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Abstract. The concept of gravitational energy and the proof of its positivity are
reviewed. The relationship between Witten's proof of the positivity of mass and
supergravity is explained with reference to the group of global supersymmetries
of a spacetime. A formula for the mass is given, in terms of the change of the
supercharge under global supersymmetry, which has a simple positivity theorem
and which reduces to Witten's expression. An interpretation of Witten's
constraint on the spinors used in his proof is given.

Introduction

In special relativistic theories there is a conserved total 4-momentum and angular
momentum associated with the translational and rotational invariance of flat space
[1]. These first integrals of motion give important constraints on the dynamics,
independent of the details of the mechanisms involved.

In general relativity, on the other hand, space-time is curved and in general has
no global group of isometries. If the space-time has suitable asymptotic behaviour,
however, one can define conserved charges associated with the generators of the
group of motions of the asymptotic region. The case most often considered is that of
a space whose metric tends asymptotically to that of Minkowski space, de Sitter
space or anti-de Sitter space with the Poincare group or the (anti-) de Sitter group
as the asymptotic group. In particular, the energy is the charge associated with time
translations.

Gravitational potential energy is negative since gravity is attractive. In
Newtonian theory, the potential is unbounded below so that the energy of a
gravitating system can be made arbitrarily negative by reducing its size, while in
Einstein's theory the potential is even more negative. The energy of the gravitational
field is non-local, since the Equivalence Principle implies that the strictly local effects
of gravity can be removed by choosing a local inertial frame. The total energy
receives positive contributions from matter and negative contributions from
gravitational potential energy and so could, in principle, be of either sign.
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There are two types of mass that can be assigned to an asymptotically flat (AF)
space which tends at infinity to Minkowski space giving the total mass in different
three-surfaces. The ADM mass [2] is found by integrating an appropriate density
over a space-like three-surface and gives the total mass of a space-time, including
that of radiation, and is conserved. The Bondi mass [3] is associated with an
asymptotically null three-surface and gives the mass not yet radiated away by a
certain retarded time. The Bondi mass decreases with retarded time and cannot
exceed the ADM mass.

Asymptotically anti-de Sitter (AAdS) spaces, however, only have one type of
mass which was given by Abbott and Deser [4]. Since these spaces are not globally
hyperbolic, information can both enter and leave at infinity and so the mass can
either increase or decrease, only being strictly conserved if appropriate boundary
conditions are imposed at infinity [5, 22].

An important recent development in gravity theory has been the establishment
of various positive mass theorems. These prove that the total mass is non-negative,
with a unique zero-energy configuration with appropriate boundary conditions,
provided that the dominant energy condition holds, that is

TμvU*V^Q (1.1)

for all non-space-like vectors, Uμ, Vv, where Tμv is the stress energy tensor. Such
theorems have been proved for AF spaces for both the ADM mass [6] and the Bondi
mass [7], with Minkowski space as the unique zero energy state, and for AAdS
spaces for the Abbott-Deser mass, with anti-de Sitter space as the unique AAdS zero
energy configuration [5, 8].

The positivity of the Bondi and Abbott-Deser masses implies that gravitational
energy can never become negative for AF and AAdS spaces, so that a system can
never radiate away more energy than was originally present. It is believed that the
reason the energy cannot be made arbitrarily negative by shrinking a system, as it
could in Newtonian theory, is that if a system collapses beyond a certain size, a
horizon forms, giving rise to a black hole which would appear to have positive mass
to an observer outside the horizon. Regions of large negative energy and possible
singularities would thus be hidden inside an horizon.

These theorems also imply the stability of the zero energy configuration to any
decay process which preserves the boundary conditions, since there is no state of
equal or smaller energy to which it can decay. [Note that both hot flat space [9] and
the Kaluza-Klein vacuum [10] are unstable.]

The positive mass theorems can be generalised to hold for extended, gauged
supergravity theories [5]. These theories have scalars with a potential that is
unbounded below and so the scalar sector on its own would be pathological.
However, the coupling to gravity stabilises the theory, with appropriate AAdS
configurations having positive energy, and anti-de Sitter space can be a stable state
in these models. Such classically and semi-classically stable ground states provide
possible ground states about which one can attempt to construct a quantum theory.

