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Abstract. We use Schwinger-Dyson equations combined with rigorous
"perturbation-theoretic" correlation inequalities to give a new and extremely
simple proof of the existence and nontriviality of the weakly-coupled con-
tinuum φ* and φ\ quantum field theories, constructed as subsequence limits of
lattice theories. We prove an asymptotic expansion to order λ or λ2 for the
correlation functions and for the mass gap. All Osterwalder-Schrader axioms
are satisfied except perhaps Euclidean (rotation) invariance.

1. Introduction

The proof of existence of the superrenormalizable φ\ quantum field theory along
with the analysis of some of its physical properties (mass gap, particle structure,
symmetry breaking...) is one of the grand achievements of the Constructive
Quantum Field Theory program. We direct the reader to [1, 2] and to the
references cited in [2, 3] for background. Even a casual inspection of that
literature will reveal how difficult and clever are the methods invented and used by
previous workers on φ\.

In this paper we present a novel - and, we believe, extremely simple - approach
to the φ\ quantum field model. We have tried hard to make our presentation
comprehensible to experts and non-experts alike. We therefore beg the expert's
indulgence as we review some well-known facts. We reassure the non-expert that
any technical terms used in this Introduction will be defined in an accessible
manner in the main body of the paper.

We begin with a brief summary of our methods, since these are possibly more
interesting than our results. Indeed, all of our results are known ones what was
previously unknown was that they could be obtained so easily.

Theoretical physicists have long made use of a system of coupled non-linear
integral equations, called the Schwinger-Dyson equations (or "field equations"), in
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their non-rigorous studies of quantum field theory. Of course, the theories in
question were always assumed implicitly to exist. In the present paper we use the
Schwinger-Dyson equations as a tool in the construction and rigorous study of a
quantum field model. (See also [3] for related ideas.) We do this by truncating the
Schwinger-Dyson system rigorously with the help of "perturbation-theoretic"
correlation inequalities developed in two previous papers [4, 5]. (To read the
present paper it is not necessary to have read these earlier papers.) The result is a
closed system of non-linear integral inequalities which can be analyzed explicitly,
yielding upper and lower bounds which imply the existence and non-triviality of
the continuum limit.

Previous constructions of quantum field models have always proceeded
through a study of unnormalized quantities which behave badly in the appropriate
(ultraviolet and infinite-volume) limits. However, it is a quotient of two such
quantities which is of primary interest. In our construction, by contrast, we work
directly with the normalized quantities (as proposed earlier in [6-9, 3]), thereby
avoiding many technical difficulties.

Our methods permit us to show that, at weak (bare) coupling, the correlation
(= Euclidean Green's) functions of an infinite-volume φ\ lattice field theory, mass-
renormalized according to second-order pertrubation theory, are bounded un-
iformly in the lattice spacing as the lattice spacing tends to zero. From this it
follows [6, 3] that a continuum limit exists (by subsequences) and satisfies all
Osterwalder-Schrader axioms [10-13,2] except perhaps Euclidean (rotation)
in variance. Furthermore, we show that any such continuum limit is non-Gaussian
(for non-zero bare coupling λ) and has a strictly positive mass gap. We achieve all
these results by proving that perturbation theory is asymptotic (to order λ2 for the
two-point function, to order λ for higher-point functions) uniformly in the lattice
spacing. By using simple Griffiths inequalities and infrared bounds, we obtain as a
corollary the existence (but not the non-Gaussianness) of the continuum limit for
arbitrary (not necessarily weak) coupling, provided the theory lies in the single-
phase region. (With some additional effort, one can also construct the theory in an
"external magnetic field.") However, we fall short of a complete construction of φ\,
even at weak coupling, because we are unable (as yet) to prove that the theory in
the continuum limit is rotation-invariant. Moreover, we do not know, at present,
how to extend our construction to the two-phase region of the φ\ theory.

The philosophy underlying our construction is a modified version of that
proposed in [3]. The φ\ theory in the continuum limit is constructed by proving
uniform bounds on correlation functions of φ\ lattice theories and appealing to
weak compactness to obtain a convergent subsequence [6]. (A constructive
version of passing to the continuum limit does, however, appear possible - see
Sect. 9.) The non-triviality (i.e. non-Gaussianness) of the continuum theory is
established by proving that its connected four-point function is close to the value
predicted by lowest-order perturbation theory (that is, the tree diagram), up to
radiative corrections which are ultraviolet convergent and are small for weak bare
coupling. However - and this is where we differ from [3] - we here perform the
renormalizations of ultraviolet divergences (in particular, the mass renormali-
zation) explicitly, using the conventional counterterms suggested by perturbation
theory (see Sect. 4). Thus, our results are stronger than those of [3] (and also make
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no use of unproven correlation inequalities). On the other hand, we have to work
harder to get them (but not very much harder). That is, we have to prove that our
choice of counterterms yields a theory which lies in the single-phase region and
whose correlation functions neither diverge to infinity nor converge to identically
zero as the lattice spacing tends to zero. To do this, it suffices, by the Gaussian and
Griffiths inequalities (see Sect. 8), to control the two-point function. As indicated
above, we shall accomplish this - for weak bare coupling - by combining the
Schwinger-Dyson equation for the two-point function [14, 7, 3], which expresses
the two-point function in terms of the four-point function, with the skeleton
inequalities [5], which bound the four-point function both above and below in
terms of the two-point function. This yields non-linear integral inequalities which
bound the two-point function both above and below in terms of itself. These
integral inequalities tell us (Proposition 6.2) that the two-point function is either
very close to the free propagator or else very far from it (that is, there is a
"forbidden region" for the two-point function) how close or far depends on the
bare coupling constant λ but not on the lattice spacing. We shall prove, in addition,
that for each fixed value of the lattice spacing, the two-point function is a
continuous function of λ and, of course, it is equal to the free propagator when
1 = 0. Combining these facts, we derive an estimate on the two-point function that
is valid uniformly in the lattice spacing, provided that λ = 0 is sufficiently small (how
small does not depend on the lattice spacing). This estimate (Theorem 6.1) is the
key technical result all else follows quite easily from it.

The major contribution of this paper is perhaps pedagogical: it shows that, in
spite of non-trivial ultraviolet renormalizations, the construction of the super-
renormalizable φ\ model can be made so simple that it could be taught in a first-
year graduate course. Apart from its pedagogical ambitions, this paper makes a
contribution to the understanding of the use of Schwinger-Dyson equations and
skeleton expansions in the analysis of quantum field models. It has grown out of
our attempts to synthesize Symanzik's program for the construction of Euclidean
φ4 theory [15, 16], as developed and improved in [17, 18, 4, 19], with the ideas
proposed in [3].

Before stating the main results of this paper, let us introduce some preliminary
notations: We let 2ζj denote the d-dimensional simple-cubic lattice with lattice
spacing ε C(ε) denotes the Euclidean propagator (two-point function) of the free
(Gaussian) lattice theory with mass m0 S(£λ denotes the Euclidean propagator
(two-point function) of conventionally renormalized φ\ lattice theory with bare
coupling constant λ\ u(^λ denotes the connected four-point function (Ursell
function) of this same theory u%\ tree denotes the perturbative tree-graph
contribution to u(£\ (it is a certain "generalized convolution" of free propagators
C(ε), with coefficient — 6λ) and finally, m(ε) = m(ε)(λ) denotes the physical mass gap
of this theory. Constants independent of ε and λ will be denoted by c15 c2,.... We
define a norm ||| ||| as follows: Let / be a function in ll(TLd}. We set

111/111 = sup |/(x)|+εd £ |/(χ)|. (1.1)
xez* χezd

The dependence of various quantities on the bare mass m0 will be suppressed in
the following. (By scaling, one can set m0 = 1 in two and three dimensions see
Sect. 8. The dimensionless bare coupling constant is λmdQ~4.)
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We may now state the main result of this paper :

Theorem 1.1. Let λ^O be sufficiently small. Then the correlation functions of the
φ^ 3 lattice field theories (renormalized as described in Sect. 4, below) are bounded
uniformly in the lattice spacing ε and satisfy the estimates

and

^ Σ \u%λ(V,x,y,z)-u%λ>lrJV,x,y,z)\^c2λ
2. (1.3)

χ,y,z

Moreover, the physical mass gap of the lattice theory satisfies

\m(ε}-mQ\^c3λ
2 (1.4)

uniformly in ε. A continuum limit exists (for a suitable sequence ε.->0,) and satisfies
all Osterwalder-Schrader axioms except perhaps rotation inυariance. Moreover, the
obvious analogues of the estimates (1.2)-(1.4) hold for any such continuum limit; in
particular, if /IΦO then the limiting theory is non-Gaussian.

Remarks. 1. We actually show considerably stronger estimates than (1.2)-(1.4); see
Sect. 6 through 8.

2. It has been shown in [20-24] (by other, much more difficult methods) that,
for /l^O small, all Osterwalder-Schrader axioms are valid. For results which hold
also at strong coupling, see [25-27].

We define the "susceptibility" χ^ by

χJW £ S&M (1-5)
xezd

As a corollary of Theorem 1.1 we obtain a result for arbitrary (not necessarily
weak) couplings which lie in the single-phase region :

Theorem 1.2. Let A ^ O be such that

lim sup χίε) < oo . (1.6)
ε->0

Then a continuum limit exists (for a suitable sequence ε.-»0j and satisfies all
Osterwalder-Schrader axioms except perhaps rotation Inυariance. Moreover, the
correlation functions for the limiting theory are not identically zero.

Remarks. 1. As before, we actually prove a somewhat stronger result than that
stated above see Sect. 8. In three dimensions there exists a "critical" theory, i.e.
one for which the mass gap m vanishes see Sect. 9.

2. Under the same hypothesis, a continuum limit of the φ^t 3 lattice theory in
an "external magnetic field" exists and satisfies all Osterwalder-Schrader axioms
except perhaps rotation invariance. This can be proven by using a variant of the
methods developed in this paper, but we shall not describe the construction here.

It is of some interest to compare our construction of φ\ with the previous
literature on this model. There are, at present, five main approaches to φ\ :
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1) the "traditional" and earliest method, due to Glimm and Jaffe [1], with
further work by Feldman and Osterwalder [28, 20, 25, 24], Magnen and Seneor
[21, 22] and others [23, 26, 27, 29-33, 12]

2) the "Italian" method [34-38]
3) Balaban's method [39-41]
4) the Battle-Federbush method [42, 43] and
5) our method, based on Schwinger-Dyson equations and correlation

inequalities.
The first four of these approaches all involve a considerable amount of "hard

analysis," and all are based on one form or another of phase-space cell localization.
(The renormalization-group philosophy is particularly apparent in methods 2, 3,
and 4.) All work initially with unnormalized quantities, and a key step in each
method is the proof of ultraviolet and infrared stability for the partition function
(or a variant thereof in method 4). These methods (or at least method 1, and
potentially the others) yield very strong information about the model, including
Euclidean invariance [20, 21] and Borel summability [22]. Moreover, the tech-
niques are applicable to other superrenormalizable models. Our approach, by
contrast, is considerably simpler: it is inspired by, and for this model makes
rigorous, elementary mass-renormalized perturbation theory. We make no use of
renormalization-group insights: φ\ is sufficiently simple (we now know) that no
such heavy machinery is needed. We work only with normalized quantities (i.e.
correlation functions), thus avoiding much technical complication. Of course, our
results are much weaker than those of method 1. There is no hope whatsoever of
proving Borel summability by our methods (at least in their present form), since
correlation inequalities are inherently restricted to real values of the coupling
constant λ. Euclidean invariance is by no means hopeless (see our comments in
Sect. 9), but we are at present quite far from proving it. Our method is
embarrassingly limited to φ4 models (with N = 0, 1 or 2 components): at present
we cannot even see how to treat P(φ)2 models other than φ4. (This is because, in
the other cases, the required correlation inequalities are either unknown, or else
are known to be false!) Thus, our work in no way renders the previous work (or
possible future extensions of it) obsolete it merely gives a simpler approach to
obtaining some of the major results on the φ\ model.

