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Abstract. A central limit theorem is given which is applicable to (not
necessarily monotonic) functions of random variables satisfying the FKG in-
equalities. One consequence is convergence of the block spin scaling limit for
the magnetization and energy densities (jointly) to the infinite temperature
fixed point of independent Gaussian blocks for a large class of Ising fer-
romagnets whenever the susceptibility is finite. Another consequence is a
central limit theorem for the density of the surface of the infinite cluster in
percolation models.

1. Introduction

For a translation invariant d-dimensional system of L2 random variables (or
random vectors), {Xk: keZd}, we define for each n~ 1,2,..., the block variables

where B\ is a block of side length n located near nk,

and E denotes expectation. In [ N l ] a central limit theorem for {Xn

k\keΈd} as
n->oo was obtained under the additional assumptions that theZ fc's obey the FKG
inequalities [FKG] and ^Cov(X 0,X f c)< oo.

In the context of a general Ising model, {σk: keZd} with energy density,

= - Σ J(j-k)σjσk-hσk (j(j)^O V/ and £ J(j)<ao),
jd \ j % d I

and single site distribution dρ{σ^ the central limit theorem of [ N l ] implies
convergence of the σjs to independent mean zero normal random variables of
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variance χ, providing

χ= £ Cov(σ0,σfc)ΞΞ £ Eσ0σk-Eσ0Eσk<co .
keZd keΈd

The results of [ N l ] do not yield any limit theorem for the block energy density
variables {Sk\keΊLd} (or for the bivariate vectors {(σ£,<?£)}) since the < '̂s are not
(coordinatewise) monotonic functions of the σ/s and hence do not themselves
satisfy the FKG inequalities. The central limit theorem of [IS] is applicable in
principle to {Sk} (respectively to {(σ£, $£)}) but its applicability requires detailed
information (which is not generally available) concerning the zeros of the partition
function in the inverse temperature variable β (respectively jointly in β and h).

In Sect. 2 of this paper, we combine methods from [L], [S], and [ N l ] to obtain
a central limit theorem applicable to nonmonotonic functions of FKG variables. It
is an immediate consequence of Theorem 3 and Proposition 4 of the next section
that, at least for bounded spins (i.e. dρ having compact support), the finiteness of
the susceptibility χ implies convergence of {{σn

k,S
n

k)} as n->co to {Zk = (1Zk,2Zk)},
where the Zks are independent mean zero normal random vectors with variance of

1Zk = χ9 variance of 2Zk = £ Cov(<?0, £.), and
j

CovdZj, 2Zk) = Σ Cov(σ0, gj) = X Cov(<?0, σ.).
j J

The convergence of these sums is also a consequence of the finiteness of χ. In order to
apply Theorem 3 to obtain such a result for unbounded spins, it seems necessary to
assume something in addition to the finiteness of χ, such as (for example) the

finiteness of ^Cov((σ0)
3,(σ7.)

3).
j

Another application of the results of the next section is to percolation models.
Suppose Yk,keZd, are (zero- or one-valued) occupation random variables in some
(independent or correlated) site percolation model, which are translation invariant
and satisfy the FKG inequalities. Let Uk (respectively Wk) be the indicator function
of the event that site k belongs to (respectively to the boundary of) an infinite
cluster of occupied sites. The central limit theorem of [ N l ] is applicable to {Uk} or
to {Uk=Uk+Wk} (for more details, see [NS]) but not to {Wk} since Wk is not a
monotonic function of the Y?s. Theorem 3 of the next section however, is
applicable to {Wk} and to the bivariate system {(Uk, Wk)} or {(Uk,Uk)}); in
particular if XCov(l/0, Uj) and £Cov(£/"0, Uj) are convergent, then

n~d/2(Mn — nE(W0)) converges to a mean zero normal random variable with
variance = YJCOV(W0, Wj), where Mn denotes the number of sites in the cube,

j

{/: — n/2^j z<n/2 for Z=l,...,d}, which belong to the boundary of an infinite
cluster of occupied sites. A similar result would apply to sites in the "external
boundary" of (the union of) infinite clusters (see [NS] for the definition).

For a fuller discussion of block limits and FKG inequalities, see [ N l ] and the
references therein for a survey of limit theorems and related results (including
those of the next section) for positively and negatively dependent random
variables in the context of (d= 1) sequences, see [N2]. For more information on
percolation model central limit theorems, see [CG] and [NS].
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2. A General Central Limit Theorem

Throughout this section, {Yk:keZd} denotes a translation invariant system of
(real) random variables and L2 denotes the Hubert space of complex-valued
random variables which are measurable with respect to the σ-field generated by
the Yk's. We define D to be the L2-closure of

{/(Yj l9...,ζ.m)eL2:m^l, eachj.eZd, and / is real
and coordinatewise nondecreasing}.

We will assume throughout that {Yk} satisfies the FKG inequalities; i.e.
Cov(L7, F)^0 for any U, VeD.

For V, F'elΛ we write F > Fif V-Re(eiaV)eD for all α e R Using the fact
that D is a convex cone, we note that since V = [(V - Re (F)) + (V - Re ( - F))]/2, it
follows first that F'> Vimplies V'eD, and second that F'> Ffor real Fif and only
if both V + V and V'-V are in D. Equivalently, V>V for real V if and only if there
exist V+,V~ in D such that V=V+-V~ and V'=V+ + V~. The following
proposition extends results of [L] and [S].