Witten has given a simple proof of the positive energy theorem for AF spaces
[11] which makes essential use of spinors and which was motivated by a formal
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argument [12, 1 3] based on the supersymmetry algebra which expressed the mass as
a sum of squares.

It was by no means clear, however, why Witten's remarkably simple spinorial
expression should give the ADM mass and how Witten's proof and the algebraic one
are related. The purpose of this paper is to investigate these points. It will be seen
that the mass of a system is given by the change of the supercharge under a global
supersymmetry transformation, and the global algebra can be interpreted in this
way. (In the Hamiltonian approach to supergravity, the Hamiltonian is given by the
Dirac bracket of the supercharge with itself [14].) On the elimination of unphysical
degrees of freedom this expression becomes a sum of squares and positivity of the
mass follows.

The paper is organised as follows. In Sect. 2, the proof of the positivity theorem is
reviewed, in Sect. 3, the conserved charges are discussed and in Sect. 4, the algebraic
proof is given. In Sect. 5, the algebra of global supersymme tries is investigated and a
spinorial expression for the mass is derived. In Sect. 6, the positivity of this
expression is shown, while in Sect. 7, the condition that Witten imposes on the
spinors is interpreted. Section 8 is a conclusion.

2. The Positive Mass Theorem

Nester's formulation [15] of Witten's proof is fully covariant and avoids technical
difficulties involved in taking the three-dimensional truncation of the four
dimensional divergence theorem. It is also readily extended to the cases of the Bondi
mass [16] and to AAdS space- times [5]. It will be assumed that the space- time is
topologically trivial, with no horizons — this condition will later be relaxed.
Consider the antisymmetric tensor1

£MV = fiMvpσ(ey7pVσβ _ VσεVypε), (2.1)

where εα is some commuting Dirac four-component spinor tending asymptotically
to some constant spinor ε0 .

ε^εo + Oίr-1). (2.2)

The total ADM four- momentum Pμ of an AF space-time is given by [15]

Σμv, (2.3)

where the surface integral is over the two-sphere at spatial infinity S and the measure
is given by

1 The metric signature is (+ ). Greek indices μ,v,/ov .. = 0,1,2,3 refer to space-time components,
α,/?,y,... refer to spinor components, and Latin indices α,£,c,... refer to frame components,

e = / - ^ , σβb=i[yβ,y6l 8πG = l
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Note that this includes a factor of the vierbein determinant since

Using the divergence theorem, (2.3) becomes a volume integral over a three-
surface Σ with boundary S,

= ί VvE^dΣμ = f ε^[εy5

7pV[vVσ]ε + V^5γpVσε]dΣμ

Σ Σ

+ (complex conjugate) (2.6)

= j GμvεγμεdΣv + J V/(yvσμp + σμpyv)VpεdΣv, (2.7)
Σ Σ

where the Ricci identity has been used

along with the identities

where Gv

b is the Einstein tensor.
As a result of the field equations

Gμv=Tμv, (2.12)

the first term in (2.7) is non-negative if Tμv satisfies the dominant energy condition
(1.1) as έyvε is non-space-like for Dirac spinors. Choosing co-ordinates so that the
normal to Σ is in the x° direction, the integrand in the second term in (2.7) becomes,
with spatial indices ι, j = 1,2,3,

3 2

2Viεy°σίjVjε = 2(V^σijVjε = 2\Vjε\2-2 £ y% ε . (2.13)

This can be made positive by choosing ε to satisfy the "Witten condition"

3

£y' 'V £ f i = 0. (2.14)

It has been shown that this can always be done [17], that is, that the elliptic
differential equation (2.14) can always be solved, subject to the boundary conditions
(2.2). Then, by (2.7), the energy integral is non-negative.

έ0y%Pμ^O, (2.15)

This must hold for any choice of constant spinor ε0, and so Pμ is non-space-like and
the energy of the space-time, P° is non-negative.

Further, Pμ is zero if and only if both
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and

Vjε = 0. (2.16)

Equation (2.16) must hold for projections on to all possible surfaces Σ with
boundary S and this is only possible [11] if

Vμε = 0. (2.17)

The integrability condition for (2.17) for AF spaces is that the Riemann curvature
vanishes and so the space-time must be flat.

