOE acts on these elements from the right as follows:

(2.10)

Obviously

. (2.11)
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This action is naturally extended onto any elements of G DAE the representation
of G ΏE is obtained if we define

D(h9υ)(g9W) = R(htΰrl(g9W), (2.12)

(/z, V)G GDE, (g, W)e GOΛE. Moreover, it has the covariance property with respect
to the associative multiplication in Gϋ\ΛE\

JW(0ι» f ι)(02, U2)) = (RM(glf UJH^fa, C72)). (2.13)

Now, if / is a function on GΠE, it can be represented as a linear combination

(2) (2s)
17 + ... + /2.(0) U =f(g, 17), (2.14)

where /α are real smooth functions on G, α = 0,1, ...,2s and U symbolizes the
(1) (2) (2s) (α)

element of AE given by u © U @ . . . ® U C7 are the elements of Λα£. These
"functions," defined as in (2.14), form a module we can add them up (by adding up
the corresponding terms in the expansion), and multiply them, obtaining an entity
of the same type. The group GDE acts in a natural way on this module: via the
operator

(&(h,u}f)(g,U) = f(R(hίUΓί(g,U)). (2.15)

We have now everything that is needed in order to define generalized left-
invariant fields generated by GθE acting on our module. It is enough to consider
N + s different independent one-parameter subgroups of GDE, N "even" ones
belonging to G, and s "odd" ones generated by the elements of E. If we calculate

(2.16a)
\x / t-*o i \ UL f = 0 /

and

' P / Λ / Γ Λ r (®(etu)f~-f)(9>U) / 0 1 Λ Λ
£ /1 (0, t7) = lim ( g > f M ) ^ , (2.16b)

we don't get a representation of (1.14) like that postulated in (1.16), but

£ £ - £ £ = £
X Y Y X [X,Y]

£ £ - £ £ = £
X u u X τ(X)u

£ £ = 2 £ -
V U U + V

(2.17)

It is no wonder that we cannot obtain in this way the correct result (1.16) we have
shown in the first paragraph that the graded structure was induced by the
invariant symplectic structure ε on E, whereas in all our construction of
"functions" and derivation no such structure has been used. On the other hand,
such a symplectic structure is implicitly involved in the definition of real scalar
functions on GΏAE.
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Let us implement E (and ΛE) with the invariant symplectic structure given by
ε :E x E^ R1, satisfying the same axioms as in the first paragraph, i.e.

ε(u, v)=- ε(υ, u),

ε nondegenerate, (2.18)

for any M, v,X. Also ε defines the canonical isomorphism between E and its dual
£*, and by obvious extension, between ΛE and AE*; just as gG could be
interpreted as the canonical isomorphism between s$G and its dual j^ 0^ 1 and
ε"1 denote the corresponding inverse mappings. Now the form ρ can be written
symbolically as

(2 19)

which is equivalent with the definition by (1.18).
Let

(1) (2) (2s)

w*e£*, I7*e/l2£*, ..., U*εΛ2Έ*. (2.20)

We define a real function on GDΛE as the linear combination

(1) (2) (2s)

/ = / o + Λ « * + /2^*+-+/2.^*. (2-21)

/0,/15 ...,/25 being smooth functions on G. Now, for any (0, L/)eGQ/LE,
(1) (2) (2s)

l / = M 0 C 7 0 . . . 0 t / , t h e value o f / at the point (#, U) is defined as

g f ) U * J . (2.22)

These are the r^α/ functions on G DAE unfortunately, if we multiply them taking
the product of their numerical values at the same point (g, 17), the result is no
longer a function of this type i.e. the set of the functions is not a module. If we
multiply just the expressions (2.21), there is no essential difference between these
functions and the "functions" defined by (2.14); because of the duality between E
and E* they carry the same information. If we define the finite action of GDE on
real functions of the type (2.22) as

(&(h,v}f)(g,U) = f(R(h>vrί(g,U)), (2.23)

the infinitesimal limit does not have properties of derivation with respect to the
point-by-point multiplication (no analog of the Leibniz formula is possible). These
difficulties are typical and amount to the impossibility of a correct definition of
graded exponentiation. Let us therefore content ourselves with an explicit
definition of the infinitesimal generators (differentiations) without being able to
integrate them as in the classical case.