Proposition 1. Suppose U'^> U and V'^>V; then

c (ir v)> / | C o v ( c / ' n > ifJJorVis real ( l a )
V l ' ;-l|Cov(L/,F)|/25 otherwise, (lb)

and

Cov(U\ V')^\Cov(ju,Jv)\/2, if U and Vare real. (2)

Proof. In proving (la), we may assume U is real. Since then

|Cov(L7, F)| = sup(Re(eiαCov(L/, F)): αeIR)
and Re(eίαCov(ί7, F)) = Cov([7, F), where F=Re(^αF), it suffices to show that
Cov(t7, V)SCov(U\ V')\ this follows from the identity,

Cov([7', V)- Cov([7, F ) - [Cov(V + U, V- V) + Cov([7'- t/, V + F)]/2,

and the hypotheses that U'^>U and F r > F Inequality (lb) follows from (la) and
the bound

|Cov(C7, V)\ = |Cov(Re U, V) + iCov(Im 17, F)| S |Cov(Re C7, F)| + |Cov(Im U, V)\.

Finally (2) follows from (lb) and the fact that

C7>exp(ziT) (3)

and similarly for V. To prove (3), we write U=U+-U~, Uf=U+ + U~ with
U+,U~eD, and then approximate U± by f±(Yjl,..., YJ w), where/ 1 is (coordinate-
wise) nondecreasing; it suffices to show that / ' — Re(exp[i(α+/)]) is nondecreas-
ing, where f =f+ +f~,f=f+ ~f~ To see this, denote by Δg the increment in the
function g(xv ...,xm) when one or more of the x 's is increased and observe that
\Δ Re(exp[z(α+/)]) |^μexp[O^I4/l^4Λ This completes the proof.

The following proposition extends Theorem 1 of [Nl] from nondecreasing to
arbitrary functions of the Y/s at the cost of the factor, 2, in the right hand side of (4).
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Proposition 2. Suppose UV...,UN are real and U'ι^>Uι for each I; then for any
r1 5...,rNelR,

φN(rv...,rN)-
1=1

(4)
l,m= 1

Km

where

Proof Let

N-ί N-ί

U= Σ rtUl9 U'= Σ \rt\U\, V=rNUN, V = \rN\U'N.
1 = 1 1 = 1

Then U' > U and V > V9 so that we may apply (2) to obtain

ΦN-Y\Φ>
1=1

= \Cov(eiU,eiUeiV

1=1

N-ί

fr""1- Π Φi
1=1

ft""1
N-l

1=1

(4) now follows by induction on N.
We denote by Tk the "shift by fe" operator, defined initially by

and then extended by continuity to a unitary operator on all of L2. For random
vectors X = (1X,...,3fX

r) and X ' ^ J Γ , . . . , ^ ' ) * we write X > X if ZX>ZX for
/= 1, ...,M. We note that since D is 7}-invariant, X > X implies Ί X'> TjX.

Theorem 3. Suppose Xk = TkX, X'k = T^X' for each keZd, where X and X' are (real)
random vectors with X' PX. If

4 J =ΣCov( i r o > l X})<oo for all i = l, (5)
jeZd

then {XI: keZd} converges as n->oo to {Zk: keZd}, where the Zk's are independent
mean zero normal random vectors with

Cov(ίZk,ιZk) = Ail= Σ CovGXo,,*'_,) for all i,l;
jeZd

the convergence is in the sense of finite dimensional distributions, i.e.

lim E(g(Xn

h,...,X)J) = E(g(Zh,...,ZJ)

for any m,jv ...,jm and bounded continuous function g.
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Proof We first note that since the matrix A' is the limit of the (positive
semidefinite) covariance matrix of Xn

0, it follows from (5) that A^iA^n)112 < oo
for ί + Z. By essentially the same proof as for Theorem 2 of [ N l ] (but with
Theorem 1 of [ N l ] replaced by Proposition 2 above) it follows that for real
vectors spjeZd,

M M

ΛΛF1 — c "V w — \ ^ ( c Λί lfn\ ci n H λΆ/ln — X"1 I c I ( Vn\

/=1 1=1

are such that

lim Cov( Wj", Wk'
n) = 0 V/ φ k, (7)

n-* oo

and

£(exp[iW7])-^exp[ - (Sj ^ ) / 2 ] . (8)

Now (7) together with Proposition 2 implies

lim E exp
n-* oo

j ] ) - Π£(exp[i»33)]=O. (9)
J/ / 1 J

f j]) Π p 3 3 ]
1 = 1 J / / = 1 J

Finally (8) and (9) (for arbitrary s/s) imply by standard arguments the convergence
oi {X»k} to {Zk}.

We conclude with a proposition useful for verifying the hypotheses of
Theorem 3 in the Ising model example discussed in Sect. 1 the proof uses an
argument of [S].

Proposition 4. Suppose the Yk's are bounded (in absolute value) andX— Σ

where the Kfs are real with ^ | X ; |<oo. Then there is a summable sequence Kj
j

such that

furthermore, the convergence o/^Cov(Y0, Yj) implies that o/£Cov(Xr/

0,Xj)5 where
j J

Proof Let L be the bound on \Yj\, and define

Γ-L, for y<-L,

h(y) = l y9 for -L^y^L,

[ L, for L<y.

Now Yj = h(Yj), while Lyj + Lyk — h(yj)'h(yk) is a nondecreasmg function of y. and

yk hence LYJ + LY0>YJY0 and (10) is valid with K'o = LK0 + L^Kj and K) = LKj
j

for 7 + 0. The last statement of the proposition follows immediately from the
identity,

-0,x'j)=Σ Σ Σ κ'kiκ'k2cov(γkι, γk2+j)=
j k k
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Remark. A similar proposition applies to general random variables of the form

h J π J ^ w
m = l m=l jί,...,jm
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