If the three-surface Σ is chosen to be asymptotically null, so that the two-surface
S is at null infinity, Eqs. (2.3) and (2.6) give the Bondi mass and the positivity follows
in a similar manner [16]. It will be seen later that the Abbott-Deser mass is given by
replacing the covariant derivative in (2.1) by an "improved" derivative, given by
(3.14), and again the proof proceeds as before [5, 11].

3. Conserved Charges

If a vector density Jμ satisfies 5μJμ=0, then §d3χj° is a charge which will be
conserved if appropriate boundary conditions are imposed. For AF spaces the
charges are conserved if the integral is over a space-like three-surface but not for
asymptotically null hypersurfaces. In the AAdS case, by choosing the fields to satisfy
certain boundary conditions [22] the integrals over space-like surfaces become
conserved. In this paper, asymptotically null hypersurfaces will not be considered,
although it seems that a similar analysis to that presented here should go through.
The charges here discussed are associated with space-like surfaces and for AAdS
spaces need not be conserved. In this section, following [4], charges will be
constructed corresponding to the symmetries of the asymptotic region.

Suppose the metric gμv tends to a "background" metric gμv at large distance

βμv = gμv + hμv> C3'1)

where gμv is a solution of the Einstein equations (Gμv is the Einstein tensor for gμv)

Gμv + Λgμv = Q. (3.2)

Of particular interest will be the spaces of constant curvature, since they have
maximal symmetry. In flat space, or anti-de Sitter space with the metric in the
globally static form [5], an appropriate asymptotic condition is

V = °(r"1) as r^°° <3'3)

The energy momentum tensor of the gravitational field tμv is defined by

Gμv = Qμv + Qμv _ ̂  ^A)

where G£v is linear in hμv and tμv consists of terms of second order and higher in hμv.
All operations such as raising and lowering indices and covariant differentiation are
with respect to gμv and will be until further notice. The linearised field equation is
then

Gf + Λhμv = Tμv + tμv = Θμ\ (3.5)
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The background Bianchi identity implies

Vμ<9"v = 0, (3.6)

where Vμ is the covariant derivative with respect to gμv. Let kμ(A,B = 1,2,...) be the
Killing vectors of the background metric gμv

W + Vv/tf = 0, (3.7)

so that the symmetries of the background metric correspond to Lie dragging along
the integral curves of the Killing vector field. Then

Jί = eθμJ?A (3.8)

is a conserved vector density where e = λ/— g is the determinant of the background
vierbein, since

dμ(eθ^kA) = e?μ(θ^) = 0 (3.9)

as a result of (3.6) and (3.7). Then

K(kA) = KA= Sdtxeθ^tf = $θμvtfdΣv (3.10)
I I

gives a set of conserved charges, one corresponding to each Killing vector field kμ. If
kA is time-like, KA gives the energy relative to the zero-energy background state.

The conserved charges resulting from invariances of the background under
supersymmetry transformations can be obtained in a similar way. In analogy with
Killing vectors, Killing spinors [4] can be defined as spinor fields α generating local
supersymmetries δQ(<x) leaving a configuration invariant. The infinitesimal super-
symmetry variation of the gravitino field is given by

<5QWμ = Vμα> (3.11)

which must vanish if α is to be a Killing spinor, where V is some differential operator.
For N = 1 supergravity [18]

Vμα
 = V> (3.12)

where V is the gravitational covariant derivative with torsion [18]

τa

μv=-^μy
aψv, (3.13)

and for N = 1 supergravity with a cosmological term A < 0, [19]

Ϋ μ = V μ + ιV(-Λ/12)v (3.14)

In the N — 1 theories, the gravitino field and the spinors α satisfy a Majorana
(reality) condition.