Let χA be the basis of E; A,B=l,29...9s;

XV + *V = 0. (2.24)
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Let Lb be a basis in <B/G, a, b = 1,2,..., N = dim G,

VT τ Ί — rd j o ?o
L^fl? ^fcJ ~~ ^ab ^d ' ^Z.ZJ;

C^ being the structure constants of jtfG. The left-invariant vector fields on G are
given in local coordinates by the differential operators Sa = Sb

adb such that:

The representation τ shall be in these coordinates τa

A

B, satisfying

A B A B _^d A
a B Lb D lb B la D ^ab Ld D ' (2.27)

and the form ρ has the components ρ"AB.
Let us introduce the (graded) derivation with respect to the G-spinors χA as

follows : it is linear, and

dAχ
B = δ B

A , (2.28a)

(2.28b)

Define the following operators acting on the ΛE- valued functions over G :

(2 29a)

(2.29b)

with

na _ abp r A
~

where gab, εAB are components of gG and ε in our coordinates. It is easy to check
that the operators defined by (2.29) satisfy

(2.31)

It is easy to check that these operators span the Z2-graded Lie algebra defined by
(1.14) and (1.16); moreover, if we define the (N + s) x (N + s) matrices

0 \ / 0
c =

cb

^a d

0 CA d 0
(2.32)

with the structure constants defined as in (2.31), then we obtain the adjoint
representation of our Z2-graded algebra:

Γ Γ — C C —CdC
^^ ^ ^ ~ ^ ^ >

(2.33)

— Γd
~

We shall also use the generalized indices φ, φ standing for a or for B introducing
Grassmann parity π(φ) as π(α) = 0, π(5) = l, we can rewrite (2.33) as the graded
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Jacobi identity

r X f^Ω ί -l\π(φ)π(φ)(^χ ^Ω _ ^Ω ^χ /o >IΛ\
^φΩ^ιpΔ~\~l) ^ψΩ^φΔ — ̂ φψ^ΩΔ \^'^^)

The fact that Cα's are even operators and Cβ's are odd is visualized in their matrix
form (2.32). Finally, the normalization relations in coordinates are

9abQBD@EF ~ SBE6DF ~^~ 8BFSDE '

Summarizing we may say that we have come as close as we could to the notion
of a graded Lie group. The essential difference with the ordinary Lie group G is the
fact that whereas for G the "group" and the "group manifold" on which it acted as
a group of transformations were identical; in the case with grading, GDE has the
structure of a graded Lie group, whereas the "manifold" GΏΛE has not, and the
exponentiation is not well defined. Nevertheless, the graded vector fields (2.29), the
graded adjoint representation (2.32) and the module of ΛE- valued functions on G
are sufficient to define the graded analog of gauge theory.

3. Graded Fiber Bundles, Graded Connections

The impossibility of definition of the graded Lie group makes somewhat difficult a
definition of a principal fiber bundle for our purposes, however, it will be enough
to define a product space of GDΛE with some basis manifold; the graded vector
fields defined by (2.31) act on ΛE- valued functions of G and of the basis manifold
(leaving the parameters of the basis manifold unchanged) and are the analogs of
the vertical vector fields in a principal fiber bundle. We shall assume that our
bundles are globally trivial now we draw our attention to the generalized graded
bundles in which the basis space is also a Z2 -graded manifold. This basis space will
be assumed in its simplest well-known version, [1, 2], i.e. the product of the
Minkowskian space-time M4 with the linear space of anticommuting Majorana
spinors

θα^ + ̂ θα = 0, θ'flί + ̂ Θ^O, 0^ + 5̂  = 0, (3.1)

α,/?=l,2; ά,/?=l,2; we denote symbolically this superspace by M4 x {θ}. The
corresponding graded manifold is M4 x Λ{θ}, where A{θ} denotes the Grassmann
algebra of {θ}. We shall call "functions" on M4 x {θ} the Λ{$}-valued functions on
M 4 any such "function" is decomposed as

Φ(X9 θ) = φQ(χ) + φΛ(χ) θ* + φβ(χ) & + φaβ(x)

, (3.2)

all coefficients φ being smooth functions of xeM4.
Defining the (graded) derivation with respect to the spinor variables θ as

follows :

Sββ = %, d,θ* = 0, dβέ = δl d&θ» = 0 , (3.3a)

with the (anti)-Leibniz rule

da(θ"θt) = δp

aθ
ί-δs

aβi'> (3.3b)

so that dad + dda = 0, etc.
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We can define the graded extension of the Poincare algebra as follows :

P . = a ., Ju = XkPl - Xlpk + σu . fa, + σj θ«δp ,

@« = δ. + <ĵ P,, ̂  = fy + <0«P , .