Our methods apply to φ4 theories in any space-time dimension d<4 (in fact,
they get simpler as d is reduced). But the traditional construction of φ4 [2, 44] (see
also [4] for mass gap) is already fairly simple, so our method has fewer advantages
in that case.

We should also remark that somewhat related ideas have been used, in a less
delicate context, by Bricmont et al. [45].

The plan of this paper is the following: In Sects. 2 through 4 we review the
definition of the φ4 lattice model, introduce the Feynman-diagram notation, and
discuss the continuum limit and renormalization. We have tried to make the
exposition accessible to non-experts more information can be found in [2, 3] and
the references cited there. In Sect. 5 we introduce the three main technical tools
employed in our analysis: the field equation for the 2-point function, the "skeleton
inequalities" for the 4-point function, and the I1 continuity of the lattice 2-point
function in the bare parameters. In Sect. 6 we show that mass-renormalized
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perturbation theory for the 2-point function is asymptotic to order λ2 as Λ,->0,
uniformly in the lattice spacing ε this section is the heart of the paper. In Sect. 7
we refine the analysis of Sect. 6 so as to derive an asymptotic expansion to order λ2

for the mass gap this section may be omitted on a first reading. In Sect. 8 we
complete the proofs of Theorems 1.1 and 1.2, using standard methods. In Sect. 9
we remark on various corollaries and possible extensions of our analysis. In the
appendix we collect some classical inequalities of real analysis and prove some
generalizations which are needed in Sect. 7.

2. Lattice φ\ Field Theory

The φ% field theory, d = 2 or 3, will be constructed as a limit of finite-volume lattice
field theories as the region A cIRd increases to IRd and the lattice spacing ε tends to
0. We shall first take the infinite- volume limit (/l/ΊRd) and subsequently pass to the
continuum limit (ε\0), but our methods would probably permit us, with extra
work, to reverse the order of these limits. In the literature, the continuum limit has
usually been taken before the infinite-volume limit.

First, we construct a theory on the finite lattice

Points in the lattice are denoted by x, y, etc., and are labelled by their Cartesian
coordinates in IRd. To each point xeL is associated a field φ(x) which is a real
random variable. The collection of all these random variables, φ = {φ(x) : xeL}, is
distributed according to the probability measure

xeL

where ZL is a normalization factor (it is called the "partition function") and the
"action" SL is given by

SL(9)=^ Σ εd-2(φ(x)-ψ(y))2+ \a £ ε*φ(X)
2+ - £ ε"φ(X)

4 , (2.1)
^ <xy> ^ xeL ^ xeL

where Λ^O, αeR The sum over <xy> is a sum over nearest neighbors in the
infinite lattice (εZ)d (each pair is counted twice in the sum, once in each order). We
extend the definition of φ to xφL by setting φ(x) = 0 outside L. This procedure
imposes Dirichlet boundary conditions. The action SL(φ) is a finite-difference
approximation to

S(φ) = f [Pφ(x)]2 + aψ(x)2 + φ(x)4 dfx , (2.2)

and the above probability measure can be thought of as a finite-difference
approximation to a measure on continuum fields heuristically given by
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We define the expectation for the finite-volume lattice theory by

<F>LEE -Lj Π dφ(x)e-s^F(φ)9 (2.3)
^L xeL

where F is an arbitrary function of φ. If F(φ) is a polynomial in {φ(x) :xeL} with
positive coefficients, and Lf is a lattice containing L (but of the same lattice spacing
ε), then

<F>L^<F>L,, (2.4)

a consequence of the second Griffiths inequality [44, 46]. Moreover, it is known
[47-49] that such expectations are bounded uniformly in L. Therefore the limit

<F>(ε)

Ξ lim <F>L (2.5)
L/(εZ)d

exists and is, by construction, invariant under translations which preserve (&ΊL}ά.
This extends to arbitrary polynomials F. For a summary of the properties of the
lattice φ\ field theory, see [3].

Remarks i. Our notation in the present paper is slightly different from that in
[3, 5]. In particular, we here denote by λ/4 what was previously denoted by λ0/4\
= λ0/24. The reader should bear this in mind when reading Sect. 5.

2. In [3, 9], the coefficient of the (Vφ)2 term in S(φ) is considered to be a third
free parameter of the model (after λ and α); this allows for "field-strength
renormalization." However, for superrenormalizable φ* models in dimension
d < 4, the desired field-strength renormalization is the trivial one, i.e. the coefficient
of the (Vφ)2 term is just a fixed positive number. We have here introduced this
simplification from the beginning, in (2.1) and (2.2).

3. Feynman Diagrams for the Lattice φ4

d Theory

If in < — >(ε) we set a = m^ λ = 0, the resulting theory is the free lattice field theory of
mass m0. It is given by a Gaussian measure, and all moments of this measure are
determined by the covariance ( = "free two-point function" = "free propagator")

. (3.1)

The covariance C(ε) can be calculated explicitly and turns out to be

f [mg + 2ε-2 £ (l-cosε/c.)j eik'(x~y}ddk, (3.2)
π Ί d L i = ι J

which is best thought of as the kernel of (m^ — Δ)~ \ where A is the finite-difference
Laplacian for the infinite lattice. If d^2, m0 must be strictly positive; if d>2,
m0 = 0 is allowed as well.

When the coupling constant λ does not vanish, a can be an arbitrary real
number, and the covariance

(3.3)

is known as the "interacting two-point function" or "interacting propagator."
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We now introduce the Feynman-graph notation which is extremely helpful in
organizing the terms in a perturbative expansion of < — )(ε) in λ. We set up the
correspondence :

S(ε\X —

Examples of the use of Feynman graphs to represent algebraic expressions are :

We adopt the convention that unlabelled vertices of graphs are summed over the
lattice (with weight εd at each site). Thus

where we have also used the

Convention. Riemann sums £ εdf(z) over the lattice εΊLά are denoted by integrals

4. Preliminaries for the Continuum Limit

We consider a sequence (Lt) of infinite lattices

L,Ξ=(ε fZ)d,
1 1 (4.1)

i.e., each lattice refines its predecessor. (This condition is convenient but not really
necessary; see [3].) The goal is to construct a limit

Sn(x19...9Xl)=lίm(flφ(Xj)) ' , (4.2)
i-»oo \j=ί /

where {x15 . . ., xn} is contained in Lίo, for some arbitrary, finite /0. (Equivalently, the
right-hand and left-hand sides of (4.2) can be considered as distributions in
'̂(IR™*), and the limit is taken in this space; see [3].) By soft analysis, it can be

shown that the distributions Sπ, called the Euclidean Green's functions (or
Schwinger functions) of the continuum theory, are the moments of a probability
measure (see [3]). In this paper we shall construct a continuum limit by proving

bounds on ( Y[ φ(Xj)} which are uniform in i and then appealing to a
v/=ι /

compactness argument. In proving those bounds one meets a complication : It is
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known that the expectations ( Y[ φ(Xj) } converge to 0, as ι-> oo, unless the bare
. V = ι '

mass parameter a in the definition of < — )(£l) is chosen to depend on ε. in a certain
fashion. Indeed, it must be chosen to diverge to — oo, as z-»oo. The precise way in
which it is taken to — oo is a rather delicate matter and is correctly predicted by
perturbation theory in λ. The fact that perturbation theory correctly predicts the
s-dependence of the bare mass a(ε) is a simplifying feature of φ4 theory in two or
three as opposed to four dimensions, or more generally of "super-renormalizable"
as opposed to "renormalizable" field theories. For d = 2 or 3, perturbation theory
yields

d = 2 (4
ι2

2(s), d = 3,

where mQ>0 is the mass parameter appearing in the free propagator C(ε)(x —
and

δm2

2 = 6λ2Q4 J. (4.5)

By (3.2),

2 f-0(llnε|), d = 2
1 [ — O(ε-1), d = 3 9

and

s...2,., fOd), ^=2

Note that δm\(ε) remains finite, as ε\0, in two dimensions; for this reason it is
omitted (for simplicity) from (4.3), although it could equally well be included. The
process of choosing α(ε), and other parameters on which < — >(ε) depends, as a
function of the lattice spacing β (in a way which may well diverge as ε \0) is called
renormalίzatίon. See [2, 3] for an account of renormalization theory.

5. The Main Tools

Our proof of the existence and nontriviality of the continuum limit for φ\ and φ\
employs three main ingredients: the field equation (or "Schwinger-Dyson equa-
tion") for the 2-point function [14, 7, 3] the "skeleton inequalities" for the 4-point
function [5]; and the ^-continuity of the lattice 2-point function in the bare
parameters (Proposition 5.1 below). In this section we discuss briefly each of these
items.
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The field equations can be derived by integration by parts in the defining
integral (2.3). Formally,

/ . n \

A (5.1)

where < >G denotes expectation in the Gaussian (lattice) measure with covariance
C = C(ε\ and

V= - \ φ(x)4ddx + a^- J φ(x)2ddx. (5.2)

(Here we have used our convention that lattice sums with factors εd are denoted by
integrals.) Inside a Gaussian expectation, φ(x) is equivalent to (C*δ/δφ)(x), i.e.

) (5.3)
G

this is a consequence of integration by parts. We apply it to the 2-point function by
writing

—. (5 4)

and using (5.3) with

(5.5)

We obtain

/ δV
S(χ -y) = c(χ-y)-$ ddzC(x - zK —- φ(y)

= C(x-y)-(a-ml)l ddzC(x - z)S(z - y)

(5.6)

Of course, this discussion has been purely formal, because of its cavalier
manipulation of infinite-volume sums and integrals. A more careful treatment,
which works first in finite volume and then uses the DLR equations to handle the
infinite- volume measure, is given in [3] the upshot is that (5.6) is rigorously valid.

The field equation (5.6) is an identity which expresses one unknown quantity
(the 2-point function S) in terms of another unknown quantity (the 4-point
function (φ(z)3 φ(y)y). At first glance this may not seem particularly useful. It
becomes more useful, however, when we combine it with the "skeleton in-
equalities" [5], which bound the 4-point function both above and below in terms
of the 2-point function. These inequalities are most easily expressed in terms of the
connected 4-point function

15 x2, x3, x4) =

χlsv^s^r\χ2 q^x/x^wx χ3 χ1/x^y\^\ χ4

(5.7)
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Then the first three skeleton inequalities are:
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(5.8)

(5.9)

18/12
+ two permutations . (5.10)

A detailed proof of (5.8)-(5 10) is given in [5], and is based on the random-walk

expansion of [4]. Let us simply note here that the right-hand sides of (5.8)-(5.10)
are precisely the low-order perturbation-theory expressions for w4, except that

interacting propagators (i.e. 2-point functions) appear in place of free propagators.

By combining the field equation (5.6) with the skeleton inequalities (5.8)-(5.10),

we can obtain inequalities which bound the 2-point function above and below in
terms of itself. Indeed, inserting (5.7) and (5.8)-(5.10) into (5.6), we find

^ x
— 3λ y - x-

rg x y — 3λ x

— X-

(5.12)
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^ X - y
— 3λ X

where x -
(a-m2

Q}χ.