Of particular interest are purely bosonic backgrounds with ψμ = 0, and hence
vanishing torsion, so that V reduces to the usual gravitational covariant derivative.
The supersymmetry variations of the bosonic fields are proportional to the
fermionic fields and so vanish. From (3.11), a necessary condition for a spinor α to be
a Killing spinor for a bosonic background is



Positive Energy and Supersymmetry 551

where Vμ is the V for the background gμv. For N — 1 supergravity, the Killing spinors
are covariantly constant spinors. The integrability condition for (3.15) is

V[μVv]α = 0. (3.16)

The super curvature V[μVv] vanishes if gμv is the metric for a space of constant
non-positive curvature, with Vμ given by (3.12) or (3.14), with A being the
appropriate cosmological constant. There would then be a four-space of linearly
independent solutions to (3.15).

The anti-commuting Killing spinor α can then be expressed as a linear
combination of terms of the form pmαm(x), m = 1 , 2, . . . , pmρn = - ρnpm, where pm is
an odd element of the Grassman algebra and the αm form a set of linearly
independent commuting spinor fields, each of which satisfies (3.15).

The Rarita-Sch winger equation can be split into linear and non-linear parts as
follows

εμ v pVyvVA = Rμ> (3.17)
where

Ί, = <Ίa (3-18)

and Rμ consists of non-linear and source terms. Here V[pψσ] is a super-covariant curl
[20]. Then R» satisfies

ΫμJR" = 0 (3.19)

from (3.17). Then for a commuting Killing spinor αm

eff"R» = eκm εWγ5yvVpψσ = eVp(xmε^σy5yvψσ) (3.20)

Then from (3.20)

3μ(*o?W) = 0, (3.21)
so that

Qm = J d*xeoίmR0 = j* άmεμvpσγvVpψσdΣμ (3.22)
Σ Σ

gives a set of conserved anti-commuting supercharges, one corresponding to each
Killing spinor αm. The supercharges can be expressed as surface integrals using (3.20)
over S = dΣ,

Qm = tt«mεWy5γvψσΣμp. (3.23)
s

The charges KA given by (3.10) can also be re- written as surface integrals [1,4].
Let Γa

b = Γa

μbdxμ be the connection one forms for hμv, so that

Γ\ = Γ\(hμv) = Γ\(gμv) - Γ*b(gμv) (3.24)

and so is a tensor. Then [15], for A = 0,

, (3.25)
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which gives (3.10) on using the divergence theorem where

Defining the forms

the conserved charges can be re-expressed as

KA=\R^ *(kA t? $\ (3.28)
Σ

S

Expressions for A ± 0 will be given later.
The surface integrals (3.23) and (3.25) remain unchanged if the metric gμv is

replaced by gμv in these expressions and all contractions are performed with gμv.
There would also be no change if the Killing vectors and spinors were replaced by
vectors and spinors that tend asymptotically to Killing vectors and spinors. For AF
spaces, asymptotic Killing spinors would be constant spinors plus terms of order 1/r.
With these replacements, there would be extra terms if the surface integrals were re-
expressed as volume integrals, resulting from the derivatives of asymptotic Killing
quantities.

In the case of space-times with non-simple topology, as is the case when
horizons are present, the background splitting

dμv = gμv + hμv (3.30)

becomes problematic, but it is still useful in the asymptotic region where (3.30) still
holds with hμv small. The volume integral expressions for the charges, (3.10) and
(3.22) are then not well-defined and the charges should be defined by their surface
integral expressions in terms of asymptotic Killing vectors and spinors.

On using the divergence theorem these expressions give a volume integral
together with surface integrals over internal boundaries. Since it is only the
asymptotic behaviour of the asymptotic Killing spinors and vectors that is
important, they can be chosen so that the surface integrals over the internal
boundaries vanish.

In the following sections it will prove useful to first consider simple topology and
use the volume integrals (3.10) and (3.22) and then relax the assumption and work
with the more general surface expressions.

4. The Global Super-Algebra

The quantum operators generating the global symmetries and supersymmetries
corresponding to the background Killing vectors and spinors satisfy a global
supersymmetry algebra.