These generators satisfy the following commutation-anticommutation relations :

Here

^=-(̂ ,(̂ =0,
<=(rJ)V(^=°;

γk are the standard Dirac matrices, and

<7"=i(yV-yV). (3-7)
The indices α, j5 are raised and lowered by means of the invariant spinorial
"metric" εaβί εάβ and its inverse ε*β, εα/^; ε1 2= — ε21 = l, ε 1 2= — ε21 = l, so that

0 = 3 =«*/»• (3-8)

The exterior calculus is easily generalized on M x yl{θ} (cf. [3, 4]); we introduce
the exterior 1 -forms dθα and dΨ such that

=δl (3.9)

and dxj, together with the generalized exterior product

dx* Λ dxj = — rfx 7 Λ dx1'

dxi/\dθa=-dθa/\dxi (3.10)

dθ«Λdθ / ? = d6l / ϊ Λdθ β ,

or, if we introduce the generalized induces K, L designing both j or α, /?, then
symbolically

dzκ ΛdzL + (- l)«w«w dzL Λ dzκ = 0, (3.11)

π(α) = π(j8)=l, π(/) = 0, zκ standing for θα, ̂  or x7'.
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We shall often use the non-holonomic basis dual to the vector fields ^α, J^, dk

e«@ = δ«,e@ = δ

ej(dk) = δl ej(@a) = 0, e\d) = 0, etc. ,

so that

e? = dθ"9e* = dθ$

9

(3.12b)
eJ = dxj - σ\β θ« dθβ - σj

aβ θβ dθ« .

The integration rules are the following :

ldθ« = ̂ \dθέ = 0^θ^dθβ = ε^, JWW^, (3.13)

and the "volume" of the 0-space may be normalized to 1 :

j ΘWSW dθ{ dθi dθ[ dθ* = l. (3.14)

A connection in a classical principal fiber bundle P(M4, G) was given by a Lie-
algebra J3/G- valued left-invariant 1-form ω over P. This implied

£ω=-ad(X)ω (3.15)
x

for any left-invariant vertical vector field X generated by the right action of G on
P(M4, G). Let σ be the canonical isomorphism from J/G onto the tangent spaces to
the fibers in P(M4, G). If X is a left-invariant vector field, then

σ°ω(X)=X. (3.16)

A field X called horizontal if ω(X) = 0. Any field can be decomposed into its
horizontal and vertical parts :

(3.17)

The curvature of ω is its covariant differential, i.e. a two-form defined by

Ω(X, Y) = Dω(X, Ύ) = dω(hoτX, hor 7) . (3.18)

The covariance property (3.15) enables us to write

) = dω(X, Y) + ̂ ω(X\ ω(Y)^ G . (3.19)

Finally, if gM is a metric in M4, gG a metric in G (which, when not explicitly stated
otherwise, is supposed to be the Killing-Cartan metric), then a connection ω
enables us to define a canonical metric on P(M4, G) :

(3.20)

where dn is the differential of the canonical projection π : P(M4, G)->M4. In local
coordinates ω can be decomposed as

ω = ω*Lfl = ω«La dxj + ωa

bLae
b , (3.21)

where \_La,Lb\ = Cd

abLd is a basis in jtfG, eb are the invariant 1 -forms on G, xj are
some coordinates in M4. We have also for the components of the curvature 2-form
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Ω:

(3-22)

Ω". = d/»Z - dkω° + q/ωχ Φ 0 .