(5.13)

is shorthand for the mass counterterm
'. We can now see the rationale for the choices (4.4)/(4.5) of

the mass counterterm: they are designed precisely to cancel the ultraviolet
divergences on the right-hand side of (5.11)-(5.13). That they succeed in doing so is
not all obvious but it is true, as we shall show in Sect. 6! In any case, we are free to
introduce the notation

(5.14)

Z = Z 4 IZ — Z( (5.15)

Then, for φ*, (5.11)-(5.13) become

x ^\^x/x/\y\.y ^ (5.16)

•y = χ~

+ 6/L2 x-

(5.17)
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+ 6λ2 x (5.18)

For φ\, (5.11) is useless, but (5.12)-(5.13) become

+ 6λ2 x

(5.19)

(5.20)

We call (5.16)-(5.18) and (5.19) and (5.20) the propagator inequalities for φ\ and φ^,
respectively.

In the following section we shall use the propagator inequalities to control the
difference between the interacting propagator y\/>ur\/\ and the free propagator

, for sufficiently small λ. Surprisingly, we do not need any a priori
information on the interacting propagator other than its continuity in the bare
parameters λ9 a (for fixed lattice spacing ε). Let <2S be the space of allowable bare
parameters1:

1 For lattice dimension d>2, the point λ = 0, a = 0 (massless free field) can also be included in J*, if
desired
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« = {(A,α):λ>0,ίielR}u{(λ,fl):λ = 0,fl>0}. (5.21)

We give & its usual topology as a subset of IR2.

Proposition 5.1. Fix the lattice spacing ε>0. Then:
(a) The set

)| |1<oo} (5.22)

is a nonempty, connected, open subset of &.
(b) 77ze map (λ, α)κ>||5(/l, 0)1^ is α continuous map from ^ into [0, + GO].
(c) The map (λ,ά)\-+S(λ,a) is a continuous map from &0 into I1.

Here ^0 is the single-phase region minus the critical surface the subtlest part
of this proposition is the assertion that \\S\\ 1 (which in the single-phase region is
just the susceptibility) diverges continuously as the critical surface is approached.

Proof. Since the lattice spacing plays no role, we might as well set ε = 1. Now by the
Simon-Lieb inequality [50, 51] in the version of [4, 19], the 2-point function
satisfies

(φ(Q)φ(x)y^(φ(Q)φ(x)yA + Σ <^(0)^(z))^z'^(z/)<pM>> (5.23)
zeA
z'φA

where

| 7 ~ 7 ' = 1 (5.24)

and QeACl?. [Here < >^ is the expectation in the lattice model in the region A,
with zero ( Ξ Dirichlet) boundary conditions.] As explained in [50], if

zeA
z'φA

then (5.23) can be iterated to obtain an upper bound for <φ(0)φ(x)> that explicitly
exhibits exponential decay (and hence ||S||1<oo); moreover, this upper bound
depends smoothly on the finite-volume expectations (φ(y)φ(z)yA. Now if (λ, a) are
such that ||S(A, fl)!^ < oo, then (5.25) can clearly be made to hold by choosing the
volume ,4 sufficiently large; and then (5.25) also holds for (λ'9d) in a small
neighborhood of (λ, a\ since the finite-volume expectations are continuous
functions of the bare parameters. Thus ̂ 0 is an open subset of ̂ , and \\S(λ, α)!^ is
locally bounded on J*0. (This argument is essentially already contained in [51] we
repeat it here for the convenience of the reader.)

Clearly ^0 is nonempty, since it contains the points λ = Q, a>0 (massive free
field). Moreover, HS^α)!^ is a decreasing function of λ and a (by the Griffiths
inequality), from which it follows that any two points (λ, a\ (λ',d}e&Q can be
connected in ̂ 0 by a pair of line segments, one vertical and one horizontal. This
proves (a).

We now note that S(λ, a) is the monotone limit, pointwise in x-space, of the
finite-volume 2-point function

A , α > (5.26)
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as V\TLά. By the monotone convergence theorem, \$v(λ,ά)\^\$(λ,ά)\v as V\TLά

(irrespective of whether \\S(λ, ά)\\v is finite or H-oo); and if ||5(^,0)1^ <oo, then
SF(λ,α)->S(λ,α) in I1 norm. Since SF(x)^0,

so
Λ Λ j

-ll5Γα«)l!ι = Σ^ι<<p(θ)<pW>^A,«=-7 Σ
OA χ<aV°A ^ x,yeV

where we have used the convenient shorthand <^4 J5> = < AB> — <v4> <£>. By the
Griffiths inequality and the strong Gaussian inequality [52, 53, 4, 5], we get

χ,y

= -3||S(λ,α)||?S(λ,α)(0)

)!!?. (5-29)

Similarly one can show that

d
0^ — ||SF(^α)llι = - I I SOW H i . (5.30)

Now

1 1 O / 1 \ 1 1 I I C * ( 1 rί\ 1 1 Γ A Q 1 1 C* ( 2 /Ά I I (^ ^ 1 ^*j r/-( /t.-j, w I -i — ij ι/v^ 1 ? ^v 1 — ! w/(< [ I ij τ/ \^A, 6t / H i ? \ /

which is bounded by const x \λ2 — λ^\ for (λ19a), (h2,a) lying in a small neigh-
borhood in ̂ 0, by (5.29) and the local boundedness of ||S(1, α)!^ on ̂ 0. Similarly
(5.30) handles variation of a with λ fixed. Letting V\TLd, one concludes that
\\S(λ,a)\\l is a continuous (in fact, locally Lipschitz) function on the set &Q.

We still have to prove that ^S(λn9a^^^S(λ9a)^^ = +00 whenever

But it is easy : for assume otherwise then passing to a subsequence we can assume
that llSOt^αJll! is bounded by K. But then

so II Sv(λ, a) || 1 ̂ Kby the continuity of the finite-volume expectations. Taking V\TLά,
we find \$(λ,d)\^K, contradicting the definition of (λ, a). This completes the
proof of (b).
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The proof of (c) is virtually identical to that of the first part of (b):

d
~= Σ

1 xeV

= 2 Σ <9(OMx);^)4>K(A.e^ x,yeV

and

Sv(λ,a)

(5.32)

(5.33)

take the place of (5.29) and (5.31). Similarly one handles variation of a with λ fixed.
Using these equations and the local boundedness of \\S(λ,a)\\± on ^0, and then
letting V\TLά, one concludes that S(λ9 a) is a continuous (in fact, locally Lipschitz)
^-valued function on ̂ 0. D

Remarks. 1. The proof of (b) can be summarized in "high-falutin"' language as
follows: The function ||S(/1, α)||1? being a continuous function on the open set ̂ 0

and equal to + oo on ̂ \^0, is therefore upper semicontinuous. But \\S(λ, a)\\19 being
the supremum of the continuous functions ||S7(Λ > β ) l l ι > ls necessarily lower
semicontinuous. Hence it is continuous.

2. The proof of [3, Proposition 2.1] is incomplete; it requires an argument
similar to the one given here.

3. The proof given here shows continuity not only for nearest-neighbor
interactions, but in fact in the cone of ferromagnetic pair interactions of any fixed
finite range. (Probably it works also for suitably-decaying infinite-range in-
teractions, but we haven't bothered to work out the details.)

4. A stronger form of part (b) is valid: \\S(λ9α)!!^1 is a locally Lipschitz
function of λ and a on the entire set .̂ [This bounds from below the rate of
divergence of HS^α)!^ as (λ9a) approaches the boundary of J*0.] The proof is
simple: using (5.29)-(5.31) and letting V\TLd, one finds (on ̂ 0)

(5.34)1111% M l i '
and analogously for variation of λ with a fixed. Subdividing the interval [_aί,a2]
into N smaller intervals, applying (5.34) for each smaller interval, and then letting
N-+OO (using the continuity of ||5(1,0)1^ on ^0), we obtain

o^llsα^HΓ'-l lsαflJIIΓ 1 ^!^-^! (5 35)
for (λ.aj), (λ,a2)e^0. But since \\S(λ, a)^1 is continuous on all of ,̂ we can let
(/l,«i) approach the boundary of ̂ 0, and conclude that (5.35) holds for all avaτ

(This implies, by the way, the critical-exponent inequality y^ l [54-56], whose
rigorous proof seems therefore to be a bit trickier than heretofore believed. One
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could avoid some of the subtlety of the foregoing proofs by working with periodic
instead of Dirichlet boundary conditions [55], since for periodic b.c. the
"fluctuation-dissipation relation" for (d/dά)\\Sv(λ,ά)\\l is rigorously valid in finite
volume, and hence

^^\\Sv(^a)\\^-\\Sv(^a)\\l\ (5.36)
ca

but then one has to work quite hard to prove that ||SF(/l, α)!^ converges to
| | S , α a s 7 Z d .

6. Uniform Bounds on the 2-Point Function

This section contains the main technical ideas of the paper. We shall show that
mass-renormalized perturbation theory for the 2-point function is asymptotic to
order λ2 as λ->0, uniformly in the lattice spacing ε. Once this is achieved, similar
statements for the rc-point functions will follow from the "skeleton inequalities" of
[5].

In this section we shall set w0 = 1 this is no loss of generality, since any other
nonzero value of m0 can be obtained by scaling lengths. Our estimates of
correlation functions on the lattice will use the Z/nL00 norm,

l l l / I N I I / l l i + l ί/l loo^ Σ I/Ml + sup |/(x)|. (6.1)
xeZd xeεZd

(For each fixed ε, this is equivalent to the I1 norm; but since we seek estimates
uniform in ε, the L1nL°° norm is strictly stronger.)

The main result of this section is the following :

Theorem 6.1. There exist universal constants λQ>Q, c1? c2 such that if Q^λ^λ0,
then

ll|s(β)-c(e)|||^Clλ
2, (6.2)

|||S<Ό _ (c<"> + 6PC(ε) Vε)*C(ε))lll ^ c2λ
3 (6.3)

for allε^O.

Here

Notice that 6λ2C(ε)*ιp(ε}*C(ε} = 6λ2 - * > - is precisely the second-

order perturbation-theory contribution to S(ε\
The main technical estimate is contained in the following proposition. It is a

straightforward consequence of taking the ||| ||| norms of both sides of the
propagator inequalities (5.19) and (5.20). We define

E(ε} = S(ε}-C(ε}. (6.5)
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Proposition 6.2. There exist polynomials P1? P2, P3, Q1? Q2, β3 with positive
universal coefficients such that

|||£(ε>|||^i λ"Pn(\\\E^\\\), (6.6)
n = 1

|) (6.7)

/or α// ε>0. Moreover, the polynomials Pv Q1? and <22 ^
flί;β z^ro constant term.

We emphasize that the estimates (6.6) and (6.7) are uniform in ε.

Proof of Theorem 6.1 assuming Proposition 6.2. Choose λ0>0 so that

If λe [0, A0], then by Proposition 6.2, |||£(ε)||| ̂  2 implies |||E(ε)||| ̂  1 in other words,
|||£(ε)||| cannot lie in the interval (1,2]. This is true for all ε. Now Proposition 5.1
implies that, for each ε, |||E(ε)||| is a continuous function of λ. Since at λ = 0 we have
|||£(ε)|||=0, it follows that |||E(ε)||| ̂  1 for all Ae[0,A0]. This is true for all ε. The
estimates (6.2) and (6.3) then follow from (6.6) and (6.7). D

Let us once again emphasize the two ingredients in the proof of Theorem 6.1 :
an estimate uniform in ε (Proposition 6.2); and the continuity of |||£(ε)||| in λ for
each fixed ε, with no uniformity required (Proposition 5.1).