The action of these symmetries on fields will be generated by the graded
commutators of the fields with the surface integrals given in Sect. 3 only if all local
gauge freedom is eliminated from the fields present, [12]. Only then will the
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variation of a field at infinity determine the transformation everywhere. In the AF
case one obtains the super-Poincare algebra consisting of the Poincare algebra
satisfied by the set of charges KA consisting of the global 4-momentum PM and the
global angular momentum JMN=_JNM^ M? # = 0,1,2,3, together with the
relations

[PM,βm]=0, (4.1)

[JM;v, Qm] - hσMNm

nQ
n, (4.2)

{Qr,Q"} = WSTPM. (4.3)

In the AAdS case, the appropriate relations are these of the graded anti-de Sitter
algebra, OSp(l/4), with bosonic generators JMN = — JNM and JM4, M, N = 0,..., 3,
satisfying the 0(3.2) algebra. Relation (4.3) is replaced by

{βm, Q"} = hγ™JM4 + ihσ™NJMN. (4.4)

Since the fields, ea

μ, ψμ are constrained by the gauge conditions imposed, their
commutation relations are modified and the brackets occurring in the algebras
are the quantum analogues of Dirac brackets [21].

The relations (4.3), (4.4) lead to a simple algebraic proof of the positivity of energy
in quantum supergravity [12]. Taking the expectation of (4.3) for a physical state |s >
and multiplying by y° yields

h-1<s\{Qm

yQ^}\sy=(γMγ°Γn<s\PM\sy. (4.5)

The manifest positivity of the left-hand side implies the positivity of the eigen-
values of γ°γAPA which are P° ± | P|. The positivity of the expectation value of P° can
also be obtained by taking the trace of (4.5). The positivity of the energy J04 for
AAdS spaces can be shown in the same way using (4.4), [4, 22]. This suggests the
positivity of energy in classical Einstein gravity [13], since one may consider the
expectation value (4.5) for purely bosonic states |s>, with vanishing gravitino field
and hence zero supercharge, and then take the limit /ι->0. This is not rigorous,
however, since it requires the existence of a consistent, supersymmetrie quantum
theory of gravity.

Witten's proof resulted from an attempt to find a rigorous classical version of this
formal quantum argument. Classical supergravity can be considered as a field
theory enjoying local supersymmetry, with fields taking values in a Grassman
algebra and the graded commutation relations of the quantum theory replaced by
graded Poisson brackets without factors of h.

In the Hamiltonian formulation [23], constraints are imposed and the Poisson
brackets become Dirac brackets. The surface integrals then again satisfy a global
supersymmetry algebra, [14]. Witten's argument can be understood as arising from
this interpretation of the algebra (4.3). (This has also been noticed in [24].) However,
it is much more illuminating to consider the graded Lie algebra of global
symmetries. Since these symmetry transformations can be represented by the Dirac
bracket, or corresponding quantum commutator, of the charges with the fields, this
approach will imply the results of the interpretation of the super-algebra in terms of
both classical and quantum Dirac brackets.
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5. Global Symmetries

The commutator of two vector fields 17, V is given by the Lie derivative £V,

[U91T\ = £V. (5.1)
υ ^ '

The commutator of two Killing vector fields of gμv will again be a Killing vector field

for some constants CC

AB. Consider the "conjugate" operators KA which generate
infinitesimal isometrics by Lie dragging along the integral curves of the vector fields
kΛ. Infinitesimal general co-ordinate transformations depending on some in-
finitesimal parameter t are then given by

tKA=δGCT(kAt) = t£kA, (5.3)

and finite group elements are obtained by exponentiation. Since Lie derivatives
satisfy the relation, for any vector fields 17, V,

££-££= £ ,
U V VU [U,V]

the symmetry generators satisfy the algebra

CC

ABKC (5.4)

with the same structure constants CAB as in (5.2). For AF spaces this will be the
Poincare algebra and for AAdS spaces it will be the anti-de Sitter algebra (the
algebra of 0(3, 2)).

The background space-time will transform as a massless representation of this
symmetry group, while the asymptotic region of the full space-time will in general
transform according to a massive representation.