The gauge invariant quantity

) = - ί iU/V'iM/ (3-23)

is called the lagrangian of the gauge field β?. (#flb are the components of gG, g
ίj the

components of gM4).
In order to generalize this formalism to the graded fiber bundles, we shall

carefully proceed by steps. First let us replace the base space M4 by the
"superspace" M4 x {#}, leaving the same structural group G. The rules for the
exterior differentiation are maintained, only the symmetry properties of the
p-forms are modified, i.e.

eκ A eL + ( - l)^π^eL Λeκ = V, (3.24)

therefore if A is a 1-form Aκdzκ, then its differential is

Θ = dA = dLAK dzL Λ dzκ , (3.25)

which gives the following expressions for the components :

(3-26)

If we want the covarίant differential to have the same symmetry properties, it
implies that the second term in the definition (3.19) has them too, i.e. in local
coordinates

f~*a A b A d __ /°Ό A b A d

s~ιa A b A d __ f~*a A b A d

This in turn is possible only if

b

 l j~ j l\ d b

 (3 28)

which symbolically can be written as

π(Ab

κ) = π(K), (3.29)

and

Ab

κA*L = (- iγ(K}n(L}Ad

LAb

κ. (3.30)
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The connection coefficients are Λ{θ}-va\υQd functions on M4 the condition (3.29)
limits their form to quite a limited development, i.e. A* contain only even powers of
θ's, whereas Ad contain only odd powers of 0's. If the negative-energy states are
to be avoided, the connection has to be hermitian, i.e.

(AW = A*. (3.31)

This fixes the development of Ad

κ in the anaholonomic basis ej

9 dθa, dΨ defined by
(3.12a) and (3.12b), as follows:

(3.32)

The higher order terms in 0's could be introduced, too, but it is quite easy to verify
that they will not contribute to the fourth-power term in the final Lagrangian.

A parameter / with the dimension of length has to be introduced because
dim|0α| = cm1/2, dimφb = cm~ί, and dimβ^cm"1. The term containing this
parameter in the development (3.32) manifestly breaks the conformal symmetry;
scale invariance is recovered when /->oo. The lagrangian of the theory is, by
analogy, the same as given by (3.23)

b

γδ + 2β« V^F^ + ε* V F ^ ) . (3.33a)

The fourth-power term in θ is then equal to

with

4. Double Grading and the Spin-Statistics Dependence

Now we proceed to the definition of the real goal of our construction, i.e. the
bundle in which both the base space and the typical fiber are graded manifolds.
Unless stated explicitly otherwise, we shall use local non-holonomic systems in the
basis graded manifold M4 x {θ}, and in the fiber graded manifold GD{χ} [(3.12b),
(2.29a), (2.29b)]. The connection 1-form A in this bundle is decomposed as follows :
(we take into account only non-trivial components)

= (A]ej + Ab

ae« + Ab)2b + (A°ej + A°ea + AD

βeD , (4.1)
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the coefficients A\ being functions on M4 x {θ} and on GD{χ}. The dependence
on GD{χ} is fully determined by the condition of left-invariance (or horizontality
of the curvature F, i.e. vanishing of the components F^Ω, F^κ). The only non-
vanishing components are the horizontal ones, F£L.

However, if we want to generalize the definition of the curvature 2-form, i.e. to
put:

KL ί|^xΛeL, (4.2)

the problem of Grassmann parity counting is more complicated than in the
previous example [formulae (3.26)-(3.30)], because now the commutation or
anticommutation properties of Aφ

κ depend not only on the parity of the power of
θ's they contain, but also on the powers of G-spinors χ the result will be different
depending on the hypothesis we make about the commutation or anticom-
mutation between θ's and χ's.

Two assumptions are possible: either

or

(4.3a)

(4.3b)

Let us treat the two cases separately.
a) In the case of commuting θ's and χ's the two different Grassmann parities

do not influence each other and add up separately therefore the parity rule for the
coefficients A$ is

yielding the following Table 1 :

Table 1

/
Ad.
Ai
A?
A"

A] 4 A] Al

0
0
0
0

0
1
0
1

0
0
1
1

0
1
1
0

(4.5)

in which 0 means commutation, and 1 means anticommutation between the
respective entities. It can be easily checked that these properties combined with the
symmetry CΦ

χΩ + (- l)π(χ)π(β)C^ = 0 assure the required symmetry of F£L, namely

FΦκL = (-lT(κ)π(L}Ftκ. (4.6)

In order to have the commutation - anticommutation properties (3.37), the
development of A\ in powers of χD and θa must be of a particular form, namely, if
π(φ) = 0, the corresponding A% contains only even powers of χD, and if π(φ) = 1, the
corresponding Aφ

κ contains only odd powers of χD the same is true for the powers
of $α's and the Grassmann parity π(K). Therefore, if we keep only zeroth and first
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powers of χ, and do not introduce any dimension parameters, the unique
development becomes:

(4.7)

We see that due to the separate adding up of the space-time and group spinor
parities the fermionic sector is completely eliminated, leaving only massless fields
D(x\ Wj(x\ φa(x), and B"(x). The conformal symmetry can be broken and masses
introduced as in the example given by (3.32), i.e. if we introduce the universal
length scale / and enlarge the supergauge conditions to:

(4.8)

Of course, even then such a theory has no interest because of the absence of
fermions; therefore, we proceed directly to the alternative parity counting,
corresponding to (4.3b):

b) Now the two different Grassmann parities add up together, and the parity
rule for the coefficients A^ becomes

i.e.