We now turn to the proof of Proposition 6.2. The idea is to substitute
S(ε} = C(ε) + E(ε} on the right-hand side of the propagator inequalities (5.19) and
(5.20) and then to estimate ||| ||| norms. Those terms involving only C(ε) are either
ultraviolet convergent (i.e. bounded uniformly in ε) or are made ultraviolet finite
by virtue of the mass counterterms. Those terms involving at least one E(ε) are all
ultraviolet convergent, the intuitive reason being that functions in Z/nL00 are
much less singular than the free propagator C. The actual estimates are very
simple applications of the Holder and Young inequalities, which imply (among
other things) that Z/nL00 is a normed algebra with respect to both multiplication
and convolution. From now on we suppress the ε-dependence in our notation all
estimates are uniform in ε.

Lemma 6.3. The function ψ = tp(ε), defined in (6.4), satisfies the following bounds :
(a) |v?(fc)|^c0log(|fc| + l).
(b) |δmφ(/c)|^cm(|fe|2 + l)~ | m | / 2 for /ce[-π/ε, π/ε]3 and any multi-index m with

Γ 3

|m|^l. \Here \m\= £
I i=l

(c) \\C*Ψ{\LίnL^c'.
(d) ||C*φ*C||ilnL^c".
The constants c0, cm, c', c" are all universal, i.e. independent of ε.

Proof. By (6.4),

<M/c)=(2π)-6 if
qί,q2e[-π/ε,π/ε]3
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where
Γ 3

C(q)= l + 2ε~2 ^ (1-cosεg.)

By the fundamental theorem of calculus, we can write

ψ(k) = (2π)~6 J da JJ d?>qίd
?>q2C((

0 gι,q2e[-π/ε,π/ε]3

and bound it in absolute value using

|C(<?)|^const x ( l + #

159

— C(ak-q1-q2) < const x
\k\

provided k, g1? g2e[ — π/ε,π/ε]3. Thus

\ψ(k)\ ^ const x Jdα| j j

< const x f d α -J

0 l

^ const xlog(|fc| + l).

This holds for fee[ — π/ε, π/ε]3 but since \p(k) is periodic in k, the bound is
manifestly true for all k. This proves (a) similar computations prove (b).

Now by the Plancherel theorem,

1/2

^ const < oo

by part (a). Moreover, a similar argument using (b) shows that
\\\x\NC*ψ\\2^cN<co (with a universal constant) for any AΓ^O. Then

by Holder's inequality. This proves (c). (d) is now an immediate consequence of (c),
Young's inequality, and the universal bound on ||C||LιnL2. Π

Proof of Proposition 6.2. The propagator inequalities (5.19) and (5.20) give upper
and lower bounds for E which are sums of terms of orders λ, λ2, and λ3. We treat
each of these three classes of terms in turn, and estimate the ||| ||| norms.

The term of order λ can be bounded as
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where we have used Young's inequality and the universal bound ||C||LιnL2^ const.

One of the terms of order λ2 is ^\/^> ΞΞC*φ*C, which is

bounded in ||| ||| norm by Lemma 6.3(d). Another of the terms is C*ip*E, which is
controlled by Lemma 6.3(c) and Young's inequality:

The remaining terms are C*(S3 — C3)*S :

= |||C*C + C*£||| 1 3C2£ + 3C£2

+ c5|||£|||2 + c )

by Young's and Holder's inequalities and the universal bound ||C||LιnL2^const.
We bound the term of order λ3 by the following sequence of inequalities :

^7 + Pill)5

Here we have repeatedly used Holder's and Young's inequalities along with the
universal bound LιnL5/2^const. D

Remarks. 1. If we had taken a general lattice dimension d (instead of d = 3), then we
would find that all of the above estimates are valid for d<10/3. However, for

the graphs

and

are ultraviolet divergent, and additional mass counterterms are required to cancel
them and thereby to restore the validity of Lemma 6.3(d) and the estimate of the
order-/l3 term, respectively. Further graphs begin to diverge at the dimensions
d = 4 — 2/n, n integer [57] and require corresponding counterterms. Indeed, one of
the beauties of our method is its close correspondence with perturbation-theory
power-counting. (Note: The reader who dislikes flights of fancy should ignore our
comments regarding non-integral dimensions.)



New Existence Proof 161

2. Analogous but even easier estimates establish the analogues of
Proposition 6.2 and Theorem 6.1 for φ2. Nothing like Lemma 6.3 is needed, since
the graphs

and

are ultraviolet convergent in dimension d<3. Moreover, to prove the fundamental
bound |||£||| ̂  const x λ2 one needs the propagator inequalities only to order λ2 [i.e.
(5.16) and (5.17)]; the order-/ί3 inequality (5.18) is needed only for the order-Λ,3

bound. The results are the following:

Proposition 6.4. For the φ2 theory, there exist polynomials P19 P2, Qv Q2> 63 with
positive universal coefficients such that

|||£<«>|||g Σ λ-PjItf 'IH), (6.8)
n= 1

|||E<6>-6A2C<ε)*C(ε)3*C(ε)|||^ £ A"βπ(|||E<ε)|||) (6.9)
n= 1

for all ε>0. Moreover, the polynomials Pί9 Qί9 and Q2 have zero constant term.

Theorem 6.5. For the φ\ theory, there exist universal constants A0>0, c19 c2 such
that ifQ^λ^λ0, then

|||^)_C(εfeμ2, (6.10)

|||S«o _ (c^ + 6λ2C(ε)*C(ε)3*C(ε))||| ̂  c2λ
3 (6.11)

for all ε > 0.

Remarks (continued). 3. The invariant meaning of the weak-coupling hypothesis in
Theorem 6.1 and 6.5 is that our methods break down for theories too close to the
critical surface. (With our mass-renormalization convention (4.3), this means that λ
cannot be too large, at least in the case of φ\: in this model it is known that the
two-phase region is reached for large λ [58, 59], and that the critical surface is
crossed for some intermediate value of λ [60]. For φ*9 analogous estimates on the
location of the critical surface have apparently not yet been carried out.) We can,
in any case, prove some weaker results for theories in the entire single-phase region
(including near the critical surface) see Sect. 8.

4. The proofs in this section show essentially that the propagator inequalities
(5.19) and (5.20) [or (5.16)-(5.18)] can be iterated to yield convergent upper and
lower bounds indeed, this is to be expected, since the number of diagrams at nth

order clearly grows no worse than Kn (and no ultraviolet troubles can occur). The
continuity argument in the proof of Theorems 6.1 and 6.5 then ensures that
0 ̂  λ ̂  λ0 is within the region of convergence of these series. However, the proofs
are much simplified by not making this iteration explicit.

7. The Mass Gap

In this section we strengthen Theorems 6.1 and 6.5 so as to exhibit explicitly the
exponential decay of the 2-point function in particular, we obtain strong two-



162 D. C. Brydges, J. Frδhlich, and A. D. Sokal

sided bounds on the mass gap. As in the preceding section, we work always with
the lattice theory but seek estimates which are uniform in the lattice spacing ε. We
continue to fix m0 = 1.

It is useful to introduce the exponentially-weighted Lp norms

tεd Σ |cosh(αx1)/(x)|pW p for l<p<oo

sup cosh(αx1)|/(x)| for p = oo ,

where α > 0. We also introduce an exponentially-weighted generalization of the
Z/nL00 norm used in the preceding section, namely

l l l / l l l « = l l / l l ι f α + l l / l l c o f « (7 2)
For each fixed ε, this is equivalent to the /* norm; but since we seek estimates
uniform in ε, it is strictly stronger. Some useful facts about these norms are
summarized in the appendix the key fact is that there exist versions of the Young
and Holder inequalities for convolution and pointwise multiplication, respectively.

We need an analogue of Proposition 5.1:

Proposition 7.1. Fix the lattice spacing ε>0. Then, for each α^
(a) The set

is a nonempty, connected, open subset of 3$.
(b) The map (λ, a}\-*\\S(λ, a}\\ ± α is a continuous map from & into [0, + oo].
(c) The map (λ, a)\->S(λ, a) is a continuous map from &a into /*.

Proof. Since the proof is virtually identical to that of Proposition 5.1, we merely
make a few remarks. The Simon-Lieb inequality ensures that if ||S(Λ,α)||1>α<oo,
then in fact 115(^,^)1^ α '<oo for some α'>α; moreover, this bound depends only
on some finite-volume expectation < yA, and so is stable under small variations of
(λ, a). Thus J*α is open, and ||S(A, α)!^ α is locally bounded on ^α. The ^α is
nonempty because it contains the points λ = 0, a sufficiently large. The rest of the
argument goes through virtually unchanged, by virtue of the convolution in-
equality (A.9). D

Remark. We shall define the mass gap as

m = sup{α: | |S | | 1 > α<oo}. (7.3)

The Simon-Lieb argument alluded to above shows that ||S||1>m= + oo. Using the
Schrader-Messager-Miracle-Sole inequalities, this definition of the mass gap can
be shown to be equivalent to the more usual definition

°'-'0); (7.4)

however, this argument relies on the nearest-neighbor nature of the interaction,
which we have otherwise avoided using.
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We can now obtain bounds on the mass gap by proceeding as in Sect. 6, but
using everywhere the norms ||| |||α and || || 1>α. To illustrate the method, we consider
first the φ\ theory, which is a bit simpler than φ*. We define

(7.5)
2

this is the mass gap for the λ, a = Q theory with bare mass m0 — 1. Note that
ra(

0

ε)-»m0 = l as ε-»0, but that w(

0

ε)<l for ε>0; thus, we shall have to be a bit
careful in stating bounds which are valid for all ε. From now on, we suppress the
ε-dependence in our notation, except in regard to m(

0

ε) all estimates are uniform in
ε.

The following result can be obtained by virtually copying the arguments of
Sect. 6, using everywhere ||| |||α in place of ||| ||| :

Theorem 7.2. Fix δ>0. Then, for the φ\ theory, there exist universal constants
/10>0, c1 5c2 (depending on δ) such that if 0^λ^λ0 and α^(l — <5)m(

0

ε), then

IIIS-CIH^cμ2, (7.6)

HIS - (C + 612C*C3*C)|||α ̂  c^3 (7.7)

for all ε>0.

Proof. Everything goes through as in the proof of Proposition 6.4 (or 6.2), except
that inequalities (A.S)-(A.IO) play the role of the Young and Holder inequalities.
The key fact is that \\C\\ 1 α, ||C||2 α, and ||C||5/2 α are all bounded uniformly in ε and
inα, for α^(l-<S)m(

0

ε). 'D

Theorem 7.2 implies that there is a mass gap m(λ)>0 (uniformly in ε) and that
in fact liminfm(/l)^m (

n

ε ) (also uniformly in ε). This is nice, but with a little extra
λ-^O

work we can do much better, and show that the mass gap is exactly that predicted
by second-order perturbation theory plus an error which is uniformly of order λ3.
It is worth recalling how the perturbative calculation of the mass gap goes : one
computes perturbatively the self-energy part (Ξthe radiative corrections to the
inverse propagator), and computes order-by-order the location of the first zero of
the inverse propagator (i.e. the first pole of the propagator) in pure-imaginary
( = Minkowski) momentum space. Our proof will follow the same pattern, but will
employ rigorous inequalities in place of formal-power-series equalities.

We first define a few quantities which will arise in our computations :

(7.8)

(7.9)

(7.11)
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9 (7.11)

, (7.12)

| | l f α . (7.13)

Note that the quantities involving C are explicitly computable, and are in fact
nothing other than Feynman diagrams (for a lattice theory). For example, Φ2(α)
and Φ3(α) are the second-order and third-order perturbative approximations to
the inverse propagator 5(iα,0, ...jO)"1.