One can also consider the transformation of the charges KB under the global
symmetries KA

[_ZA,KB-\ = δGCT(kA)lθμvk
μdΣv = CAB

CKC. (5.5)

Thus, as one would expect, the charges KB are just "rotated" into each other by the
global symmetries. This analysis extends readily to classical supergravity. The
commutator of two local supersymmetry transformations δQ(εi) and δQ(ε2) is given,
if acting on on-shell states, by

[<M*ι)Λ(£2)] = <W£μ) + ίflί- W + δL(ξVf), {* = ±fi2y*βι , (5.6)

where Γa* is the spin connection and δ L represents a local Lorentz rotation. If ε1 and
s2 are Killing spinors, the right-hand side must be a pure gauge transformation and
so ξμ must be a Killing vector and ξμψμ must be a Killing spinor.

This implies a relation between the commuting Killing spinors αm and the Killing
vectors kA

for some constants f*n. The basis of Killing spinors αm can be chosen [4, 22] so that
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for flat space

and for AdS space
^mJ^n = J^M + iσ^kMN. (5.9)

Here M, N = 0, . . . , 3 and the /CM are the four Killing vectors generating global
translations. The charges corresponding to these Killing vectors are

K(kM) = PM, [or K(kM) = JM4 for AdS case], K(kMN) = JMN. (5.10)

The γ%n are the usual gamma matrices satisfying {yM, γN} = 2ηMN. Consider the
generators of infinitesimal global supersymme tries generated by Killing spinors

(5.11)

These will satisfy the algebra

with the same structure constants /JfΛ as in (5.7), thus giving the same algebra as (4.3)
or (4.4) in the appropriate cases.

In analogy with (5.5) one might expect the transformation of the supercharges Qn

under the action of the global supersymmetries Qm to be given by

This will be shown to be the case and (5.13) can be used to express the mass in
classical supergravity in terms of the change of the supercharge under super-
symmetry. This is defined even for systems with vanishing gravitino field, and hence
vanishing supercharge, and in this limit the expression reduces to those of Witten
and Nester for the mass in general relativity.

The supercharge is given by

Σμ. (5.14)

The result follows essentially since, under the action of supersymmetry, fermionic
field equations transform into bosonic field equations and in particular the
linearized gravitino field equation Rμ transforms into the linearized Einstein field
equation Gμ

L

v + Λhμv. In the AF case, factoring out Grassman parts,

δQ(xm)ψμ = Vμκ'n + 0(ψ2), (5.15)

where Vμ is here the covariant derivative for the full metric gμλ> without torsion. The
torsion (3.13) is of quadratic order in the gravitino field ψu9 such terms being
represented by O(\l/2). [Note that Vμα

m = Vμα
m = 0 but Vμocm ± 0.] Then

δQ(W = ε^VyvVpVσαm + 0(φ2) = ̂ pσ^RL

pσ

ab(y5ycσab)^ + O(ψ2), (5.16)

where
V [ V σ α = iRU<Λ<> (5.17)
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and Rpσab is the part of the curvature tensor linear in ft Using

(5 1 8)
Eqs. (2.10), (2.11) and the Bianchi identity εμvpτ Ry = Q, one obtains

. (5.19)

Then the variation of the supercharge, regarded as an active transformation acting
on the fields leaving the co-ordinate systems and Killing fields invariant, is

Sc(αw)βπ = J ΰnδQ(ofH)RμdΣμ = j θμvΰnyμa
mdΣv + 0(ψ2) (5.20)

I I

The variation of the vierbein gives rise to terms quadratic in the gravitino field.
If one instead considers the surface integral form for Q" (3.23).

, (5.21)
s

using (5.18) and

Vσα
w - Vσα

m + (Γf σ Jαm - (Γf σflί,)αm, (5.22)

where Γa

σ

b is the connection for ftμv given by (3.24), one obtains

δQ(am)Qn = ̂ δllλ

pΓ\e^γ^dΣστ + 0(ψ2) (5.23)

so by (3.25),
δQ(«m)Qn = γ%nPM + 0(ψ2). (5.24)

In fact (5.13) holds quite generally since it is a consequence of the fact that fermionic
field equations transform into field equations and for systems with vanishing
gravitino fields

9 (5.25)
s

with Vα as defined in (3.1 1). For AF and AAdS systems, the mass can be obtained by
multiplying by y°w and summing over m and n. The expressions for the mass used in
positivity theorems will derive from the simple expression (5.25) in terms of Killing
spinors.