AKAl = (-'-

yielding the following rule

Table 2

π(L)l A V A ΦS±LSiκ,

(4.9)

(4.10)

/
Ad

Ad,
AD

^

A]

0
0
0
0

Ab

a

0
1
1
0

A*

0
1
1
0

Al

0
0
0
0

(4.11)

Now the symmetry properties o f ,

CA A b A D 4- CA

^wK1; « ̂  °D

are destroyed, e.g. the expressions like

= CUμ? - A°A>$, (4.12a)
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or

C*BDA?Aζ (412b)

have no determined symmetry, i.e. they are neither symmetric nor antisymmetric.
In such a case neither a stationary Lagrangian nor the Hamiltonian can be
positive definite. In order to restore the positive definiteness of the Hamiltonian
and to eliminate the ghost fields, we have imposed more strict (super) gauge
conditions, which however will not affect the usual gauge symmetry.

The parity counting defined by (3.43) can be found more attractive also for the
following reasons. When we want to take into account the fact that the Lorentz
fermions are anti-commuting quantities, whereas the bosons are commuting
quantities, we imply that ψΛ(x) or ψjΛ(x) have their values in some anti-
commutative ring. Supposing that this ring is of finite dimension, it is natural to
decompose, e.g. ψa = ψ^χA, where χA is the basis of the anti-commuting generators
of the corresponding Grassmannian.

In the usual supersymmetric theories the anti-commuting quantities χA were
identified with the duals of the anti-commuting Lorentz spinors 0, so that φα was
supposed to be proportional to some anti-commuting εα. However, there is no a
priori reason to do so; the anti-commuting basis χA may be chosen quite
independently of the Lorentz spinors θ.

On the other hand, and in the spirit of the grand unification, one is led to
believe that both the Lorentz spinors θ and the G-spinors χA have common origin
and are the split and reduced parts of the higher-dimensional spinors which we
denote by ξ, and which correspond to the Riemannian metric constructed on the
unified space containing also the internal degrees of freedom, which manifest
themselves in the gauge group G. This is visualized on the following scheme:

Manifolds M MxG P(M, G)
Lorentz manifold unified manifold

Corresponding spinors Lorentz spinors θ Cartesian product θ x χ Unified spinors c

In such a case it is natural to assume that even after the dimensional reduction
and the corresponding splitting up of spinors has occured, the reduced parts of the
unified spinors ξ still anti-commute between themselves.

Therefore we propose to realize the Grassmann parity counting by including
the dependence on χ's, and in order to keep the required symmetry properties of
F^L given by (3.39) we impose the following supergauge conditions (cf. [7])

^ = 0,^ = 0,^ = 0, (4.13)

which means that only commuting fields A%, Aa

 } do not vanish.
As we have already stated, only the term proportional to Θ1Θ2Θ1Θ2 will be

considered as the relevant part of the final Lagrangian. If the χ's are present
explicitly, one has to ask what powers of χ's are to be considered as relevant, too.
The power of the "volume element" in the Grassmannian Λ{χ} depends on the
dimension of G and is not a good candidate the only other universal invariant is
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the bilinear combination εABχ
AχB, which has the same form independent of the

choice of G. Therefore we propose to develop A% only in zeroth and first powers of
χβ, and consider only the coefficient of £ABχ

AχBθ1θ2θίθ2 as the relevant part of the
final Lagrangian.