We can now state a strengthened version of Theorem 7.2 :

Theorem 7.3. For the φ\ theory, there exist universal constants λQ>09 c1? ...,c7 such
that ifQ^λ^λ0, then:

4]-1, (7.14)
4]-1, (7.15)

)-^3]-1, (7.16)

^ (7.17)

for any α (0 rg α < ra(

0

ε)) /or which ί/ie bracket on the right-hand side is well-defined
and positive. In particular, the mass gap satisfies

|m-(m(

0

ε)-yl2m(

2

ε))|^c7/l3, (7.18)

where

/ ε 2 \~ 1 / 2

=3||C3||1,m,e) 1+- . (7.19)
\ /

Remark. The advantage of Theorem 7.3 over Theorem 7.2 is that it controls
explicitly the rate of blow-up as α|m(

0

ε). To interpret (7.14)-(7.17), it is useful to
know that

IICIk.-K^-αΓ1 (7.20)

as αtm(

0

ε), and that Φ2(α) and Φ3(α) have simple zeros at locations slightly below m(

0

ε)

[more precisely, at m(

0

ε) — A2m(

2

ε) + 0(/ί3)].

Proof of Theorem 7.3. As before, we write E = S — C. The propagator inequalities
(5.16H5.17) together yield

Ίl i . J , (7-21)

while (5.17)-(5.18) together yield

i l l 77" /r 1 2 f^'Sf /^"S Φ /~ΊII -"CΓ" I I I f~*% CΊ(| /Q 1 \ \r\ _ι_ /ί 2 ^ I I C*^ /^*3 I I ι C/1 0 3 I I /) 1 1 \
f j — UA ^ v_/ v_/ _^± O ιJ \ J ALΛ. "T" ΌA || (3 O -< r" JHΆ || U | j -< „ I

+ 6A2|||C*£|||α||C3||1 α. (7.22)

Now

(7.23)
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by (A. 10), while

\\\C*S\\\^\\\C*C\\\a

(̂constx||C||?iβ)+||C||lfβ|||£|||β (7.24)

by (A.9), (A. 10), and (A.20). Likewise, by (A.20),

l |C 3 | | l f α =l |C | | l f α / 3 ^const (7.25)

and

5

^ const 3 (?'26)

by (A.8) and the uniform bound (A.20) on HCI^ α/3 and ||C||2 α/3 for α^m(

0

ε)

[indeed, for α^(3-δ)m(

0

ε)]. Combining (7.25) and (7.26) bounds lίs3 | | l sα. Finally,
by imitating the last step in the proof of Proposition 6.2, we can show that

(7.27)

and

I I 0 - 00 H 1, α ̂  COnSt X (PIHα/3 + Pillars) (7 28)

uniformly for α^m(

0

ε) [indeed, for α^(3-(5)m(

0

ε)]. Combining (7.27) and (7.28)
bounds ||θ|| l fβ.

By Theorem 6.5,

X = 6λ2Y+0(λ3) (7.29)

for O^A^/L 0 , where the 0(A3) error is uniform in the lattice spacing ε; and

0^7^ const (7.30)

by an easy application of the Young and Holder inequalities. Likewise, by
Theorem 7.2,

Pl l l α / 3 ^constxA 2 (7.31)

uniformly for α^m(

0

ε) [indeed, for α^(3-<5)m(

0

ε)]. Inserting (7.24)-(7.26) and
(7.29)-(7.31) into (7.21), we obtain

|||£|IU[(constx||C||ϊfβ)+||C||1>β|||£|||β][6A2||C3||lιβ

ϊίconstx ||C||^l2 + | |C| | l j α[6A2 | |C3 | | l j α + θμ3)]|||£|||α. (7.32)

Assume now that

l|C||1 > c t[6λ2 | |C3i | l j α + 0(A3)]<l. (7.33)

Then it follows from (7.32) that

)-1 (7.34)
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provided only that |||E|||α< oo but since |||E|||α = 0 for λ = 0 and is continuous in λ
(by Proposition 7.1), (7.34) must hold whenever (7.33) does. (Equivalently, one can
argue from Theorem 7.2 and continuity in α.) This proves (7.16). Similarly,
inserting (7.23)-(7.31) and (7.34) in (7.22), we obtain

|||E-6λ2C*C3*C|||α^ [(const x ||C||^α)+ ||C||1?α|||£|||J x

])-1 (7.35)

for O^A:g/l 0 and α^m(

0

ε), provided (7.33) is satisfied. This proves (7.17).
To prove (7.14) and (7.15), we return to the propagator inequalities

(5.16)-(5.18). Since these inequalities hold pointwise in x-space, and since eip'x>0
for pure imaginary p, they hold also in pure-imaginary p-space :

S(ip) ^ C(ip) - 3λC(ipWp)X , (7.36)

S(ip) ^ C(ip) - 3λC(ip)S(ip)X

+ 6λ2C(ip)S(ip)S3(ίp), (7.37)

S(ίp)^C(ip)-3λC(ίp)S(ip)X

+ 6λ2C(ip)S(ίp)&(ip) - 54λ3C(ip)S(ip)θ(ip) (7.38)

for all real p for which they are well-defined (i.e. finite without resorting to analytic
continuation). In particular, if we take p = (α,0, ...,0), then S(ip)=||S||1;C[ and
likewise for C, S3, and θ, since all these functions are even and nonnegative. Thus
(7.36)-(7.38) can be interpreted as inequalities for || | |1 > α norms. Inequality (7.37)
becomes

l|S||1,a^||C|| l ιβ+||C||1>J|S||1>β[6λ2 | |S3 | | lpβ-3λ2Γ|

^IIC||1>ί ί+l|C|| l ιβ | |S|| l ιβ[6λ2 | |C3 | |1(β-18λ3y+0(λ4)]. (7.39)

Assume now that

IIC| | 1,α[6A 2 | |C 3 | | l 5 α + θμ4)]<l. (7.40)

Then, by (7.39) and (7.30),

(7.41)
provided only that | |S| | l j α<oo; but the finiteness of | |5Ί|1 > α follows as before, by
continuity in λ (or in α) together with (7.41) itself. This proves (7.14). Likewise,
(7.38) becomes

; > > > 1 ; α - 0 ( A 4 ) ] (7.42)

by virtue of (7.26), (7.28), (7.29), and (7.3 1) this immediately implies (7. 1 5) provided
that ||S|| 1>α< oo. On the other hand, if ||S|| 1 > o t= + oo, then (7.15) holds trivially. The
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bounds (7.18) and (7.19) on the mass gap are an immediate consequence of (7.14)
and (7.15) together with

(7.43)

and a uniform bound on — ||C3|L for α^m(

0

ε). Π
doc

Remarks. 1. Inequality (7.14) actually holds with c1=0, provided the lattice
spacing ε is not too large (e.g. let's say we take ε ̂  1). For then Y is uniformly
strictly positive, and we can take λ0 small enough so that ISA3 Y outweighs the
0(λ4) term in (7.39).

2. Evaluating the propagator inequality (5.16) at x = y, we obtain X^O, valid
for all λ. This might be of some use for strong coupling, where (7.29) no longer
applies.

This completes the discussion of the mass gap for φ\. Now φ\ is not much
more difficult; we need only an exponentially-weighted generalization of
Lemma 6.3.

Lemma 7.4. The function ψ = ιp(ε\ defined in (6.4), satisfies the following bounds
uniformly for 0 g α ̂  m(

0

ε) :
(a) |φ(fc±zα)|^c0log(|/c| +1),
(b) |δmφ(/c±iα)|^cm(|/c|2 + l)~ | m | / 2 for fce[ — π/ε,π/ε]3 and any multi-index m

Γ 3

with |m|>l. \Here |m|= V r,

(c) IIC^H^+II
(d) | | | C V C | I U i

(Here we have used α also to denote the vector (α, 0, 0) .) The constants c0, cm, c', c"
are all universal, i.e. independent of ε.

Proof. The proof is virtually identical to that of Lemma 6.3 : the point is that the
imaginary part of the momentum flowing in each of the three free propagators is
+ α/3, which is bounded away from m(

0

ε) and so the propagators satisfy the same
bounds as before. This proves (a) and (b). If we write

FΛ(x) = ̂ F(x) (7.44)

for any function F, then

IIC*φ||psα=||(C»α||p=||C>J|p, (7.45)

so (c) and (d) also follow as before, using (A.20). Π

Again, we have first an easy result :

Theorem 7.5. Fix δ>0. Then, for the φ\ theory, there exist universal constants
/10>0, c19 c2 (depending on δ) such that if0^λ^λ0 and a^(l — δ)m(Q\ then

IIIS-CIH^cμ2, (7.46)

|||5 - (C + 6λ2C*ψ*C)\l ^ c2λ
3 (7.47)

for all ε>0.
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The proof is a simple modification of that of Theorem 6.1.
In order to state the more precise result, we use the definitions (7.8), (7.10),

(7.11) and

/
=(CVC)(0), (7.48)

0

(7.49)

(7.50)

[Here we have again used α to denote also the vector (α, 0,0).] Then:

Theorem 7.6. For the φ\ theory, there exist universal constants λ0 > 0, c1 ?..., CΊ such
that ifQ^λ^λ0, then:

llSlli.α^CΦiί*)-^4]'1' (7.51)

l lSlll^CΦaM + ̂ /l4]"1, C7'52)

(7.53)

for any α (0 ̂  α < m(

0

ε)) for which the bracket on the right-hand side is well-defined
and positive. In particular, the mass gap satisfies

\m - (m(

0

ε) - λ2mf)\ ^ cΊλ
3, (7.55)

where

. (7.56)

Remark. The error bounds (7.53) and (7.54) are weaker than the analogous bounds
(7.16) and (7.17) for φ\ in that they do not exhibit the correct order-P coefficient
for the mass-gap shift. The reason for this, as will be seen in the proof, is that ψ,
unlike C3, does not have a definite sign indeed, by definition ψ has total integral
equal to zero, but it certainly does not vanish identically! The same holds for C*ψ.
It is (C*ψ)(ioί) that appears in the order-A2 formula for the mass gap; but it is
unfortunately ||C*ι/;||1>α, which is strictly larger, that appears in the estimates
leading to (7.53) and (7.54). Nevertheless, (7.51) and (7.52) do exhibit the correct
order-/l2 shift, so we are able to obtain the correct order-A2 asymptotic formula for
the mass gap, (7.55) and (7.56).

Proof. The propagator inequalities (5.19) and (5.20) together yield

HIE - 6λ2C *ψ*C\\\Λ g |||C*S|||β(3λ|X| + 6λ2 ||S3 -C3 | | l5α + 54P||0||1>α)

(7.57)
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and hence, by Lemma 7.4(d),

+ 6λ2\\C*ψ\\1J\E\l. ^ (7.58)

The rest of the argument for (7.53) and (7.54) is exactly analogous to that in
Theorem 7.3, except that | |C*φ||1 > α occurs in place of l |C | | 1 > α | |C 3 | | 1 ) α ; we use
Lemma 7.4(c) to bound this factor. This explains the remark made above. The
proof of (7.51) and (7.52) likewise follows almost word-for-word the pattern from
Theorem 7.3. Here, however, it is really ψ(zα) which arises, not the || || 1 α norm, so
the correct order-A2 term is obtained, Π

A Final Remark. Although we prove strong bounds on the location of the first
singularity of the propagator in pure-imaginary momentum space, we are unable
to prove in general that this singularity is a pole, i.e. that there exist one-particle
states. Glimm and Jaffe [55] have proven that for almost every physical mass,
there is a one-particle pole in the two-point function (although their argument
does not imply that it is isolated). All we can say in general (i.e. without the
"almost every" qualifier) is that the spectral weight beginning at m cannot be too
soft, because S(ip) diverges as this singularity is approached from below. The
traditional proofs of the existence of a one-particle pole (and of an upper mass gap
between that pole and the continuum) proceed by analyzing one-particle-
irreducible (1PI) correlation functions and showing that these have decay rate
strictly greater than m (see [2] and the references cited there). The counterpart in
our approach is the analysis of [3, Sect. 3.3] (based on earlier work of [14, 7]); it
uses, however, an unproved correlation inequality for the partially- 1PI six-point
function G<ϊPI [3, Conjecture 3.2]. The ambitious reader is invited to try to prove
(or disprove) the GgPI conjecture see also [3, Chap. 5] for some warm-up
problems.