6. Positivity

The total mass given by (3.10) is not manifestly positive since θ°° can have either
sign. It is therefore desirable to try to find expressions in terms of the stress-energy
Tμv which satisfies the dominant energy condition (1.1), or in other words to work
with the full field equations rather than the linearized ones.

The values of the charges given by (5.25) remain unchanged if all contractions,
derivatives etc., are performed with respect to the full metric gμv instead of gμv, since
hμv has appropriate asymptotic behaviour. The Killing spinors can also be replaced
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with asymptotic Killing spinors, χ,

X(X) =ΣXm(X)*m(x)> Xm(x)-+Xm aS Γ ~+ °° I6'1)
n

for some constant χ°. Then

where here, and for the rest of the paper, all operations are with respect to the full
metric. The simple expression (6.1) for the mass holds for arbitrary asymptotic
Killing spinors χ and in the presence of a negative cosmological constant. Since for
commuting Majorana spinors a Fiertz rearrangement gives

by taking complex valued functions χm(x) so that χ becomes a Dirac spinor, Nester's
expression for the mass (2.1), (2.3) is regained.

On using the divergence theorem, if the topology is trivial, (6.1) can be put into
the form

(χnofA

mnXo)κA = J ε^°\_χysypvfaχ + faxft'yf.x] dΣμ. (6.2)
Σ

For AF and AAdS spaces, with V given by (3.12) or (3.14) respectively, the first term
on the right hand side of (6.2) yields, on using the field equations,

' ST »χyμxlΣv9 (6.3)
I

which is positive if the dominant energy condition (1.1) is assumed to hold. A result
similar to (6.3) obtains, with some modification, for other supergravity models
[5,25] since it is again just a result of the fact that the supersymmetry variation of the
Rarita-Schwinger equation gives the Einstein equation. The remaining term in (6.2)
is positive, by the reasoning presented in Sect. 2, if the Witten condition

Σ y^jX = o (6 4)
j = ι

is imposed, as can always be done in the AF case [17] and is presumably also possible
in the general case. Then XofmnXo^-A is positive for all spinors χ0 which implies the
positivity of the mass for the choices of f*n of interest. On using the Witten condition
(6.4), the expression (6.1) reduces to

a generalization of the formula for the mass given by Witten [11], where the co-
ordinates are chosen such that the surface of integration S is the boundary of a three-
surface Σ given by x° = constant and i= 1,2,3 labels the spatial components.

For the mass given by (6.1) to be zero it is necessary that χ, which is an asymptotic
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Killing spinor of the background space, Vχ -> 0, also be an exact Killing spinor of the
full space

0. (6.6)

For V as given in (3.12) or (3.14) this implies that hμv = 0 and the full space must be
Minkowski space or anti-de Sitter space respectively and these are the unique zero
energy AF or AAdS configurations.

If the topology is non-trivial, expression (6.2) will be modified by the addition of
surface integrals over internal boundaries. It has been shown [8] that, if the internal
boundaries form an apparent horizon, (the possibly disconnected outer boundary of
closed trapped surfaces) the spinor χ can be chosen so that it satisfies the Witten
condition (6.4) and such that the surface integral over the apparent horizon vanishes.
If the space-time is regular outside the apparent horizon, the proof proceeds as
before and the mass is positive.

7. The Witten Condition

At first sight it seems strange that in the classical proof the Witten condition (6.4)
must be imposed, for there seems to be no analogue in the algebraic argument of
Sect. 4. In fact such a condition is needed since | s> in (4.5) must be a physical state. It
is necessary to impose gauge conditions and constraints on the fields to remove non-
physical, "longitudinal" degrees of freedom which may have negative norm. Then
and only then does the space of states have positive definite norm. Since Q is an
Hermitian operator on that Hubert space, it then follows that the mass of all
physical states is positive.

To this end, it is appropriate to make a canonical decomposition or 3 + 1 split
[23] tailored to the three-surface Σ, the mass associated with which is being
considered. The time-component of the gravitino field ψ0 is then non-propagating
and the dynamical part of the Rarita-Schwinger field is given by \I/J9 j = 1,2,3,
subject to a gauge choice such as

The parameters ε of local supersymmetry transformations must be restricted so
as to maintain the constraints and gauge conditions. Condition (7.1) is preserved if

Σ 7JVε = 0, (7.2)
j = ι

which is precisely the Witten condition. Transformations given by Dirac brackets
with the global charges will automatically preserve these conditions.