The most general development of A\ under these conditions and without the
conformal symmetry breaking is :

A] = B

* + D(x)χBθΛ (4. 14)

The theory introduces in a natural way the following bosons : scalar D(x), vector
Wj(x), Higgs scalar multiplet φa and the gauge field B"(x) and the fermions : spin
1/2 multiplet ιpB, and spin 3/2 multiplet ψ% , both transforming under the spinorial
representation τa

A

B of G. All these fields are massless. As in the cases discussed
above, one may generalize the θ-dependence of the potentials keeping still the
required Grassmann parity, but introducing the elementary length / and breaking
the conformal symmetry. This is achieved by replacing :

BJ by

Ψa by
I I

d δ 2-i-2

W — —. U —'—'

Here too, like in example (3.32), the highest order terms most probably will not
contribute to the final Lagrangian, but we have not the formal proof for that.

It is worthwhile to note that the introduction of the dimensional parameter I
into the development corresponds exactly to what is usually done in the
supersymmetric theories, namely the introduction of the fields having anomalous
dimensions. We do exactly the same, but the anomalous dimensions are taken care
of through the introduction of the dimensional multiplier /, in order to visualise
them better. Here /, λ, v, p9 q, δ, w, u are some dimensionless constants which later
may be absorbed in the renormalized fields.

The generalized lagrangian is defined by

«KL MNpφ pΩ (4.16)
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which is written more explicitly as

where

2 1«KL MN T7α i7b /tUVrkmτja τ?b j_ ~tjcαβ τ?α τ?b _ι_ 0<x.βcyδj7a τ?b /
» £/ rKMrLN~y 9 r ikr j m \ ι9 b r ίaΓ jβ ' j2 b rayΓβδ> '

and similarly,

2 1-KL-MNvA τ?B _rtij'kmr-ApB , ^ Λjcaβ τ-A pB , _ cα^0y<5 T?A pB /
» y ΓKMΓLN~9 9 Γ ifcΓ jm~ t~ i W δ Γ iαΓ jj3 ~r τ2 δ fc Γ *yΓ βδ \

(where for simplicity we did not distinguish between the dotted and un-dotted
fermion indices α, β and ά, j f f ; in real calculations the full development must be
taken into account).

In the final expression, only the terms containing £ABχ
AχBθ1θ2θ1θ2 are taken

under consideration as the physical Lagrangian. Unless the conformal symmetry is
broken in the definition of connection coefficients [with the substitution (3.51)],
the "elementary length" I appears in a homogeneous manner in this highest power

term, as -̂  an<^ therefore may be disregarded in the variational principle,

analogously to example (3.33).

5. Discussion. Prospects and Conclusions

It is easy to see that the full calculus of the Lagrangian (3.52) is a very tedious one,
and it is no wonder that we are still unable to determine it at the present stage,
especially with the conformal symmetry breaking as in (3.51), although the
problem remains purely technical. However, some important observations can be
made without the thorough computation of all the coefficients in the development.
The main features of the model are visible already at this stage.

a) First of all, let us comment on the purely algebraic properties of the graded
gauge theory. The principle of summing up the G-spinor and fermionic
Grassmann parities, together with the graded symmetry requirements imposed
upon the curvature 2-form F serve as the super-selection rules, which assign well
determined group representations to the bosonic and fermionic sectors. This can
be summarized up in Table 3:

Table 3

^Space-time spin
1/2 1 3/2 : 2

G-spin

0 D(x) — Wj(x) — : htj(x)
1/2 — ψA(x) — v$x) -
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Here we have laid down all the multiplets appearing in the model and put the bar
in place of the forbidden multiplets. We have included in our table the spin-2
multiplets, which are in principle allowed by the model.

It is interesting to note that together with the classical spin-2 field (represented
by the traceless symmetric tensor h^x), appearing in the last column) there should
appear an G-adjoint multiplet of such tensors, f£(x). The interpretation of this field
seems yet physically unclear it should appear in the development of the gauge
potential Abj in the following combination :

Ab

j = Bb

j(x) + f>σi

atθ*3* + .... (5.1)

At least in principle, this table could be continued in both directions, including
the G-spin 3/2, and so forth.

Another important point concerns the G-spinorial representation for the
fermions, which is obviously reducible except for the case G = SU(2). In order to be
able to identify our fields with any "elementary" particles, the decomposition of
this representation into a sum of irreducible representations describing the quarks
will not appear automatically in such a decomposition.

In the case of G = SU(2)dimG = 2, and s = 2; the G-spin representation is
irreducible and lowest-dimensional. However, if we go to G = SU(3), then
dimG = 8 and 5= 16. This G-spin representation decomposes as 16 = 808 into two
adjoint representations, and there is no place for quarks in the model.