8. Completion of the Proof

In Sects. 5 through 7 we have proven that, for α<m0 = l, there is a positive
constant λΛ independent of the lattice spacing ε, such that for 0 ̂  λ ̂  λa,

|||S(β)-C(e)|||α^c(αμ2 (8.1)

for some finite constant c(α). The norm ||| |||α is defined in (7.2). This bound says
that the interacting propagator (2-point Schwinger function) S(ε\x — y) behaves
like the free propagator C(ε)(x — y\ up to an error term which decays at least like
exp( — α|x — y\^) and is bounded uniformly by const x λ2 in the sup norm. In
particular, the leading short-distance (x « y) behavior of S(ε) is identical to that of
C(ε).

In the following we shall show that this result suffices to establish the existence
of a continuum λφ* theory (d = 2,3) satisfying all the Osterwalder-Schrader axioms
except perhaps rotation invariance, and which moreover is nontrivial (i.e. non-
Gaussian) and has a mass gap at least α. All these results are for the weakly coupled
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theory, Q^λ^λ^ However, at the end of this section we shall show how the
existence (though not the non-Gaussianness or the mass gap) can be extended to
the entire single-phase region.

We begin by reminding the reader that the bound (8.1) for the 2-point functions
S(ε) = S^ implies a corresponding bound for the 2rc-point functions S^n. Indeed, by
the first Griffiths inequality [44, 46] and the Gaussian inequality [52, 53, 61, 4, 5],

This bound is already sufficient to guarantee the existence of the continuum limit
for 52π, but that limit might conceivably be identically zero ! To rule out such a
pathology, we use the slightly less crude lower bound

*,), (8-3)
\ΐ . . pairings

which is obtained by repeated application of the second Griffiths inequality
followed by symmetrization. [Here (In— 1)! ! is just the number of ways of pairing
2n objects.] Actually, we can give a much more accurate bound for S (

2>; see
Eq. (8.5) below.

Finally, we note that the S(£n satisfy a cluster property with exponential rate at
least α. This follows from the truncated Gaussian inequality [52, 61, 5]

χι> ...,x2J — S? (x13 • • ,Xjp2lI-</ (Xj+ι 5 . ..,x2j

^ Σ' ΓM'feV' (8 4)
pairings

where £' ranges over all pairings of {1, ...,2n} which connect at least one element
of {!,..., j } with at least one element of {/+!, ...,2n}.

Thus, if the arguments χj+ 1? . . ., x2n are replaced by xj+ 1 + α, . . ., x2n + α, where
a is some vector, then the left side of (8.4) decays at least as rapidly as exp( — αjα^)
as |fl|->oo, since at least one factor of 5(

2

ε) must link the variables x15 ...,χ. with the
variables xj+1,..., x2n. In fact, if j is even, the decay rate is at least 2α, since at least
two factors of S(

2

ε) must link these sets of variables [62].
It is now a standard fact [6, 3] that the bounds (8.1) and (8.2) imply the

compactness of the set of S(

2

ε^ considered as lying in the Schwartz distribution
space '̂(IR2mί). We can thus extract a sequence εf->0 such that all of the S^
converge to limits S2n. These S2n satisfy all the Osterwalder-Schrader axioms
[10-13] except perhaps Euclidean (rotation) invariance. (The translation in-
variance is slightly subtle, but it does hold [3].) Moreover, the S^ are moments of
a translation-invariant probability measure μ on y'(IRd). The bounds (8.1)-(8.4)
manifestly carry over to the continuum limit, so the continuum theory has a
cluster property with exponential rate at least α (in particular, the mass gap is at
least α). In fact, all the bounds of Sects. 6 and 7 carry over to the continuum limit,
so we have actually shown that S2 is given by the usual second-order perturbation
expansion plus an error which is of order λ3.

We remark that this construction of the continuum limit by compactness and
subsequences is somewhat distasteful : aside from its inherent nonconstructiveness,
certain natural and desirable properties (such as the uniqueness of the limit) go
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unestablished. We discuss further in Sect. 9 the possibility of establishing the
existence of the full limit β->0.

It remains only to establish the non-Gaussianness of the continuum-limit
model (always, of course, for small λ > 0). But this is an immediate consequence of
the skeleton inequality (5.10) combined with the bound (8.1): for (8.1) guarantees
that the internal integrations in (5.10) are convergent for d<4, uniformly in ε, hence
for sufficiently small λ the order-/l term dominates the order-/l2 term, and u4 is
explicitly nonzero. This is just the strategy of [3]. In fact, (5.9) and (5.10) together
with (8.1) show that u4 is given exactly by its first-order perturbation expansion
(which is the tree graph with free propagators) plus an error which is of order λ2

(in a suitable norm). This also establishes that u4 is nonzero for suitable
noncoίncίding arguments, which in turn guarantees that the reconstructed
Minkowski-space quantum field theory [10] is not a generalized free field.

Similar bounds can also be established for the S2n. Indeed, the analogue of (5.9)
is the first-order skeleton inequality [5]

(8.5)
pairings H

where the sum ranges over all Feynman diagrams H with a single internal vertex of
order 4 and with external vertices at x1? ...,x2n, and IH is the corresponding
Feynman amplitude with propagator S2

ε). This greatly improves the crude bound
(8.3); in fact, it is in a certain sense optimal, because the right side of (8.5) is
precisely the first-order perturbation expansion for S^*n. A second-order skeleton
inequality for S^ analogous to (5.10) for S(£\ is also valid (although in [5] we did
not bother to write out the proof in detail); this, combined with (8.5) and (8.1),
implies that S2n takes a non-Gaussian value which is in fact that predicted by first-
order perturbation theory plus an error of order λ2. (Note, however, that this does
not establish that the fully connected correlation function u2n is nonzero, for n ̂  3
to do this would require carrying the asymptotic expansion to higher order in λ, in
fact to an order which increases with n.}

We now show how to prove the existence (but not the nontriviality) of the
continuum limit throughout the single-phase region. First, we generalize our
previous definition of the model by adding an extra mass term — ̂ σφ2 to the
lattice action; that is, (4.3) now becomes

_
a(£) " * + <5m?(ε) + δm2(ε) , d = 3 ,

where δm\(έ) and <5m2(ε) continue to be given by (4.4) and (4.5) and so are
independent of the new parameter σ. Let S(*\x — y) denote the 2-point function for
the model just described, and let S(

σ

ε)(/c) denote its (lattice) Fourier transform with
respect to x — y. Then for arbitrary ε>0, A^O, m0>0, and σ, the infrared bound
[27] states that we have

(8.7)

where
d

[l-cos(ε/c.)], (8.8)
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and

c = c(λ,m0,σ,ε) = (2πY lim S^(x-y)^0 . (8.9)
|χ-y|^oo

Here c(λ, m0, σ, ε) is called the long-range order. If A, m0, and σ are such that

Iimc(λ,m0,σ,fi) = 0, (8.10)
ε^O

we say that the model is in the single-phase region. If, moreover,

lim sup f S(*\x)ddx < oo , (8.1 1)
ε-»0

we say that the model is in the strict single-phase region. Clearly (8.11) implies that
the long-range order vanishes for all sufficiently small ε. We set

Sί\0). (8.12)

Thus, if χ< oo, we may combine (8.7) with the trivial inequality

S%\k)ZS?(ΰ) = χ (8.13)

[which is a consequence of the first Griffiths inequality S£°(x)^0], and obtain

1 ) . (8.14)

Finally, we remark that in the single-phase region and for dimension d>2, the
p-space bound (8.7) together with correlation inequalities implies a corresponding
uniform x-space bound [3, Appendix A].

We can now proceed to show the existence of the continuum limit ε-»0 (by
compactness and subsequences, as always). Indeed, for dimension d>29 the
massless propagator Δ(k)~ l is locally integrable with a uniform bound as ε->0, so
(8.7) is a uniform distributional bound on the 2-point function as ε-»0, provided
that the model is in the single-phase region. For dimension d^2, the bound (8.14)
yields the same conclusion, provided that the model is in the strict single-phase
region. Then (8.2) and (8.3) imply uniform distributional bounds on all of the
2n-point functions. By choice of subsequences we may therefore define a con-
tinuum limit ε.-»0 for all correlations; this limiting theory satisfies all the
Osterwalder-Schrader axioms except perhaps Euclidean (rotation) invariance and
clustering. (For d>2, the x-space infrared bound [3, Lemma A.3] together with
(8.4) imply that the theory does cluster at least as rapidly as the massless free field.)

This much of the argument is valid, in fact, for φ4 theories in any dimension d,
with any choice of mass and coupling-constant renormalization, provided only
that the field-strength renormalization is bounded [so that (8.7) holds up to a
bounded multiplicative factor]. The problem, of course, is that the continuum S2n

constructed in this way could well be identically zero! (Or they could be delta
functions concentrated at coinciding arguments, which likewise leads to an
identically-zero Minkowski-space quantum field theory [10].) Indeed, the purpose
of renormalization is to avoid precisely such trivial limits, and this is why the mass
renormalization α(ε) must be chosen to have the specific form (8.6) [up to possible
finite additions]. In this case, we have constructed - by hard work - non vanishing
continuum limits for Q^λ^λQ, ra0 = 1, and σ = 0. Now the 2-point function S(*\x)
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is monotone increasing in σ, for all x9 by the second Griffiths inequality, so

oίx) (8.15)

for σ^O. If, furthermore, Org/l:g/l0 and m0 = l, the right-hand side of (8.15) is
bounded below in x-space, uniformly in ε, by our previous construction, e.g. (8.1).
By (8.3), this implies nonvanishing distributional lower bounds on all 2rc-point
functions, and thus nonzero continuum limits.

Remark. In order to show the existence of the continuum limit (by subsequences)
for d>2, it suffices that the long-range order c(/l,m0, σ,ε) be bounded as ε-»0; it
need not go to zero. So this may cover also certain parameter values in the two-
phase region. But we do not know how to guarantee that the connected 2-point
function S(x) — c is not identically zero.

The last step is to show that given any set of values (A, m0, σ), we can find
another set of values (λ'9 m'0, σ') which is equivalent to the first set by scaling and for
which λ'^λQ9 m'0 = l, σ'^ O. The argument is based on two simple observations:

1) A φ4 lattice theory (2.1) is specified by the parameters ε, α, and λ. The mass
m0 does not appear in the definition of the model, but can be set arbitrarily ( > 0)
then (8.6) determines σ.

2) Fix μ > 0. Then the φ4 lattice model (ε, α, λ) is equivalent to the model
(ε', α', λ'} with

e' = με, a' = μ~2a, λ' = μd~4λ, (8.16)

provided that we make the identification

!-!

φ'(x) = μ 2φ(μ~^x). (8.17)

Lengths have been rescaled by a factor μ and field strengths by a factor μ 2, but
otherwise nothing has been changed. Thus, any estimates which are valid for the
model (ε', α', λ') will also be valid for the model (ε, α, λ) (up to factors of μ).