The mass of a source-free gravitational field is given by (6.1) in terms of the
change of the supercharge χ™ Qm by an arbitrary global supersymmetry δQ(χ) with
parameter χ, where χ is an arbitrary asymptotic Killing spinor.

. (7.3)
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If the gauge condition (7.1) is imposed, χ must satisfy (7.2) so that (7.3) becomes a
"sum of squares" and is positive. If, however, (7.1) is not imposed, the gravitino field
transforms into a gravitational field composed of both positive-energy, physical
parts and negative energy, unphysical parts. Since supersymmetry transforms
physical states into physical states, the positive term on the right hand side of (7.3)
gives the total energy of the physical part of the gravitational field, while the negative
term gives the negative energy of the unphysical parts. The negative term thus gives a
gauge-dependent contribution to the mass that can be set to zero by choosing a
physical gauge for the gravitational field.

8. Conclusion

The mass of any classical supergravity configuration that tends asymptotically to a
supersymmetric background space-time can be given relative to that of the
background by the change of the supercharge under an infinitesimal global
supersymmetry transformation. In particular this has been seen to be true for
general relativistic systems which have vanishing gravitino field and hence
supercharge. (A supersymmetric background is one that is invariant under global
supersymmetry and so admits a Killing spinor). If all the non-physical degrees of
freedom are eliminated, then this expression can be used to show the positivity of
mass of systems consisting of Einstein gravity, coupled to any matter distribution
satisfying the dominant energy condition (1.1) that is regular outside an apparent
horizon and has appropriate asymptotic behaviour. For AF and AAdS spaces, the
maximally supersymmetric space-time is the unique zero energy state. It is, of
course, not possible to compare the energies of spaces with different asymptotic
behaviour.

A key role in the analysis was played by the fact that the supersymmetry
variation of the Rarita-Schwinger equation is proportional to the Einstein equation
in N = 1 supergravity (and similarly for the linearized field equations) which is a
result of the supercurrent and the energy-momentum tensor lying in the same super-
multiplet. Since the charges can be expressed in terms of the linearized field
equations, the relation between mass and supercharge follows.

The proof of positivity cannot be extended to spaces with positive cosmological
constant since the operator V given by (3.14) with A > 0 no longer has the necessary
properties. This is related to the fact that the de Sitter group 0(4,1) cannot be graded.

The results discussed here can be extended in various ways. By including all the
terms of quadratic order and higher in the gravitino field, a proof of the positivity of
mass in classical supergravity can presumably be obtained. In extended supergravity
theories, a lower bound for the mass can be given in terms of the central charges. For
example, in N = 2 supergravity, which reduces to Einstein-Maxwell theory for
purely bosonic configurations, the mass M satisfies

M-(β2 + P2)1/2^0 (8.1)

with equality if and only if the system is globally supersymmetric, where Q is the total
electric charge, P is the total magnetic charge and it is assumed that the local mass
and charge densities satisfy an inequality similar to (8.1) [26].
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The inequality (7.1) is further modified if there is a non-zero NUT-charge or
magnetic mass [25]. Finally, the methods discussed here extend to give the
positivity of mass and hence the stability of gauged extended supergravity [5] and of
supergravity coupled supersymmetrically to super-matter [25], even if the scalar
potentials are unbounded below.

Acknowledgements. I would like to thank G W Gibbons and S. W Hawking for useful discussions. I
would also particularly like to thank M Rocek, a conversation with whom suggested many of the ideas
developed here

Note Added in Proof. S. W. Hawking has recently shown that for a space-time to admit an asymptotic
group of motions that is 0(3,2), it is necessary that the gravitational field satisfy one of the boundary
conditions given by Breitenlohner and Freedman [22] These boundary conditions are then necessary for
the existence of asymptotic Killing vectors and spinors and should be used in the positive mass theorem
for AAdS spaces

After completion of this paper, I received a paper by S Deser giving an alternative discussion of
Witten's proof in terms of classical supergravity
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