The fundamental representation begins to appear in the case when G = SU(4).
Then dimG=15, s = 27 = 128. This representation decomposes as follows:

128 -15015®. ..0150404, i.e.

<- eight times ->

we have eight adjoint representations and two fundamental ones. As a by-product,
our model gives the explanation why there are four quarks and four anti-quarks,
and not three quarks as in the first quark models which finally had to be extended
to a four-quark model.

b) Although the full Lagrangian is difficult to calculate, it is quite easy to
obtain just the dynamical terms without interactions for each of the fields
separately. When there is no conformal symmetry breaking, i.e. with the ansatz
(3.50), these turn out to be; (up to a normalizing multiplicative constant, different
for each field) :

for the scalar field , (5 .2a)

giigkm(di Wk - dk H$ (dj Wm - dm W) for the vector field , (5.2b)

gabg
ij(diφa) (8jΦb) for the Higgs multiplet , (5.2c)

dabd ίJdklG kG
b

β for the Yang-Mills field , (5.2d)

where G»ίk = dβl - dkB« + Ca

MB\Bd

k.
As in the simplified version of the theory without the explicit dependence of

potentials on the G-spinors, the fermionic sector does not appear in the highest
order 0-term in the Lagrangian unless we introduce the elementary length / into
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the development, replacing everywhere

Ψ* by tf+±(tfθ* + ψ»ffi)θΛ+etc.9

(5.3)

Ψ*Λ by Ψja+j(ψjyθy + ίp^)θa + ...9

etc. The Lagrangian then contains ψ^ via the following dynamical terms :

) (V.\p) and \_tfy* Vpp - (yjV^)\p\ . (5.4)

The d'Alembertian-type term gl\V^) (P/V>) appears also for the vector-spinor field
ψ%j. Both may be removed leaving only the Dirac type lagrangian if we choose the
renormalizing constant λ in an appropriate way. We lack the physical motivation
which would fix λ in that manner. Most probably only introducing the non-linear
terms of higher order would bring in some additional symmetry breaking and the
corresponding Higgs' mechanism would fix some more constants by making some
solutions stable as compared to all other ones.

c) The conformal symmetry breaking that has been introduced here comes
from the anomalous dimensions of the fields in the expressions containing the
elementary length /. We don't think that it is unnatural, because sooner or later it
must be introduced if we carry the spirit of supersymmetry to its logical end. As a
matter of fact, from the beginning we want to form the linear superpositions of the
fields of different spin on the other hand, their dimensions are not the same, so we
have to introduce the coefficients which take care of these dimensional differences.
For example, if we choose the Pauli matrices σj dimensionless, and if we want to
add up xj (with the dimension of cm) and the expressions Θσjθ9 this can be done
only if the dimension of the spinor θ is equal to cm1/2. The scale is not given a
priori that is why we visualize it by introducing the length factor /. However, in
the final expressions it would come out homogeneously, giving some overall factor
for the lagrangian density. The situation becomes less simple if we push the
unification further, including the group dimensions and the G-spinors. Unifying
the group dimensions with the space-time dimensions (including all in a principal
fiber bundle) means also introducing a length scale in order to give the proper
dimension to the group manifold variables let us call this constant e (usually we
see it in front of the structure constants). Finally, the G-spinors must also have the
dimension cm1 / 2; therefore the third constant g of the dimension of length is
needed. Even if the final lagrangian is still homogeneous in dimension, it contains
different products of these dimensional constants the relevant information left in
the theory will be contained in the three independent dimensionless ratios l/g, eg,
and el. It seems therefore quite attractive that the graded gauge theory provides us
naturally with three different scales of interactions. Even if we suppose that all
these ratios are equal to 1, it provides us with quite big factors 5(5+ ί)/N in front of
several terms in the lagrangian. As s = 2N/2, these factors grow very rapidly with
the dimension of the gauge group, e.g. s(s+l)/N is equal to 34 for SU(3), and to
6.99 x 105 for SU(5), etc.

d) Another feature of the model is worth noting, namely the fact that the
Yukawa, Fermi and current-current couplings are related to the masses obtained
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via the conformal symmetry breaking. As both these quantities are measurable,
this makes possible the confrontation with experiment however, we must add that
the particles described by the unified supersymmetric fields should correspond to
quarks rather than to the less elementary observed particles.
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