Thus, given (A,m0, cr), the strategy is to choose μ large enough so that
λ' = μd ~ 4λ ̂  λ0 (here d < 4) we then impose m'0 = 1 and see what value of σ' results.
We need the formulas

(5m2 — — ε ~ 2(λε4 ~ d}f^ (m0ε), (8.18)

<5w2 = ε~2(λε4~d)2/2(w0ε), (8.19)

which display explicitly the scaling behavior of the mass counterterms: they have
dimension (length)"2 = (mass)2, while the combinations λε4~d and m0ε are dimen-
sionless. Here f± and /2 are given by

ddk 1
Λw- J ,0_vi a ' "(S.2Q)
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f f ddk ddl

1

1
d

x2 + 2 £ (1-cosfc.)

1
d d

x2 -\-2 Σ (1 — cosy x2 + 2 Σ (1 — cos^ + y)
i = 1 i = 1

We thus have

and

α' = m'0
2 — σ' — A'ε'2 ' 'Oε') + λ'2ε'6-2df2(m'0ε'),

(8.21)

8.22)

(8.23)

where for d = 2 we omit the terms involving /2. Combining these equations with
(8.16) and imposing m'Q = l, we find

σ' = 2

>-2d

For d = 2, we have

for

1
1 x

1, where i>1 is a positive constant. Then (8.24) reads

σ~m2 b.λ μ

8.24)

8.25)

3.26)

Thus, for sufficiently large μ [depending on the initial parameter set (λ, m0, σ) but
not depending on ε], σ' is positive, and we are in the region of applicability of the
nonvanishing lower bound (8.15). [Of course, we must have ε^min^^1,^"1) so
that the approximation (8.25)/(8.26) is valid; but it is precisely small ε which
interests us.] This completes the proof of Theorem 1.2 for d = 2. Finally, for d = 3
we have

(8.27)

(8.28)

(8.29)

for 0<x<^l, where b2, fc3, and b4 are positive constants. Then (8.24) reads

2 , . b,λ2

 Λ μσ — m,
+ — +

This, too, is positive for sufficiently large μ (independent of ε). The proof of
Theorem 1.2 is thus complete.
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9. Further Results and Open Problems

In this section we briefly sketch several extensions of our results. Some of the ideas
described in the following are somewhat speculative.

(1) Asymptotίcίty of Perturbation Theory for the φ2 ana φ\ Theories
to Arbitrary Order in λ

As discussed in [5, Sect. 6], we expect that there are skeleton inequalities for the
Sch winger functions 8(

2m(x^ •• > x2m) vaud to arbitrary order in λ. More precisely,
let G2m(k) be an arbitrary Feynman diagram with k internal vertices of order four
and 2m external vertices located at the points x15 ...,x2m, which does not contain
any self-energy subdiagram [i.e. G2m(k) is a skeleton diagram]. With each diagram
G2m(k) we associate a Feynman amplitude by associating with each line of G2m(k)
the exact propagator S (

2 ( x , y\ and multiplying the resulting integral with the usual
combinatorial coefficient. Then it is expected that the following skeleton in-
equalities hold for arbitrary n :

2

fc=0 G2m(k) fc=0 G2m(k)

In this subsection we sketch how the skeleton inequalities (9.1) can be employed to
prove the asymptoticity of perturbation theory to all orders in λ, with error
bounds that are uniform in the lattice spacing.

The Schwinger-Dyson equation for the propagator is [see (5.6)]

S^(x -y) = C(ε)(x - y) - (a - m2

0) J ddzC^(x - z)S2

ε)(z - y)

- λ J ddzC(ε\x - z)S<ftz, z, z, 3;) . (9.2)

We obtain upper and lower bounds on S(

2

} in terms of itself by inserting into (9.2)
the skeleton inequalities for S(

4

ε)(z, z, z, y) to order / — 1 and /, with ί^l when d = 2
and 1^.2 when d = 3. We then iterate these bounds, choosing at each stage one of
the propagators S(

2

} which occurs on the right side and inserting for it the upper or
lower bound (which one depends on the sign of the coefficient - here we make use
of the fact that C(ε), S(

2

} ̂  0). After a finite number of steps, we reach a stage at
which all terms of order λ1 or lower contain only free propagators C(ε) these terms
are precisely the mass-renormalized perturbation expansion for 52

ε) through order
λ1 (this is a consequence of the fact that the upper and lower bounds are identical
through order λ1). There are various (finitely many) remainder terms of order λl+ 1

and higher, each containing some combination of propagators C(ε) and S(

2

ε) what
is crucial to note is that these also contain only "renormalized" Feynman
amplitudes, in the sense that each divergent (sub)graph, made out of any
combination of free and interacting propagators, is accompanied by the corre-
sponding mass counterterm. Thanks to Theorem 6.1 and 6.5, the mass counter-
terms which we have chosen cancel the divergences in all such diagrams, whether
the propagators are free or interacting. [Otherwise put, if we write everywhere
5(

2

ε) = C(ε) + £(ε), we find that diagrams containing only propagators C(ε) are
explicitly renormalized, while diagrams containing at least one E(ε} are finite due to
the strong bound (6.2) on E(ε).] This proves the asymptotic expansion for S2

ε)
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through order λl, with estimates that are uniform in the lattice spacing. It is worth
noting that the continuity argument in the proof of Theorem 6.1 or 6.5 need only
be made once, in order to get the zeroth-order bound on S(

2

}; all higher-order
bounds can then be obtained by simple iteration of the propagator inequalities.

The corresponding asymptotic expansion for S(

2

}

m is now trivially obtained by
inserting the asymptotic expansion for S(

2

ε) through order λl into the skeleton
inequalities (9.1) with 2n—l^l Since the graphs G2lM(fc) contain no divergent
subdiagrams (because d < 4), and the terms in the asymptotic expansion for S(

2

ε) are
at least as well behaved as the free propagator C(ε), it follows that no ultraviolet
divergences can occur.

This completes the sketch of the proof.

(2) Construction of a Continuum Limit without Subsequences

When one analyzes the continuum limit of φ\ lattice theories one is obliged to
compare Schwinger functions S(^(f^ •• , f 2 n ) anc* S 2 n ( f v •• >/2n) of two different
lattice theories on lattices TL\, i=l ,2 (with εί ^ε2). Here

S(

2

ε>(Λ, -, /2π) = Σ S£(*ι. •> *2I1) Π <//*;) ,
*i...*2nezd J = l

and {/7 (x)}?" 1 are Schwartz-space functions on Rd.
Constructing the continuum limit means proving that, for arbitrary δ > 0,

iWi. , /2n) - S^(A, ., /2B)| < δ , (9.3)

whenever εί,ε2<ε(δ\ for some ε(δ)>0. In the following we speculate about an idea
of how one might go about proving (9.3): We choose rational numbers ε t and ε2

and pick some ε such that ε. = rc ε, where n1 and n2 are positive integers, for i = 1, 2.
We now embed the lattices Zd in Zd in such a way that they all have a common
origin. Let A be some compact subset of IRd. We define Λ& = TLd

&r\Λ as the subset of
points in IRd belonging to Zd

ε and contained in A. Next, we formulate the φ\
theories on TLά^ and Zd

E2 as theories on Zd and then try to interpolate between the
two theories in two stages. We let eμ be the unit lattice vectors of TLά in the direction
of the μth lattice axis, μ=l,...,d. We define the lattice φ^ actions by setting

where

$(<P) = $ Σ εf
xeAε,μ

and

S?(Ψ)= Σ BΠ^mfφ(X)
2

xeΛε.

An interpolating action is defined by

2 Up to a ρ- and μ-dependent change in the mass counterterms
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and an interpolating expectation by

xeΛε

with Z(ρ,μ) chosen such that <l)(ρ,μ) = l.
Now note that <( ))(ρ, μ) is a ferromagnetic, even lattice φ\ expectation.

Therefore all our correlation inequalities apply. The idea is now to try to estimate
the differences

and (9.4)

The integrands on the right side of (9.4) involve truncated correlations. One might
try to use the Schwinger-Dyson equations and appropriate correlation inequalities
- strong enough to yield convergent bounds on truncated correlations - to
estimate the integrands on the right side of (9.4). Among the technical tools that
one could use in this task are skeleton inequalities and an (expected) extension of
Theorem 6.1 to the two-point function <φ(x)φ(j/)>(ρ,μ). All these tools are
available, in principle, because <( )>(ρ,μ) is ferromagnetic, and the correlations
(φfci) ... φ(x2n)X^Άί) admit the standard random-walk representation.

Among the difficulties which we have not succeeded in bypassing, yet, is the
circumstance that correlation inequalities for truncated expectations are not
sufficiently sharp and, in repeated applications of the Schwinger-Dyson equations,
uncancelled (divergent) subdiagrams proliferate.

One meets similar difficulties when one tries to control the infinite-volume limit
constructively. Likewise, to prove Euclidean invariance of the continuum limit,
one would have to control the difference between the theories on two lattices, one
of which is rotated relative to the other this seems even more difficult.

(3) Finite-Volume Version of our Construction

Errico Presutti (private communication) has pointed out to us that our use of
Proposition 5.1 can be avoided by carrying out the entire analysis of Sect. 6 in
finite volume. This is most easily done using periodic boundary conditions, since
they maintain translation invariance (otherwise Sect. 6 would have to be radically
rewritten). The estimates of Sect. 6 would then manifestly be uniform in the
volume as well as in the lattice spacing, so the infinite-volume and continuum
limits could be taken simultaneously (or in either order) by compactness and
subsequences. This method of proof has, however, the disadvantage of un-
necessarily employing subsequences in performing the infinite-volume limit.

(4) Existence of a Critical φ\ Theory

Within the framework of the traditional approach to constructive quantum field
theory, McBryan and Rosen [60] have demonstrated that in the φ\ and φ\ models
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there exists a critical point σc such that the physical mass m(σ) decreases
continuously to zero as o-^σc from below, and also that, in the case of φ\, there
exists a theory at σ = σc which has zero physical mass. In this subsection we sketch
a proof of a version of this latter result within our approach it is taken almost
verbatim from a paper of Glimm and Jaffe [55].

In Sect. 8 we studied the φ4 model with an extra mass term —\σφ2 added to
the lattice action3, and showed that for (/I,m0, σ) in the single-phase region we
could construct a continuum-limit theory. The single-phase region was defined as
the set of those parameters (λ, m0, σ) for which the long-range order c(λ, m0, σ, ε)
[see (8.9)] vanishes as ε->0. By Griffiths' second inequality, this set is, for each
fixed (/I,m0), an interval of the form (— oo,σe) or (— oo,σe], where

σe = sup [σ : lim c(λ, m0, σ, ε) = O
I ε^°

[From now on we fix (λ, m0) and omit all reference to them.] We shall show that
there exists σc ̂  σe such that m(σ) [the physical mass of the continuum theory]
decreases to zero as σ/σc; and we shall further show that if σc<oo, then there
exists a continuum φ\ theory (constructed as a limit σ/σc) with zero physical mass.
(It is known that σc< oo [27], but we do not know how to prove this fact within
our approach.) For technical reasons we do not use the theories constructed in
Sect. 8, but rather the analogues obtained by replacing everywhere Dirichlet with
periodic boundary conditions [see Subsect. (3) of Sect. 9] conceivably the σe and
σc obtained in this way could be smaller than those obtained using Dirichlet
boundary conditions.

Step 1. We begin with the lattice φ\ theory in a periodic box A in spatial directions
and the infinite-volume limit already taken in the time direction. In order to
lighten the notation we unify the volume and ultraviolet cutoffs into a single
symbol κ = (Λ,ε); we shall write {/cj ^oo as a shorthand for {/IJ/IR4"1 =R2 and

Now the Fourier-transformed two-point function Sκ σ(k) has a spectral
representation

where dρκ>σ>k(a) is a positive measure supported on [0, oo). The physical mass of
the finite-spatial-volume lattice theory, mκ(σ), is defined by

2ε~2[coshεmκ(σ)— 1] =i

The strength of the one-particle pole is

(9.6)

Taking k0 = π/ε in (9.5) and comparing with the infrared bound (8.7)/(8.8), we
conclude that

3 Note that our definition of σ is the negative of that used by McBryan and Rosen [60] and Glimm
and Jaffe [55]
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(9.7)

and hence that

- 1] . (9.8)

Moreover, by the construction of Sects. 7 and 8 generalized to finite-spatial-
volume periodic theories, we know that for some σ0 (sufficiently large and
negative),

0<M1^mκ(σ0)^M2<oo (9.9)

uniformly in A and in εrg 1. Since mκ(σ) is a decreasing function of σ (by Griffiths'
second inequality), it follows from (9.8) that

O^Z»^ const (9.10)

uniformly in A, ε^l and σ^σ0. Henceforth we assume always that ε^l.

Step 2. By a simple but extremely clever argument due to Glimm and Jaffe [55], it
is shown that

). (9.11)

By (9.10) this implies that the functions m%(σ) are (uniformly) equicontinuous on
the interval [σ0, oo), and so by the Arzela-Ascoli theorem there exists a sequence
{K;.} *oo such that m^.(σ) converges pointwise to a limit which we shall call m^(σ).
The function m^(σ) is uniformly Lipschitz-continuous note that it is defined for
all σ^σ0. Clearly m^(σ) is a decreasing function of σ, and by (9.9) it is not
identically zero. We now define

:m2»>0} = inf{σ:m
2» = 0}. (9.12)

If σc< oo, then clearly m^(σc) = 0 and σc is the first zero of m^(σ).

Step 3. We claim that σc^σe. Indeed, the spectral representation (9.5) with k = 0
yields in x-space the bound

e-M(a)\xΌ\
"

where M(a) is defined by

2ε~2[coshεM(α)-l]-α. (9.14)

Using (9.7), a little calculation shows that if m2.(σ)-^m^(σ)>0, then (9.13) is
uniformly bounded by a function which vanishes as |;x0|->oo; that is, the long-
range order must vanish for the infinite-volume continuum theory defined via the
sequence of cutoffs {K.}. Thus, if σ<σc, then σ^σe, proving the claim. (Here σe has
to be defined as the sup over σ for which the long-range order vanishes for at least
one sequence of cut-offs {κ }.)
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Step 4. Assume that m^(σ) is not constant in any lower neighborhood of σc [if
σc< oo this assumption is an immediate consequence of the definition of σc and the
continuity of m^(σ)]. Then we claim that there exists a sequence {σn}/σc and a
subsequence of cutoffs {κ } such that

^αn>0 (9.15)
σ = σn

for all j (and some sequence of numbers αn > 0). Indeed, by the assumption we can
choose an increasing sequence {σ*}/σc such that m^(<

Then by (9.10)/(9.11) and Fatou's lemma,4

—
dm2

Ki(σ]

dσ
dσ

= lim sup [m2

K (σ*) - w;? (σ*)]
-

dσ

>0; (9.16)

thus lim sup (— dm*(σ)/dσ) > 0 on a nonnull (hence nonempty) set of σe [σ*, σ*]
i->oo l

so there exists σί e [σj, σf ] and a subsequence {κ.(1)} such that ( — dm^1)(σ)/dσ)\σ = σι

^(Xj >0 for all j. We now repeat this argument'to choose cr2e[σ|,σ*] as above,
making sure to choose {κ;ί(2)} to be a subsequence of {κ;ί(1)}, and so on and then we
apply the diagonal argument to get a subsequence {K;..} which works simul-
taneously for all of the σn.

Step 5. We now take the infinite-volume and continuum limits simultaneously at
σ = {σn} along some common subsequence {κv} of the sequence {κi } (under the
same assumption as in Step 4). By the infrared bound, the Gaussian inequality and
the diagonal argument, such a common convergent subsequence can always be
extracted. We claim that, for each n, the physical mass of the resulting theory at
σ = σn is not greater than m00(σίί). Indeed, its Fourier-transformed two-point
function at zero spatial momentum, Sffn(k0,0), satisfies

> lim inf
2εf, [coshεί mκ ,(σ ) — cosε.,k0]

J J I] J

O (9.17)

by the spectral representation (9.5) and (9.6), the Glimm-Jaffe inequality (9.10) and
(9.11), and the lower bound (9.15). Again by the spectral representation (this time
for the infinite-volume continuum theory), it follows that the exponential decay
rate of Sσn(x) cannot be greater than m^σj.

4 This lemma in its usual (lim inf) form can be applied to the functions cχ[σf σ*j + dm*Jdσ ^ 0, where c
is the constant in (9.10). This yields (9.16)
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Step 6. We now let n-> oo and again extract a subsequence for which all correlation
functions converge. The resulting theory has zero long-range order (by the infrared
bound). We claim that it also has zero physical mass, provided that σc< oo. Indeed,
by the second Griffiths inequality we have 5limίt(x) ̂  S (x) for all x and all n, so the

.exponential decay rate of the limiting theory cannot be greater than m^σj. If
σc<oo, we have Iimm0 0(σn) = 0 by continuity of ra^(σ). This completes the

H->OO

construction. D

We remark that the foregoing construction dependent crucially on the
integrability at p = 0 of the infrared bound (8.7)/(8.8) for this reason it is applicable
only in dimension d > 2. We again emphasize that this proof is entirely due to
Glimm and Jaffe [55] we have carried it over virtually without change into our
approach to φ\.

(5) Zero-Component (Edwards Model) and Two-Component \φ\^ Models, d = 2,3

As already noticed in [5, Sect. 6], the random-walk representation and the
correlation inequalities extend to the Edwards model (zero-component |φβ model)
and the isotropic two-component |φ|* model, and it is not hard to prove the
Schwinger-Dyson equations which relate the two-point functions to the four-point
functions in these models. (See also [63].) All the results of this paper appear to
extend therefore to these models and yield very simple existence proofs.

Appendix. Some Real Analysis

In this appendix we review some classical inequalities and prove some generali-
zations which will be needed in Sect. 7. All estimates are valid for both integrals
(continuum) and sums (lattice) we use the continuum notation.

The Lp norm is defined for 1 ̂ p^ oo by

Ί sup |/(>
I x

for

for p = oo .

Holder's inequality states that

11/011,^ II/J0II,, (A.2)
where l^p,q,r^oo and l / p + l / q = l / r . Young's inequality states that

\ \ f * 9 \ \ , £ c p t q j f \ \ p \ \ g \ \ q , (A.3)

where Irgp,q,s^oo, l/p + ί/q—l = l/s, and cp q d is a (finite) universal constant.
Here * denotes convolution:

(f*g)(χ)=$f(χ-y)g(y)ddy. (A.4)

Proofs and discussion of these inequalities can be found in [64, 65].
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In Sect. 7 we employ the exponentially-weighted Lp norms

1 < ° ° (A.5)'for p=oo,
I *

where α^O. If |/| is an even function, cosh^x^ can obviously be replaced by
exp(αx1). In particular, if /is even and nonnegative,

l l / l l !,«=/(»«), (A.6)

where we have abused notation to let α denote also the vector (α, 0, ...,0). We also
employ the exponentially-weighted Z/nL00 norm

- (A 7)

These norms obey analogues of the Holder and Young inequalities :

β, (A.8)

\qί^ (A.9)

(A.ιo)

where p,q,r [or p,q,s] obey the same relations as before. Inequality (A.8) is an
immediate consequence of the definition (A.5) and the ordinary Holder inequality
(A.2); the factor 2 arises from cosh (fl + ft)^2(coshα) (cosh ft), and may be replaced
by 1 if / and g are both even. Inequality (A.9) follows from the ordinary Young
inequality (A.3) and the definition (A.5) together with the identity

<f*i(f*g) (x) = f [_e^ ~^f(x - y}-] [_e^g(y}]ddy . (A. 1 1)

Inequality (A. 10) is an immediate consequence of (A.9) applied to s = q=l, oo.
We conclude by presenting some estimates on the free lattice propagator

C = C(ε) with mass m0 = l. Its Fourier transform C(k) is

C(k) =
d Ί - l

"2

l+2ε" 2 Σ (1-cosε/c.) . (A. 12)

This is analytic in fct in the strip |Im/c1 <m(

0

ε) with fe2, " ,kd real, where m(

0

ε)>0 is
the solution of

l + 2ε"2(l-coshεm(

0

ε))-0. (A.13)

Thus, by a Paley- Wiener theorem [65], C(x) decays roughly as exp( — m^lxj) in
the xί direction (and likewise in the other directions). Note that m(

0

ε)|m0 = 1 as ε-»0
but that m(

0

ε) Φ m0 for ε > 0.
Now let αe( — m^ε), m(

0

ε)), and define

CΛ(χ) =

so that

Cα(fc) = i[C(/c + ΐα) + C(k - ία)] . (A. 1 5)
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Since Ca(x) ^ 0 (this is a consequence, for example, of the Griffiths inequality), we
have

= [l+2ε~2(l-coshεαfΓ1

= [2ε~2(coshεm(

0

ε)-coshεα)] l , (A. 16)

hence

where cl is independent of ε and α (recall that α <m(

0

ε))
Next we note that for αe( — m(

0

ε), ra(

0

ε)) and k real,

5 (A. 18)

this can be shown by a straightforward calculation using (A. 12). Finally, we note
that for fce[-π/ε,π/ε]d,

(A 19)

where c2 and c3 are independent of ε. [Strictly speaking, the upper bound in (A. 19)
is true only if ε is not too large. But ε large is of no interest to us, so we just assume
that, say, ε^l.]

Now we can estimate the norms ||C||p α :

Lemma A.l.Letd<49 l^,p<d/(d-2) (orl^p^ao i f d = ί ) 9 and0^ot<m(*\ Then
there exist strictly positive constants c4, c5,c6 which depend on d and p but not on ε
(εrgl) or α, such that

c^HCII^^c^lCll^^c^m^-α)-1. (A.20)

Proof. The upper bound on Hd^ α is just (A. 17). To get the upper bound on ||C||p α

for the case l<p^2, we calculate | |C| | 2 α by the Plancherel formula and use
interpolation. Thus,

l |C | | 2 > α =| |C β | | 2 = constx | |C α | | 2 ;

but by (A.15), (A. 18), and (A.19),

α (A.22)

for d<4. This proves the upper bound in (A.20) for p = 2. Interpolation between
p = 1 and p = 2 (e.g. by Holder's inequality) proves the upper bound in (A.20) for
lrgp^2. The upper bound for the case 2^p<d/(d — 2) (or 2gp^oo if d=l) can
be done by first using the Hausdorff- Young inequality [65]

IIC| | p i β = | |CJ|^constx||Cβ | |g, (A.23)

where p~l +q~l = l (hence l^g^2); then ||Cα | |^ can be estimated as above, using
(A. 18) and (A.19).

For the lower bound, note first that

(A.24)
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Now C(x) = C(ε\x) ^ 0 and clearly C(ε) is not identically zero. Thus || C(ε) || p is strictly
positive for all ε, and is a continuous function of ε which approaches a nonzero
value (the Lp norm of the free continuum propagator) as ε-»0. It follows that
||C(ε)||p has a strictly positive lower bound on the interval 0<ε^ 1. By (A.24), this
completes the proof of Lemma A.I. D

Remark. The bound (A.20), although sufficient for our purposes, is far from the
best possible. We conjecture that the best possible bound is

^constx

ι»-«) " if IS

if ,-ί±i (A.25)

"S
For p^2 this can be proven by the Hausdorff-Young argument used above; and
for d < 3 the remaining cases can be obtained by interpolation between p = 1 and
p = 2. But we have been unable to prove (A.25) for d^3 and 1 <p<2.
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